1
|
Bayat FK, Alp Mİ, Bostan S, Gülçür HÖ, Öztürk G, Güveniş A. An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:503-514. [PMID: 35930029 DOI: 10.1007/s00249-022-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Cultured neuronal networks (CNNs) are powerful tools for studying how neuronal representation and adaptation emerge in networks of controlled populations of neurons. To ensure the interaction of a CNN and an artificial setting, reliable operation in both open and closed loops should be provided. In this study, we integrated optogenetic stimulation with microelectrode array (MEA) recordings using a digital micromirror device and developed an improved research tool with a 64-channel interface for neuronal network control and data acquisition. We determined the ideal stimulation parameters including light intensity, frequency, and duty cycle for our configuration. This resulted in robust and reproducible neuronal responses. We also demonstrated both open and closed loop configurations in the new platform involving multiple bidirectional channels. Unlike previous approaches that combined optogenetic stimulation and MEA recordings, we did not use binary grid patterns, but assigned an adjustable-size, non-binary optical spot to each electrode. This approach allowed simultaneous use of multiple input-output channels and facilitated adaptation of the stimulation parameters. Hence, we advanced a 64-channel interface in that each channel can be controlled individually in both directions simultaneously without any interference or interrupts. The presented setup meets the requirements of research in neuronal plasticity, network encoding and representation, closed-loop control of firing rate and synchronization. Researchers who develop closed-loop control techniques and adaptive stimulation strategies for network activity will benefit much from this novel setup.
Collapse
Affiliation(s)
- F Kemal Bayat
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| | - M İkbal Alp
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sevginur Bostan
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - H Özcan Gülçür
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Albert Güveniş
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
2
|
Moskalyuk A, Van De Vijver S, Verstraelen P, De Vos WH, Kooy RF, Giugliano M. Single-Cell and Neuronal Network Alterations in an In Vitro Model of Fragile X Syndrome. Cereb Cortex 2021; 30:31-46. [PMID: 30958540 DOI: 10.1093/cercor/bhz068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GABAergic signaling, and an altered balance between excitation and inhibition has been hypothesized to underlie the clinical consequences of absence of the protein. Using Fmrp knockout mice, we studied an in vitro model of cortical microcircuitry and observed that the loss of FMRP largely affected the electrophysiological correlates of network development and maturation but caused less alterations in single-cell phenotypes. The loss of FMRP also caused a structural increase in the number of excitatory synaptic terminals. Using a mathematical model, we demonstrated that the combination of an increased excitation and reduced inhibition describes best our experimental observations during the ex vivo formation of the network connections.
Collapse
Affiliation(s)
- Anastasiya Moskalyuk
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Sebastiaan Van De Vijver
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Flanders, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Flanders, Belgium
| | - Michele Giugliano
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium.,International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
3
|
Enhancement of parvalbumin interneuron-mediated neurotransmission in the retrosplenial cortex of adolescent mice following third trimester-equivalent ethanol exposure. Sci Rep 2021; 11:1716. [PMID: 33462326 PMCID: PMC7814038 DOI: 10.1038/s41598-021-81173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.
Collapse
|
4
|
Schwalger T, Chizhov AV. Mind the last spike - firing rate models for mesoscopic populations of spiking neurons. Curr Opin Neurobiol 2019; 58:155-166. [PMID: 31590003 DOI: 10.1016/j.conb.2019.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023]
Abstract
The dominant modeling framework for understanding cortical computations are heuristic firing rate models. Despite their success, these models fall short to capture spike synchronization effects, to link to biophysical parameters and to describe finite-size fluctuations. In this opinion article, we propose that the refractory density method (RDM), also known as age-structured population dynamics or quasi-renewal theory, yields a powerful theoretical framework to build rate-based models for mesoscopic neural populations from realistic neuron dynamics at the microscopic level. We review recent advances achieved by the RDM to obtain efficient population density equations for networks of generalized integrate-and-fire (GIF) neurons - a class of neuron models that has been successfully fitted to various cell types. The theory not only predicts the nonstationary dynamics of large populations of neurons but also permits an extension to finite-size populations and a systematic reduction to low-dimensional rate dynamics. The new types of rate models will allow a re-examination of models of cortical computations under biological constraints.
Collapse
Affiliation(s)
- Tilo Schwalger
- Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany; Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Anton V Chizhov
- Ioffe Institute, 194021 Saint-Petersburg, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Active High-Density Electrode Arrays: Technology and Applications in Neuronal Cell Cultures. ADVANCES IN NEUROBIOLOGY 2019. [PMID: 31073940 DOI: 10.1007/978-3-030-11135-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Active high-density electrode arrays realized with complementary metal-oxide-semiconductor (CMOS) technology provide electrophysiological recordings from several thousands of closely spaced microelectrodes. This has drastically advanced the spatiotemporal recording resolution of conventional multielectrode arrays (MEAs). Thus, today's electrophysiology in neuronal cultures can exploit label-free electrical readouts from a large number of single neurons within the same network. This provides advanced capabilities to investigate the properties of self-assembling neuronal networks, to advance studies on neurotoxicity and neurodevelopmental alterations associated with human brain diseases, and to develop cell culture models for testing drug- or cell-based strategies for therapies.Here, after introducing the reader to this neurotechnology, we summarize the results of different recent studies demonstrating the potential of active high-density electrode arrays for experimental applications. We also discuss ongoing and possible future research directions that might allow for moving these platforms forward for screening applications.
Collapse
|
6
|
Van De Vijver S, Missault S, Van Soom J, Van Der Veken P, Augustyns K, Joossens J, Dedeurwaerdere S, Giugliano M. The effect of pharmacological inhibition of Serine Proteases on neuronal networks in vitro. PeerJ 2019; 7:e6796. [PMID: 31065460 PMCID: PMC6485206 DOI: 10.7717/peerj.6796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
Neurons are embedded in an extracellular matrix (ECM), which functions both as a scaffold and as a regulator of neuronal function. The ECM is in turn dynamically altered through the action of serine proteases, which break down its constituents. This pathway has been implicated in the regulation of synaptic plasticity and of neuronal intrinsic excitability. In this study, we determined the short-term effects of interfering with proteolytic processes in the ECM, with a newly developed serine protease inhibitor. We monitored the spontaneous electrophysiological activity of in vitro primary rat cortical cultures, using microelectrode arrays. While pharmacological inhibition at a low dosage had no significant effect, at elevated concentrations it altered significantly network synchronization and functional connectivity but left unaltered single-cell electrical properties. These results suggest that serine protease inhibition affects synaptic properties, likely through its actions on the ECM.
Collapse
Affiliation(s)
- Sebastiaan Van De Vijver
- Molecular, Cellular, and Network Excitability, Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Stephan Missault
- Experimental Laboratory of Translational Neuroscience and Otolaryngology, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Jeroen Van Soom
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Stefanie Dedeurwaerdere
- Laboratory of Experimental Haematology, VAXINFECTIO, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Michele Giugliano
- Molecular, Cellular, and Network Excitability, Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Wilrijk, Flanders, Belgium
- Neuroscience sector, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| |
Collapse
|
7
|
Abstract
The firing rate of neuronal spiking in vitro and in vivo significantly varies over extended timescales, characterized by long-memory processes and complex statistics, and appears in spontaneous as well as evoked activity upon repeated stimulus presentation. These variations in response features and their statistics, in face of repeated instances of a given physical input, are ubiquitous in all levels of brain-behavior organization. They are expressed in single neuron and network response variability but even appear in variations of subjective percepts or psychophysical choices and have been described as stemming from history-dependent, stochastic, or rate-determined processes.But what are the sources underlying these temporally rich variations in firing rate? Are they determined by interactions of the nervous system as a whole, or do isolated, single neurons or neuronal networks already express these fluctuations independent of higher levels? These questions motivated the application of a method that allows for controlled and specific long-term activation of a single neuron or neuronal network, isolated from higher levels of cortical organization.This chapter highlights the research done in cultured cortical networks to study (1) the inherent non-stationarity of neuronal network activity, (2) single neuron response fluctuations and underlying processes, and (3) the interface layer between network and single cell, the non-stationary efficacy of the ensemble of synapses impinging onto the observed neuron.
Collapse
|
8
|
Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications. ADVANCES IN NEUROBIOLOGY 2019; 22:351-387. [DOI: 10.1007/978-3-030-11135-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Panuccio G, Colombi I, Chiappalone M. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays. J Vis Exp 2018. [PMID: 29863681 PMCID: PMC6101224 DOI: 10.3791/57548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common partial complex epileptic syndrome and the least responsive to medications. Deep brain stimulation (DBS) is a promising approach when pharmacological treatment fails or neurosurgery is not recommended. Acute brain slices coupled to microelectrode arrays (MEAs) represent a valuable tool to study neuronal network interactions and their modulation by electrical stimulation. As compared to conventional extracellular recording techniques, they provide the added advantages of a greater number of observation points and a known inter-electrode distance, which allow studying the propagation path and speed of electrophysiological signals. However, tissue oxygenation may be greatly impaired during MEA recording, requiring a high perfusion rate, which comes at the cost of decreased signal-to-noise ratio and higher oscillations in the experimental temperature. Electrical stimulation further stresses the brain tissue, making it difficult to pursue prolonged recording/stimulation epochs. Moreover, electrical modulation of brain slice activity needs to target specific structures/pathways within the brain slice, requiring that electrode mapping be easily and quickly performed live during the experiment. Here, we illustrate how to perform the recording and electrical modulation of 4-aminopyridine (4AP)-induced epileptiform activity in rodent brain slices using planar MEAs. We show that the brain tissue obtained from mice outperforms rat brain tissue and is thus better suited for MEA experiments. This protocol guarantees the generation and maintenance of a stable epileptiform pattern that faithfully reproduces the electrophysiological features observed with conventional field potential recording, persists for several hours, and outlasts sustained electrical stimulation for prolonged epochs. Tissue viability throughout the experiment is achieved thanks to the use of a small-volume custom recording chamber allowing for laminar flow and quick solution exchange even at low (1 mL/min) perfusion rates. Quick MEA mapping for real-time monitoring and selection of stimulating electrodes is performed by a custom graphic user interface (GUI).
Collapse
Affiliation(s)
- Gabriella Panuccio
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia;
| | - Ilaria Colombi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia; Rehab Technologies, Istituto Italiano di Tecnologia
| |
Collapse
|
10
|
Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS Comput Biol 2017; 13:e1005672. [PMID: 28749937 PMCID: PMC5549760 DOI: 10.1371/journal.pcbi.1005672] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/08/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023] Open
Abstract
Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity. Coordinated spontaneous spiking activity is fundamental for the normal formation of brain circuits during development. However, how ensembles of neurons generate these events remains unclear. To address this question, in the present study, we investigated the network properties that might be required to a neuronal system for the generation of these spontaneous waves of spikes. We performed our study on spontaneously active neuronal cell cultures using high-resolution electrical recordings and a computational network model developed to reproduce our experimental data both quantitatively and qualitatively. Through the analysis of both experimental and simulated data, we found that network bursts are initiated in regions of the network, or “functional communities”, characterized by particular local connectivity properties. We also found that these regions can amplify the background asynchronous spiking activity preceding a network burst and, in this way, can give rise to coordinated spiking events. As a whole, our results suggest the presence of functional communities of neurons in a developing neuronal system that might naturally emerge by following simple constraints on distance-based connectivity. These regions are most likely required for the generation of the spontaneous coordinated activity that can drive activity-dependent circuit formation.
Collapse
|
11
|
Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Comput Biol 2017; 13:e1005507. [PMID: 28422957 PMCID: PMC5415267 DOI: 10.1371/journal.pcbi.1005507] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/03/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. Understanding the brain requires mathematical models on different spatial scales. On the “microscopic” level of nerve cells, neural spike trains can be well predicted by phenomenological spiking neuron models. On a coarse scale, neural activity can be modeled by phenomenological equations that summarize the total activity of many thousands of neurons. Such population models are widely used to model neuroimaging data such as EEG, MEG or fMRI data. However, it is largely unknown how large-scale models are connected to an underlying microscale model. Linking the scales is vital for a correct description of rapid changes and fluctuations of the population activity, and is crucial for multiscale brain models. The challenge is to treat realistic spiking dynamics as well as fluctuations arising from the finite number of neurons. We obtained such a link by deriving stochastic population equations on the mesoscopic scale of 100–1000 neurons from an underlying microscopic model. These equations can be efficiently integrated and reproduce results of a microscopic simulation while achieving a high speed-up factor. We expect that our novel population theory on the mesoscopic scale will be instrumental for understanding experimental data on information processing in the brain, and ultimately link microscopic and macroscopic activity patterns.
Collapse
|
12
|
Where Does EEG Come From and What Does It Mean? Trends Neurosci 2017; 40:208-218. [DOI: 10.1016/j.tins.2017.02.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 02/16/2017] [Indexed: 01/21/2023]
|
13
|
Tscherter A, Heidemann M, Kleinlogel S, Streit J. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation Is Essential for Functional Regeneration. Front Cell Neurosci 2016; 10:220. [PMID: 27708562 PMCID: PMC5030212 DOI: 10.3389/fncel.2016.00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Presently there exists no cure for spinal cord injury (SCI). However, transplantation of embryonic tissue into spinal cord (SC) lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated SC circuits. We tested the two hypotheses in an in vitro SC lesion model that is based on propagation of activity between two rat organotypic SC slices in culture. Transplantation of dissociated cells from E14 rat SC or forebrain (FB) re-established the relay of activity over the lesion site and thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays (MEAs) we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse FB cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated SC circuits. In contrast, transplantation of neurospheres (NS) induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated SC circuits.
Collapse
Affiliation(s)
- Anne Tscherter
- Department of Physiology, University of Bern Bern, Switzerland
| | | | | | - Jürg Streit
- Department of Physiology, University of Bern Bern, Switzerland
| |
Collapse
|