1
|
Comendul A, Ruf-Zamojski F, Ford CT, Agarwal P, Zaslavsky E, Nudelman G, Hariharan M, Rubenstein A, Pincas H, Nair VD, Michaleas AM, Fremont-Smith PD, Ricke DO, Sealfon SC, Woods CW, Claypool KT, Jaimes R. Comprehensive guide for epigenetics and transcriptomics data quality control. STAR Protoc 2025; 6:103607. [PMID: 39869481 PMCID: PMC11799959 DOI: 10.1016/j.xpro.2025.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Host response to environmental exposures such as pathogens and chemicals can include modifications to the epigenome and transcriptome. Improved signature discovery, including the identification of the agent and timing of exposure, has been enabled by advancements in assaying techniques to detect RNA expression, DNA base modifications, histone modifications, and chromatin accessibility. The interrogation of the epigenome and transcriptome cascade requires analyzing disparate datasets from multiple assay types, often at single-cell resolution, derived from the same biospecimen. However, there remains a paucity of rigorous quality control standards of those datasets that reflect quality assurance of the underlying assay. This guide outlines a comprehensive suite of metrics that can be used to ensure quality from 11 different epigenetics and transcriptomics assays. Recommended mitigative actions to address failed metrics are provided. The workflow presented aims to improve benchwork protocols and dataset quality to enable accurate discovery of exposure signatures.
Collapse
Affiliation(s)
- Arianna Comendul
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | - Frederique Ruf-Zamojski
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colby T Ford
- Tuple LLC, Charlotte, NC, USA; University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, Charlotte, NC, USA; University of North Carolina at Charlotte, Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Charlotte, NC, USA
| | | | | | | | - Manoj Hariharan
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Hanna Pincas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Adam M Michaleas
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | | | - Darrell O Ricke
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | | | | | - Kajal T Claypool
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | - Rafael Jaimes
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
| |
Collapse
|
2
|
Jiang N, Wen Z, Tao H, Liao H. Improved ChIP Sequencing for H3K27ac Profiling and Super-Enhancer Analysis Assisted by Fluorescence-Activated Sorting of Formalin-Fixed Paraffin-Embedded Tissues. Biol Proced Online 2025; 27:1. [PMID: 39844037 PMCID: PMC11753037 DOI: 10.1186/s12575-025-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized. Essential steps included single cell preparation, heat treatment enhancing antigen retrieval and labeling, cell sorting, chromatin shearing, ChIP and NGS. Through assistance of FACS, we successfully isolated tumor cells from FFPE lymph node samples of nTFHL-AI and profiled super-enhancers (SEs) mapping by enrichment of H3K27ac signals. The data indicated that the SEs mapping of the sorted cells was different from that of the entire unsorted tissue sample. The H3K27ac signals with cell lineage specificity from background cell components were successfully removed, and the remaining SEs mapping was more similar to T follicular helper cell in an unsupervised clustering analysis, rather than the primary tissue. In addition, we also evaluated the protocol using cultured pure cell lines, and the results indicated that the sequencing data obtained through this protocol had high fidelity and reproducibility. These results show that ChIP-seq for H3K27ac profiling and SEs mapping assisted by FACS with pathological FFPE tissue is available for research of histone modification. Precise epigenetic characteristics of the tumor cell can be described with this protocol.
Collapse
Affiliation(s)
- Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhihao Wen
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Tao
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ng HL, Robinson ME, May PC, Innes AJ, Hiemeyer C, Feldhahn N. Promoter-centred chromatin interactions associated with EVI1 expression in EVI1+3q- myeloid leukaemia cells. Br J Haematol 2024; 204:945-958. [PMID: 38296260 DOI: 10.1111/bjh.19322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
EVI1 expression is associated with poor prognosis in myeloid leukaemia, which can result from Chr.3q alterations that juxtapose enhancers to induce EVI1 expression via long-range chromatin interactions. More often, however, EVI1 expression occurs unrelated to 3q alterations, and it remained unclear if, in these cases, EVI1 expression is similarly caused by aberrant enhancer activation. Here, we report that, in EVI1+3q- myeloid leukaemia cells, the EVI1 promoter interacts via long-range chromatin interactions with promoters of distally located, active genes, rather than with enhancer elements. Unlike in 3q+ cells, EVI1 expression and long-range interactions appear to not depend on CTCF/cohesin, though EVI1+3q- cells utilise an EVI1 promoter-proximal site to enhance its expression that is also involved in CTCF-mediated looping in 3q+ cells. Long-range interactions in 3q- cells connect EVI1 to promoters of multiple genes, whose transcription correlates with EVI1 in EVI1+3q- cell lines, suggesting a shared mechanism of transcriptional regulation. In line with this, CRISPR interference-induced silencing of two of these sites minimally, but consistently reduced EVI1 expression. Together, we provide novel evidence of features associated with EVI1 expression in 3q- leukaemia and consolidate the view that EVI1 in 3q- leukaemia is largely promoter-driven, potentially involving long-distance promoter clustering.
Collapse
Affiliation(s)
- Han Leng Ng
- Department of Immunology and Inflammation, Faculty of Medicine, Centre for Haematology, Imperial College London, London, UK
| | - Mark E Robinson
- Department of Immunology and Inflammation, Faculty of Medicine, Centre for Haematology, Imperial College London, London, UK
- Center of Molecular and Cellular Oncology, Yale University, New Haven, Connecticut, USA
| | - Philippa C May
- Department of Immunology and Inflammation, Faculty of Medicine, Centre for Haematology, Imperial College London, London, UK
| | - Andrew J Innes
- Department of Immunology and Inflammation, Faculty of Medicine, Centre for Haematology, Imperial College London, London, UK
| | - Christina Hiemeyer
- Department of Immunology and Inflammation, Faculty of Medicine, Centre for Haematology, Imperial College London, London, UK
| | - Niklas Feldhahn
- Department of Immunology and Inflammation, Faculty of Medicine, Centre for Haematology, Imperial College London, London, UK
| |
Collapse
|
4
|
Ricke DO, Ng D, Michaleas A, Fremont-Smith P. Omics Analysis and Quality Control Pipelines in a High-Performance Computing Environment. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:519-525. [PMID: 37943668 DOI: 10.1089/omi.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Data quality is often an overlooked feature in the analysis of omics data. This is particularly relevant in studies of chemical and pathogen exposures that can modify an individual's epigenome and transcriptome with persistence over time. Portable, quality control (QC) pipelines for multiple different omics datasets are therefore needed. To meet these goals, portable quality assurance (QA) metrics, metric acceptability criterion, and pipelines to compute these metrics were developed and consolidated into one framework for 12 different omics assays. Performance of these QA metrics and pipelines were evaluated on human data generated by the Defense Advanced Research Projects Agency (DARPA) Epigenetic CHaracterization and Observation (ECHO) program. Twelve analytical pipelines were developed leveraging standard tools when possible. These QC pipelines were containerized using Singularity to ensure portability and scalability. Datasets for these 12 omics assays were analyzed and results were summarized. The quality thresholds and metrics used were described. We found that these pipelines enabled early identification of lower quality datasets, datasets with insufficient reads for additional sequencing, and experimental protocols needing refinements. These omics data analysis and QC pipelines are available as open-source resources as reported and discussed in this article for the omics and life sciences communities.
Collapse
Affiliation(s)
- Darrell O Ricke
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts, USA
| | - Derek Ng
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts, USA
| | - Adam Michaleas
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts, USA
| | - Philip Fremont-Smith
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts, USA
| |
Collapse
|
5
|
Li C, Virgilio MC, Collins KL, Welch JD. Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction. Nat Biotechnol 2023; 41:387-398. [PMID: 36229609 PMCID: PMC10246490 DOI: 10.1038/s41587-022-01476-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/16/2022] [Indexed: 12/13/2022]
Abstract
Multi-omic single-cell datasets, in which multiple molecular modalities are profiled within the same cell, offer an opportunity to understand the temporal relationship between epigenome and transcriptome. To realize this potential, we developed MultiVelo, a differential equation model of gene expression that extends the RNA velocity framework to incorporate epigenomic data. MultiVelo uses a probabilistic latent variable model to estimate the switch time and rate parameters of chromatin accessibility and gene expression and improves the accuracy of cell fate prediction compared to velocity estimates from RNA only. Application to multi-omic single-cell datasets from brain, skin and blood cells reveals two distinct classes of genes distinguished by whether chromatin closes before or after transcription ceases. We also find four types of cell states: two states in which epigenome and transcriptome are coupled and two distinct decoupled states. Finally, we identify time lags between transcription factor expression and binding site accessibility and between disease-associated SNP accessibility and expression of the linked genes. MultiVelo is available on PyPI, Bioconda and GitHub ( https://github.com/welch-lab/MultiVelo ).
Collapse
Affiliation(s)
- Chen Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Maria C Virgilio
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Integration of Multiple Resolution Data in 3D Chromatin Reconstruction Using ChromStruct. BIOLOGY 2021; 10:biology10040338. [PMID: 33923796 PMCID: PMC8072831 DOI: 10.3390/biology10040338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
The three-dimensional structure of chromatin in the cellular nucleus carries important information that is connected to physiological and pathological correlates and dysfunctional cell behaviour. As direct observation is not feasible at present, on one side, several experimental techniques have been developed to provide information on the spatial organization of the DNA in the cell; on the other side, several computational methods have been developed to elaborate experimental data and infer 3D chromatin conformations. The most relevant experimental methods are Chromosome Conformation Capture and its derivatives, chromatin immunoprecipitation and sequencing techniques (CHIP-seq), RNA-seq, fluorescence in situ hybridization (FISH) and other genetic and biochemical techniques. All of them provide important and complementary information that relate to the three-dimensional organization of chromatin. However, these techniques employ very different experimental protocols and provide information that is not easily integrated, due to different contexts and different resolutions. Here, we present an open-source tool, which is an expansion of the previously reported code ChromStruct, for inferring the 3D structure of chromatin that, by exploiting a multilevel approach, allows an easy integration of information derived from different experimental protocols and referred to different resolution levels of the structure, from a few kilobases up to Megabases. Our results show that the introduction of chromatin modelling features related to CTCF CHIA-PET data, histone modification CHIP-seq, and RNA-seq data produce appreciable improvements in ChromStruct’s 3D reconstructions, compared to the use of HI-C data alone, at a local level and at a very high resolution.
Collapse
|
8
|
Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses 2020; 12:v12111311. [PMID: 33207797 PMCID: PMC7697029 DOI: 10.3390/v12111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.
Collapse
|
9
|
Romano O, Petiti L, Felix T, Meneghini V, Portafax M, Antoniani C, Amendola M, Bicciato S, Peano C, Miccio A. GATA Factor-Mediated Gene Regulation in Human Erythropoiesis. iScience 2020; 23:101018. [PMID: 32283524 PMCID: PMC7155206 DOI: 10.1016/j.isci.2020.101018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 01/31/2023] Open
Abstract
Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors. GATA2/1 binding to regulatory regions and transcriptional changes during erythropoiesis GATA1 sustains KIT expression in human erythroid progenitors
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Michel Portafax
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
10
|
Benetatos L, Benetatou A, Vartholomatos G. Enhancers and MYC interplay in hematopoiesis. J Mol Med (Berl) 2020; 98:471-481. [PMID: 32144465 DOI: 10.1007/s00109-020-01891-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Transcription requires the fine interplay between enhancers and transcription factors. Enhancers are able to activate transcription of genes involved in normal cell biology, whereas aberrant enhancer activity leads to oncogenesis. MYC is a well-established proto-oncogene involved in half of human cancers amplifying the output of its targets. The crosstalk between MYC and enhancers is known for many years since the discovery of IgH enhancer juxtaposition with MYC in high-grade lymphomas. Here, we focus mainly in the enhancers surrounding MYC in the 8q24 locus. That region comprises several enhancers that associate with other transcription factors, transmembrane receptors, and fusion genes composing complex regulatory networks aberrantly expressed in almost all types of hematological malignancies. Understanding the nature of these interactions in normal blood cells and in leukemias/lymphomas will expand MYC targeting options in the armamentarium against hematological cancers.
Collapse
Affiliation(s)
| | - Agapi Benetatou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | |
Collapse
|
11
|
Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F, Amendola M, Andre-Schmutz I, Cereseto A, El Nemer W, Concordet JP, Giovannangeli C, Cavazzana M, Miccio A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. SCIENCE ADVANCES 2020; 6:eaay9392. [PMID: 32917636 PMCID: PMC7015694 DOI: 10.1126/sciadv.aay9392] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 05/02/2023]
Abstract
Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) β chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD.
Collapse
Affiliation(s)
- Leslie Weber
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Diderot University-Sorbonne Paris Cité, Paris, France
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
| | - Giacomo Frati
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Tristan Felix
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Giulia Hardouin
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Clara Wollenschlaeger
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Vasco Meneghini
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, Paris 75015, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Anne Chalumeau
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Audentes Therapeutics, San Francisco, CA, USA
| | | | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Wassim El Nemer
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de la Réunion, Univ. des Antilles, Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | | | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France.
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
12
|
Singh S, Singh VK, Rai G. Identification of Differentially Expressed Hematopoiesis-associated Genes in Term Low Birth Weight Newborns by Systems Genomics Approach. Curr Genomics 2020; 20:469-482. [PMID: 32655286 PMCID: PMC7327969 DOI: 10.2174/1389202920666191203123025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022] Open
Abstract
Background Low Birth Weight (LBW) (birth weight <2.5 Kg) newborns are associated with a high risk of infection, morbidity and mortality during their perinatal period. Compromised innate immune responses and inefficient hematopoietic differentiation in term LBW newborns led us to evaluate the gene expression status of hematopoiesis. Materials and Methods In this study, we compared our microarray datasets of LBW-Normal Birth Weight (NBW) newborns with two reference datasets to identify hematopoietic stem cells genes, and their differential expression in the LBW newborns, by hierarchical clustering algorithm using gplots and RcolorBrewer package in R. Results Comparative analysis revealed 108 differentially expressed hematopoiesis genes (DEHGs), of which 79 genes were up-regulated, and 29 genes were down-regulated in LBW newborns compared to their NBW counterparts. Moreover, protein-protein interactions, functional annotation and pathway analysis demonstrated that the up-regulated genes were mainly involved in cell proliferation and differentiation, MAPK signaling and Rho GTPases signaling, and the down-regulated genes were engaged in cell proliferation and regulation, immune system regulation, hematopoietic cell lineage and JAK-STAT pathway. The binding of down-regulated genes (LYZ and GBP1) with growth factor GM-CSF using docking and MD simulation techniques, indicated that GM-CSF has the potential to alleviate the repressed hematopoiesis in the term LBW newborns. Conclusion Our study revealed that DEHGs belonged to erythroid and myeloid-specific lineages and may serve as potential targets for improving hematopoiesis in term LBW newborns to help build up their weak immune defense against life-threatening infections.
Collapse
Affiliation(s)
- Sakshi Singh
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay K Singh
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Geeta Rai
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Benetatos L, Vartholomatos G. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 2018; 75:1999-2009. [PMID: 29484447 PMCID: PMC11105366 DOI: 10.1007/s00018-018-2783-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression 'fine-tuners', are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers' activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers' activity in normal and mainly myeloid malignancies.
Collapse
|
15
|
Abstract
Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
16
|
Abstract
Naturally occurring, large deletions in the β-globin locus result in hereditary persistence of fetal hemoglobin, a condition that mitigates the clinical severity of sickle cell disease (SCD) and β-thalassemia. We designed a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) strategy to disrupt a 13.6-kb genomic region encompassing the δ- and β-globin genes and a putative γ-δ intergenic fetal hemoglobin (HbF) silencer. Disruption of just the putative HbF silencer results in a mild increase in γ-globin expression, whereas deletion or inversion of a 13.6-kb region causes a robust reactivation of HbF synthesis in adult erythroblasts that is associated with epigenetic modifications and changes in chromatin contacts within the β-globin locus. In primary SCD patient-derived hematopoietic stem/progenitor cells, targeting the 13.6-kb region results in a high proportion of γ-globin expression in erythroblasts, increased HbF synthesis, and amelioration of the sickling cell phenotype. Overall, this study provides clues for a potential CRISPR/Cas9 genome editing approach to the therapy of β-hemoglobinopathies.
Collapse
|
17
|
Antoniani C, Romano O, Miccio A. Concise Review: Epigenetic Regulation of Hematopoiesis: Biological Insights and Therapeutic Applications. Stem Cells Transl Med 2017; 6:2106-2114. [PMID: 29080249 PMCID: PMC5702521 DOI: 10.1002/sctm.17-0192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
Hematopoiesis is the process of blood cell formation starting from hematopoietic stem/progenitor cells (HSPCs). The understanding of regulatory networks involved in hematopoiesis and their impact on gene expression is crucial to decipher the molecular mechanisms that control hematopoietic development in physiological and pathological conditions, and to develop novel therapeutic strategies. An increasing number of epigenetic studies aim at defining, on a genome‐wide scale, the cis‐regulatory sequences (e.g., promoters and enhancers) used by human HSPCs and their lineage‐restricted progeny at different stages of development. In parallel, human genetic studies allowed the discovery of genetic variants mapping to cis‐regulatory elements and associated with hematological phenotypes and diseases. Here, we summarize recent epigenetic and genetic studies in hematopoietic cells that give insights into human hematopoiesis and provide a knowledge basis for the development of novel therapeutic approaches. As an example, we discuss the therapeutic approaches targeting cis‐regulatory regions to reactivate fetal hemoglobin for the treatment of β‐hemoglobinopathies. Epigenetic studies allowed the definition of cis‐regulatory sequences used by human hematopoietic cells. Promoters and enhancers are targeted by transcription factors and are characterized by specific histone modifications. Genetic variants mapping to cis‐regulatory elements are often associated with hematological phenotypes and diseases. In some cases, these variants can alter the binding of transcription factors, thus changing the expression of the target genes. Targeting cis‐regulatory sequences represents a promising therapeutic approach for many hematological diseases. Stem Cells Translational Medicine2017;6:2106–2114
Collapse
Affiliation(s)
- Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Oriana Romano
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
18
|
Romano O, Cifola I, Poletti V, Severgnini M, Peano C, De Bellis G, Mavilio F, Miccio A. Retroviral Scanning: Mapping MLV Integration Sites to Define Cell-specific Regulatory Regions. J Vis Exp 2017. [PMID: 28605390 DOI: 10.3791/55919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Moloney murine leukemia (MLV) virus-based retroviral vectors integrate predominantly in acetylated enhancers and promoters. For this reason, mLV integration sites can be used as functional markers of active regulatory elements. Here, we present a retroviral scanning tool, which allows the genome-wide identification of cell-specific enhancers and promoters. Briefly, the target cell population is transduced with an mLV-derived vector and genomic DNA is digested with a frequently cutting restriction enzyme. After ligation of genomic fragments with a compatible DNA linker, linker-mediated polymerase chain reaction (LM-PCR) allows the amplification of the virus-host genome junctions. Massive sequencing of the amplicons is used to define the mLV integration profile genome-wide. Finally, clusters of recurrent integrations are defined to identify cell-specific regulatory regions, responsible for the activation of cell-type specific transcriptional programs. The retroviral scanning tool allows the genome-wide identification of cell-specific promoters and enhancers in prospectively isolated target cell populations. Notably, retroviral scanning represents an instrumental technique for the retrospective identification of rare populations (e.g. somatic stem cells) that lack robust markers for prospective isolation.
Collapse
Affiliation(s)
- Oriana Romano
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia; Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute
| | | | | | | | | | | | - Fulvio Mavilio
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia; Généthon
| | - Annarita Miccio
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia; Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute; Généthon; Sorbonne Paris Cité - Université Paris Descartes;
| |
Collapse
|