1
|
Hamar J, Cnaani A, Kültz D. Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis pathway on hyper-osmotic tolerance of tilapia cells. Genomics 2024; 116:110833. [PMID: 38518899 DOI: 10.1016/j.ygeno.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Myo-inositol is an important compatible osmolyte in vertebrates. This osmolyte is produced by the myo-inositol biosynthesis (MIB) pathway composed of myo-inositol phosphate synthase and inositol monophosphatase. These enzymes are among the highest upregulated proteins in tissues and cell cultures from teleost fish exposed to hyperosmotic conditions indicating high importance of this pathway for tolerating this type of stress. CRISPR/Cas9 gene editing of tilapia cells produced knockout lines of MIB enzymes and control genes. Metabolic activity decreased significantly for MIB KO lines in hyperosmotic media. Trends of faster growth of the MIB knockout lines in isosmotic media and faster decline of MIB knockout lines in hyperosmotic media were also observed. These results indicate a decline in metabolic fitness but only moderate effects on cell survival when tilapia cells with disrupted MIB genes are exposed to hyperosmolality. Therefore MIB genes are required for full osmotolerance of tilapia cells.
Collapse
Affiliation(s)
- Jens Hamar
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Phan HTL, Kim K, Lee H, Seong JK. Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications. Genes (Basel) 2023; 14:483. [PMID: 36833410 PMCID: PMC9957140 DOI: 10.3390/genes14020483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas, are widely accepted because of their diversity and enormous potential for targeted genomic modifications in eukaryotes and other animals. Moreover, rapid advances in genome editing tools have accelerated the ability to produce various genetically modified animal models for studying human diseases. Given the advances in gene editing tools, these animal models are gradually evolving toward mimicking human diseases through the introduction of human pathogenic mutations in their genome rather than the conventional gene knockout. In the present review, we summarize the current progress in and discuss the prospects for developing mouse models of human diseases and their therapeutic applications based on advances in the study of programmable nucleases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Chen Z, Di J, Wang Z, Zhang Y, Li J, An L, Presicce GA, Liu L, Du F. Efficient mutagenesis targeting the IFNAR1 gene in mice using a combination of Cas9 protein and dual gRNAs. Am J Transl Res 2021; 13:12094-12106. [PMID: 34786147 PMCID: PMC8581890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
We injected mouse zygotes with combinations of Cas9 protein, Cas9 mRNA, and two gRNAs targeting a single exon of type I interferon receptor (IFNAR1) to determine the gene targeting efficiencies. Cas9 protein produced on-target mutations more efficiently than Cas9 mRNA when each was used with a single gRNA, regardless of which gRNA was used. When Cas9 mRNA and Cas9 protein were co-injected, the on-target efficiency could reach 97.0% when both gRNAs were used, which was higher than when either gRNA was used alone (61.3% and 75.5%, respectively; P<0.05). Co-injection of Cas9 protein with both gRNAs produced the highest on-target mutation rate of any combination (100.0%). Most on-target mutations were deletions of 2 to 113 nucleotides, and there were few off-target mutations in mutant animals. The expression intensity of IFNAR1 was reduced in heterozygous IFNAR1 +/- mice (IF) and almost or completely absent in homozygous null IFNAR -/- mice compared with that in wild-type mice (IF and Western blot). When both gRNAs targeting IFNAR1 were used simultaneously with two gRNAs targeting FVII, the on-target editing efficiency on each gene was 96.8% and 85.5%, respectively. Co-injection of dual gRNAs and Cas9 protein is an efficient approach for IFNAR1 knockout and multi-gene editing in mice and may be applied in other animal models and breeding livestock.
Collapse
Affiliation(s)
- Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, China
| | - Zongxiang Chen
- Chengdu Institute of Biological Products Co. LtdChengdu 610023, Sichuan, China
| | - Jingya Di
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, China
| | - Zhisong Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, China
| | - Yongxia Zhang
- Chengdu Institute of Biological Products Co. LtdChengdu 610023, Sichuan, China
| | - Jinshan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, China
| | - Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, China
| | | | - Lanjun Liu
- Chengdu Institute of Biological Products Co. LtdChengdu 610023, Sichuan, China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, China
- Lannuo Biotechnologies Wuxi Inc.Wuxi 214000, Jiangsu, China
| |
Collapse
|
4
|
Zhao C, Wang Y, Nie X, Han X, Liu H, Li G, Yang G, Ruan J, Ma Y, Li X, Cheng H, Zhao S, Fang Y, Xie S. Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity. Int J Biol Sci 2019; 15:2641-2653. [PMID: 31754336 PMCID: PMC6854370 DOI: 10.7150/ijbs.37152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is effective for genome editing and now widely used in life science research. However, the key factors determining its editing efficiency and off-target cleavage activity for single-guide RNA (sgRNA) are poorly documented. Here, we systematically evaluated the effects of sgRNA length on genome editing efficiency and specificity. Results showed that sgRNA 5'-end lengths can alter genome editing activity. Although the number of predicted off-target sites significantly increased after sgRNA length truncation, sgRNAs with different lengths were highly specific. Because only a few predicted off-targets had detectable cleavage activity as determined by Target capture sequencing (TargetSeq). Interestingly, > 20% of the predicted off-targets contained microsatellites for selected sgRNAs targeting the dystrophin gene, which can produce genomic instability and interfere with accurate assessment of off-target cleavage activity. We found that sgRNA activity and specificity can be sensitively detected by TargetSeq in combination with in silico prediction. Checking whether the on- and off-targets contain microsatellites is necessary to improve the accuracy of analyzing the efficiency of genome editing. Our research provides new features and novel strategies for the accurate assessment of CRISPR sgRNA activity and specificity.
Collapse
Affiliation(s)
- Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yunlong Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiongwei Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaosong Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Guanglei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Gaojuan Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huijun Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yaping Fang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
5
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
6
|
Cooper CA, Challagulla A, Jenkins KA, Wise TG, O'Neil TE, Morris KR, Tizard ML, Doran TJ. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Res 2017; 26:331-347. [PMID: 27896535 DOI: 10.1007/s11248-016-0003-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022]
Abstract
Generating transgenic and gene edited mammals involves in vitro manipulation of oocytes or single cell embryos. Due to the comparative inaccessibility of avian oocytes and single cell embryos, novel protocols have been developed to produce transgenic and gene edited birds. While these protocols are relatively efficient, they involve two generation intervals before reaching complete somatic and germline expressing transgenic or gene edited birds. Most of this work has been done with chickens, and many protocols require in vitro culturing of primordial germ cells (PGCs). However, for many other bird species no methodology for long term culture of PGCs exists. Developing methodologies to produce germline transgenic or gene edited birds in the first generation would save significant amounts of time and resource. Furthermore, developing protocols that can be readily adapted to a wide variety of avian species would open up new research opportunities. Here we report a method using sperm as a delivery mechanism for gene editing vectors which we call sperm transfection assisted gene editing (STAGE). We have successfully used this method to generate GFP knockout embryos and chickens, as well as generate embryos with mutations in the doublesex and mab-3 related transcription factor 1 (DMRT1) gene using the CRISPR/Cas9 system. The efficiency of the method varies from as low as 0% to as high as 26% with multiple factors such as CRISPR guide efficiency and mRNA stability likely impacting the outcome. This straightforward methodology could simplify gene editing in many bird species including those for which no methodology currently exists.
Collapse
Affiliation(s)
- Caitlin A Cooper
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Arjun Challagulla
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Kristie A Jenkins
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Terry G Wise
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Terri E O'Neil
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Kirsten R Morris
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Mark L Tizard
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Timothy J Doran
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia.
| |
Collapse
|
7
|
Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8:15464. [PMID: 28561021 PMCID: PMC5460021 DOI: 10.1038/ncomms15464] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Although CRISPR/Cas9 genome editing has provided numerous opportunities to interrogate the functional significance of any given genomic site, there is a paucity of data on the extent of molecular scars inflicted on the mouse genome. Here we interrogate the molecular consequences of CRISPR/Cas9-mediated deletions at 17 sites in four loci of the mouse genome. We sequence targeted sites in 632 founder mice and analyse 54 established lines. While the median deletion size using single sgRNAs is 9 bp, we also obtain large deletions of up to 600 bp. Furthermore, we show unreported asymmetric deletions and large insertions of middle repetitive sequences. Simultaneous targeting of distant loci results in the removal of the intervening sequences. Reliable deletion of juxtaposed sites is only achieved through two-step targeting. Our findings also demonstrate that an extended analysis of F1 genotypes is required to obtain conclusive information on the exact molecular consequences of targeting events.
Collapse
Affiliation(s)
- Ha Youn Shin
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Xianke Zeng
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyler Kuhns
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Teresa Mohr
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V, Villorbina G, Muñoz P, Farré G, Fischer R, Twyman RM, Capell T, Christou P, Schillberg S. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2203-2216. [PMID: 27614091 PMCID: PMC5103219 DOI: 10.1111/pbi.12634] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 05/19/2023]
Abstract
The CRISPR/Cas9 system and related RNA-guided endonucleases can introduce double-strand breaks (DSBs) at specific sites in the genome, allowing the generation of targeted mutations in one or more genes as well as more complex genomic rearrangements. Modifications of the canonical CRISPR/Cas9 system from Streptococcus pyogenes and the introduction of related systems from other bacteria have increased the diversity of genomic sites that can be targeted, providing greater control over the resolution of DSBs, the targeting efficiency (frequency of on-target mutations), the targeting accuracy (likelihood of off-target mutations) and the type of mutations that are induced. Although much is now known about the principles of CRISPR/Cas9 genome editing, the likelihood of different outcomes is species-dependent and there have been few comparative studies looking at the basis of such diversity. Here we critically analyse the activity of CRISPR/Cas9 and related systems in different plant species and compare the outcomes in animals and microbes to draw broad conclusions about the design principles required for effective genome editing in different organisms. These principles will be important for the commercial development of crops, farm animals, animal disease models and novel microbial strains using CRISPR/Cas9 and other genome-editing tools.
Collapse
Affiliation(s)
- Luisa Bortesi
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Changfu Zhu
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Julia Zischewski
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lucia Perez
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Ludovic Bassié
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Riad Nadi
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Giobbe Forni
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Sarah Boyd Lade
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Erika Soto
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Xin Jin
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Vicente Medina
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Gemma Villorbina
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Pilar Muñoz
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Gemma Farré
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Rainer Fischer
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | | | - Teresa Capell
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Paul Christou
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|