1
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
2
|
Cadena MA, Sing A, Taylor K, Jin L, Ning L, Amoli MS, Singh Y, The Brain Organoid Hub, Lanjewar SN, Tomov ML, Serpooshan V, Sloan SA. A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development. Adv Healthc Mater 2024; 13:e2401603. [PMID: 38815975 PMCID: PMC11518656 DOI: 10.1002/adhm.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.
Collapse
Affiliation(s)
- Melissa A. Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kylie Taylor
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Yamini Singh
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - The Brain Organoid Hub
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha N. Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, US
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Sao K, Risbud MV. Sdc4 deletion perturbs intervertebral disc matrix homeostasis and promotes early osteopenia in the aging mouse spine. Matrix Biol 2024; 131:46-61. [PMID: 38806135 DOI: 10.1016/j.matbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States
| | - Makarand V Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States.
| |
Collapse
|
4
|
Wang L, Li J, Lin Y, Dang K, Wan J, Meng S, Qiu X, Wang Q, Mu L, Ding D, Luo H, Tang J. Comparative transcriptomics analysis at the key stage of maize ear development dissect heterosis. THE PLANT GENOME 2023; 16:e20293. [PMID: 36478177 DOI: 10.1002/tpg2.20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 05/10/2023]
Abstract
Important traits related to maize (Zea mays L.) grain yield, such as kernel row number, ear length, kernel number per row, are determined during the development of female inflorescence. There is a significant positive correlation between yield component and the activity of inflorescence meristem (IM). To find the key stage of heterosis in the development of the ear, immature ears (from the IM stage until the end of the floral meristem [FM] stage) of Yudan888 and its parent lines were sampled to assay phenotype and for comparative transcriptomics analysis. The immature ear length of Yudan888 at the IM stage fitted an additive (mid-parental) model, but it showed high parental dominance at the spikelet-pair meristem (SPM) stage. Comparative analysis of transcriptomes suggested significant differences between additive and nonadditive expression patterns for different developmental stages. The number of distinct maternal or paternal genes (DMP) (genes expressed only in one parental line and their hybrid but silenced in another line) was greater than ABF1 (genes expressed in both parental lines but silenced in hybrid) at each stage. Gene Ontology (GO) enrichment suggested that the cell redox homeostasis genes with overdominance expression patterns in hybrids have an important contribution to heterosis. According to our research, an ear length heterosis network was established. The discovery of the inflection point for ear length heterosis allows us for inferring that the transition state of IM to SPM may be the starting point of ear length heterosis. These findings improved the understanding of maize ear length heterosis.
Collapse
Affiliation(s)
- Liangfa Wang
- College of Agronomy, Hunan Agricultural Univ., Changsha, 410128, China
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural Univ., Changsha, 410128, China
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yuan Lin
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Kuntai Dang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Qiyue Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural Univ., Changsha, 410128, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| |
Collapse
|
5
|
Song I, Kuznetsova T, Baidoe-Ansah D, Mirzapourdelavar H, Senkov O, Hayani H, Mironov A, Kaushik R, Druzin M, Johansson S, Dityatev A. Heparan Sulfates Regulate Axonal Excitability and Context Generalization through Ca 2+/Calmodulin-Dependent Protein Kinase II. Cells 2023; 12:cells12050744. [PMID: 36899880 PMCID: PMC10000602 DOI: 10.3390/cells12050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Our previous studies demonstrated that enzymatic removal of highly sulfated heparan sulfates with heparinase 1 impaired axonal excitability and reduced expression of ankyrin G at the axon initial segments in the CA1 region of the hippocampus ex vivo, impaired context discrimination in vivo, and increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity in vitro. Here, we show that in vivo delivery of heparinase 1 in the CA1 region of the hippocampus elevated autophosphorylation of CaMKII 24 h after injection in mice. Patch clamp recording in CA1 neurons revealed no significant heparinase effects on the amplitude or frequency of miniature excitatory and inhibitory postsynaptic currents, while the threshold for action potential generation was increased and fewer spikes were generated in response to current injection. Delivery of heparinase on the next day after contextual fear conditioning induced context overgeneralization 24 h after injection. Co-administration of heparinase with the CaMKII inhibitor (autocamtide-2-related inhibitory peptide) rescued neuronal excitability and expression of ankyrin G at the axon initial segment. It also restored context discrimination, suggesting the key role of CaMKII in neuronal signaling downstream of heparan sulfate proteoglycans and highlighting a link between impaired CA1 pyramidal cell excitability and context generalization during recall of contextual memories.
Collapse
Affiliation(s)
- Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Tatiana Kuznetsova
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Hussam Hayani
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Andrey Mironov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Rahul Kaushik
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Michael Druzin
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Staffan Johansson
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Medizinische Fakultät, Otto-von-Güricke-Universität Magdeburg, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-24526; Fax: +49-391-6724530
| |
Collapse
|
6
|
Abstract
The ribonuclease A (RNase A) family is one of the best-characterized vertebrate-specific proteins. In humans, eight catalytically active RNases (numbered 1–8) have been identified and have unique tissue distributions. Apart from the digestion of dietary RNA, a broad range of biological actions, including the regulation of intra- or extra-cellular RNA metabolism as well as antiviral, antibacterial, and antifungal activities, neurotoxicity, promotion of cell proliferation, anti-apoptosis, and immunomodulatory abilities, have been recently reported for the members of this family. Based on multiple biological roles, RNases are found to participate in the pathogenic processes of many diseases, such as infection, immune dysfunction, neurodegeneration, cancer, and cardiovascular disorders. This review summarizes the available data on the human RNase A family and illustrates the significant roles of the eight canonical RNases in health and disease, for stimulating further basic research and development of ideas on the potential solutions for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Desen Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Han
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Undergraduate Program in Public Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Corresponding author
| |
Collapse
|
7
|
Liu Z, Wang Y, Yang F, Yang Q, Mo X, Burstein E, Jia D, Cai XT, Tu Y. GMPPB-congenital disorders of glycosylation associate with decreased enzymatic activity of GMPPB. MOLECULAR BIOMEDICINE 2021; 2:13. [PMID: 35006422 PMCID: PMC8607393 DOI: 10.1186/s43556-021-00027-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The congenital disorders of glycosylation (CDG) are a family of metabolic diseases in which glycosylation of proteins or lipids is deficient. GDP-mannose pyrophosphorylase B (GMPPB) mutations lead to CDG, characterized by neurological and muscular defects. However, the genotype-phenotype correlation remains elusive, limiting our understanding of the underlying mechanism and development of therapeutic strategy. Here, we report a case of an individual presenting congenital muscular dystrophy with cerebellar involvement, who presents two heterozygous GMPPB mutations (V111G and G214S). The V111G mutation significantly decreases GMPPB’s enzymatic activity. By measuring enzymatic activities of 17 reported GMPPB mutants identified in patients diagnosed with GMPPB-CDG, we discover that all tested GMPPB variants exhibit significantly decreased enzymatic activity. Using a zebrafish model, we find that Gmppb is required for neuronal and muscle development, and further demonstrate that enzymatic activity of GMPPB mutants correlates with muscular and neuronal phenotypes in zebrafish. Taken together, our findings discover the importance of GMPPB enzymatic activity for the pathogenesis of GMPPB-CDG, and shed light for the development of additional indicators and therapeutic strategy.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiao-Tang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Keil S, Gupta M, Brand M, Knopf F. Heparan sulfate proteoglycan expression in the regenerating zebrafish fin. Dev Dyn 2021; 250:1368-1380. [PMID: 33638212 DOI: 10.1002/dvdy.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycan (HSPG) expression is found in many animal tissues and regulates growth factor signaling such as of Fibroblast growth factors (Fgf), Wingless/Int (Wnt) and Hedgehog (HH). Glypicans, which are GPI (glycosylphosphatidylinositol)-anchored proteins, and transmembrane-anchored syndecans represent two major HSPG protein families whose involvement in development and disease has been demonstrated. Their participation in regenerative processes both of the central nervous system and of regenerating limbs is well documented. However, whether HSPG are expressed in regenerating zebrafish fins, is currently unknown. RESULTS Here, we carried out a systematic screen of glypican and syndecan mRNA expression in regenerating zebrafish fins during the outgrowth phase. We find that 8 of the 10 zebrafish glypicans and the three known zebrafish syndecans show specific expression at 3 days post amputation. Expression is found in different domains of the regenerate, including the distal and lateral basal layers of the wound epidermis, the distal most blastema and more proximal blastema regions. CONCLUSIONS HSPG expression is prevalent in regenerating zebrafish fins. Further research is needed to delineate the function of glypican and syndecan action during zebrafish fin regeneration.
Collapse
Affiliation(s)
- Sebastian Keil
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Mansi Gupta
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Merus N.V, Utrecht, Netherlands
| | - Michael Brand
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
9
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Almeida MP, Welker JM, Siddiqui S, Luiken J, Ekker SC, Clark KJ, Essner JJ, McGrail M. Endogenous zebrafish proneural Cre drivers generated by CRISPR/Cas9 short homology directed targeted integration. Sci Rep 2021; 11:1732. [PMID: 33462297 PMCID: PMC7813866 DOI: 10.1038/s41598-021-81239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.
Collapse
Affiliation(s)
- Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.,Department III - Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sahiba Siddiqui
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jon Luiken
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
11
|
Bowley G, Chico TJA, Serbanovic-Canic J, Evans PC. Quantifying endothelial cell proliferation in the zebrafish embryo. F1000Res 2021; 10:1032. [PMID: 36846519 PMCID: PMC9944168 DOI: 10.12688/f1000research.73130.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: Endothelial cell (EC) proliferation is a fundamental determinant of vascular development and homeostasis, and contributes to cardiovascular disease by increasing vascular permeability to blood-borne lipoproteins. Rodents have been traditionally used to analyse EC proliferation mechanisms in vascular health and disease; however, alternative models such as the zebrafish embryo allow researchers to conduct small scale screening studies in a physiologically relevant vasculature whilst reducing the use of mammals in biomedical research. In vitro models of EC proliferation are valuable but do not fully recapitulate the complexity of the in vivo situation. Several groups have used zebrafish embryos for vascular biology research because they offer the advantages of an in vivo model in terms of complexity but are also genetically manipulable and optically transparent. Methods: Here we investigated whether zebrafish embryos can provide a suitable model for the study of EC proliferation. We explored the use of antibody, DNA labelling, and time-lapse imaging approaches. Results: Antibody and DNA labelling approaches were of limited use in zebrafish due to the low rate of EC proliferation combined with the relatively narrow window of time in which they can label proliferating nuclei. By contrast, time-lapse imaging of fluorescent proteins localised to endothelial nuclei was a sensitive method to quantify EC proliferation in zebrafish embryos. Discussion: We conclude that time-lapse imaging is suitable for analysis of endothelial cell proliferation in zebrafish, and that this method is capable of capturing more instances of EC proliferation than immunostaining or cell labelling alternatives. This approach is relevant to anyone studying endothelial cell proliferation for screening genes or small molecules involved in EC proliferation. It offers greater biological relevance than existing in vitro models such as HUVECs culture, whilst reducing the overall number of animals used for this type of research.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Timothy JA Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Ravikumar M, Smith RAA, Nurcombe V, Cool SM. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol 2020; 8:581213. [PMID: 33330458 PMCID: PMC7710810 DOI: 10.3389/fcell.2020.581213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an evolutionarily ancient subclass of glycoproteins with exquisite structural complexity. They are ubiquitously expressed across tissues and have been found to exert a multitude of effects on cell behavior and the surrounding microenvironment. Evidence has shown that heterogeneity in HSPG composition is crucial to its functions as an essential scaffolding component in the extracellular matrix as well as a vital cell surface signaling co-receptor. Here, we provide an overview of the significance of HSPGs as essential regulators of stem cell function. We discuss the various roles of HSPGs in distinct stem cell types during key physiological events, from development through to tissue homeostasis and regeneration. The contribution of aberrant HSPG production to altered stem cell properties and dysregulated cellular homeostasis characteristic of cancer is also reviewed. Finally, we consider approaches to better understand and exploit the multifaceted functions of HSPGs in influencing stem cell characteristics for cell therapy and associated culture expansion strategies.
Collapse
Affiliation(s)
- Maanasa Ravikumar
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Alexander Alfred Smith
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Liu D, Yang F, Liu Z, Wang J, Huang W, Meng W, Billadeau DD, Sun Q, Mo X, Jia D. Structure of TBC1D23 N-terminus reveals a novel role for rhodanese domain. PLoS Biol 2020; 18:e3000746. [PMID: 32453802 PMCID: PMC7274447 DOI: 10.1371/journal.pbio.3000746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/05/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
Abstract
Members of the Tre2-Bub2-Cdc16 (TBC) family often function to regulate membrane trafficking and to control signaling transductions pathways. As a member of the TBC family, TBC1D23 is critical for endosome-to-Golgi cargo trafficking by serving as a bridge between Golgi-bound golgin-97/245 and the WASH/FAM21 complex on endosomal vesicles. However, the exact mechanisms by which TBC1D23 regulates cargo transport are poorly understood. Here, we present the crystal structure of the N-terminus of TBC1D23 (D23N), which consists of both the TBC and rhodanese domains. We show that the rhodanese domain is unlikely to be an active sulfurtransferase or phosphatase, despite containing a putative catalytic site. Instead, it packs against the TBC domain and forms part of the platform to interact with golgin-97/245. Using the zebrafish model, we show that impacting golgin-97/245-binding, but not the putative catalytic site, impairs neuronal growth and brain development. Altogether, our studies provide structural and functional insights into an essential protein that is required for organelle-specific trafficking and brain development.
Collapse
Affiliation(s)
- Dingdong Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhe Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinrui Wang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenjie Huang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Qingxiang Sun
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (DJ); (XM); (QS)
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (DJ); (XM); (QS)
| | - Da Jia
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (DJ); (XM); (QS)
| |
Collapse
|
14
|
Sifuentes-Dominguez LF, Li H, Llano E, Liu Z, Singla A, Patel AS, Kathania M, Khoury A, Norris N, Rios JJ, Starokadomskyy P, Park JY, Gopal P, Liu Q, Tan S, Chan L, Ross T, Harrison S, Venuprasad K, Baker LA, Jia D, Burstein E. SCGN deficiency results in colitis susceptibility. eLife 2019; 8:49910. [PMID: 31663849 PMCID: PMC6839920 DOI: 10.7554/elife.49910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) affects 1.5–3.0 million people in the United States. IBD is genetically determined and many common risk alleles have been identified. Yet, a large proportion of genetic predisposition remains unexplained. In this study, we report the identification of an ultra rare missense variant (NM_006998.3:c.230G > A;p.Arg77His) in the SCGN gene causing Mendelian early-onset ulcerative colitis. SCGN encodes a calcium sensor that is exclusively expressed in neuroendocrine lineages, including enteroendocrine cells and gut neurons. SCGN interacts with the SNARE complex, which is required for vesicle fusion with the plasma membrane. We show that the SCGN mutation identified impacted the localization of the SNARE complex partner, SNAP25, leading to impaired hormone release. Finally, we show that mouse models of Scgn deficiency recapitulate impaired hormone release and susceptibility to DSS-induced colitis. Altogether, these studies demonstrate that functional deficiency in SCGN can result in intestinal inflammation and implicates the neuroendocrine cellular compartment in IBD.
Collapse
Affiliation(s)
| | - Haiying Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ernesto Llano
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ashish S Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mahesh Kathania
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Areen Khoury
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nicholas Norris
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan J Rios
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States.,Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
| | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jason Y Park
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shuai Tan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Lillienne Chan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Theodora Ross
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Steven Harrison
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
| | - K Venuprasad
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
15
|
Structural and functional studies of TBC1D23 C-terminal domain provide a link between endosomal trafficking and PCH. Proc Natl Acad Sci U S A 2019; 116:22598-22608. [PMID: 31624125 DOI: 10.1073/pnas.1909316116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a group of neurological disorders that affect the development of the brain, in particular, the pons and cerebellum. Homozygous mutations of TBC1D23 have been found recently to lead to PCH; however, the underlying molecular mechanisms remain unclear. Here, we show that the crystal structure of the TBC1D23 C-terminal domain adopts a Pleckstrin homology domain fold and selectively binds to phosphoinositides, in particular, PtdIns(4)P, through one surface while binding FAM21 via the opposite surface. Mutation of key residues of TBC1D23 or FAM21 selectively disrupts the endosomal vesicular trafficking toward the Trans-Golgi Network. Finally, using the zebrafish model, we show that PCH patient-derived mutants, impacting either phosphoinositide binding or FAM21 binding, lead to abnormal neuronal growth and brain development. Taken together, our data provide a molecular basis for the interaction between TBC1D23 and FAM21, and suggest a plausible role for PtdIns(4)P in the TBC1D23-mediating endosome-to-TGN trafficking pathway. Defects in this trafficking pathway are, at least partially, responsible for the pathogenesis of certain types of PCH.
Collapse
|
16
|
Moriyama Y, Pratiwi HM, Ueda S, Tanaka M. Localization of β-Catenin and Islet in the Pelvic Fin Field in Zebrafish. Zoolog Sci 2019; 36:365-371. [PMID: 33319959 DOI: 10.2108/zs180185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
Abstract
In zebrafish, pelvic fin buds appear at 3 weeks post fertilization (wpf) during the larval to juvenile transition (metamorphosis), but their fate is already determined during embryogenesis. Thus, presumptive pelvic fin cells appear to memorize their positional information for three weeks, but no factors expressed in the pelvic fin field from the embryonic to the metamorphic stages have been identified. In mice, Islet1 is proposed to promote nuclear accumulation of β-catenin in the hindlimb field, which leads to the initiation of hindlimb bud outgrowth through activation of the Wnt/βcatenin pathway. Here, we examined the distribution of β-catenin and islet proteins in the pelvic fin field of zebrafish from the embryonic to the metamorphic stages. We found that transcripts of islet2a, but not islet1, are detected in the posterior lateral plate mesoderm, including the presumptive pelvic fin field, at the embryonic stage as well as in the pelvic fin bud at the metamorphic stage. Immunolocalization revealed that β-catenin and islet proteins, which are synthesized during the embryonic stage, remain in the cytoplasm of the presumptive pelvic fin cells during the larval stage, and are then translocated into the nuclei of the pelvic fin bud at the metamorphic stage. We propose that cytoplasmic localization of these proteins in the presumptive pelvic fin cells that remained during the larval stage may underlie the mechanism by which pelvic fin cells memorize their positional information from the embryonic stage to the metamorphic stage.
Collapse
Affiliation(s)
- Yuuta Moriyama
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Hilda Mardiana Pratiwi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shogo Ueda
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan,
| |
Collapse
|
17
|
Long KR, Huttner WB. How the extracellular matrix shapes neural development. Open Biol 2019; 9:180216. [PMID: 30958121 PMCID: PMC6367132 DOI: 10.1098/rsob.180216] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
During development, both cells and tissues must acquire the correct shape to allow their proper function. This is especially relevant in the nervous system, where the shape of individual cell processes, such as the axons and dendrites, and the shape of entire tissues, such as the folding of the neocortex, are highly specialized. While many aspects of neural development have been uncovered, there are still several open questions concerning the mechanisms governing cell and tissue shape. In this review, we discuss the role of the extracellular matrix (ECM) in these processes. In particular, we consider how the ECM regulates cell shape, proliferation, differentiation and migration, and more recent work highlighting a key role of ECM in the morphogenesis of neural tissues.
Collapse
Affiliation(s)
- Katherine R. Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
18
|
Fröhling M, Tepasse P, Intemann J, Sambale M, Sherwood J, Paruzel P, Tiemeyer NM, Nowacki TM, Brückner M, Mennigen R, Lügering A, Echtermeyer F, Pap T, Stratis A, Bettenworth D. Syndecan-4 Modulates Epithelial Gut Barrier Function and Epithelial Regeneration in Experimental Colitis. Inflamm Bowel Dis 2018; 24:2579-2589. [PMID: 30053064 DOI: 10.1093/ibd/izy248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transmembrane heparan sulfate proteoglycan Syndecan-4 (Sdc4) plays an important role in the regulation of various inflammatory disorders. However, the involvement of Sdc4 in intestinal inflammation remains unknown. Therefore, we assessed the impact of Sdc4 deficiency on experimental colitis and epithelial wound healing in vitro and in vivo. METHODS Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Sdc4-deficient (Sdc4-/-) mice by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. Syndecan-4 expression was measured by immunohistochemistry, Western blot, and quantitative real-time PCR. Epithelial permeability was evaluated by Evans blue measurements, Western blot, and immunohistological analysis of tight junction protein expression. Impact of Sdc4 on epithelial wound healing was determined by scratch assay in vitro and by colonoscopy following mechanical wounding in vivo. RESULTS In Sdc4-/- mice, colitis-like symptoms including severe weight loss, shortened colon length, histological damage, and invasion of macrophages and granulocytes were markedly aggravated compared with wild type (WT) animals. Moreover, colonic epithelial permeability in Sdc4-/- mice was enhanced, while tight junction protein expression decreased. Furthermore, Sdc4-/- colonic epithelial cells had lower cell proliferation and migration rates which presented in vivo as a prolonged intestinal wound healing phenotype. Strikingly, in WT animals, Sdc4 expression was reduced during colitis and was elevated during recovery. CONCLUSIONS The loss of Sdc4 aggravates the course of experimental colitis, potentially through impaired epithelial cell integrity and regeneration. In view of the development of current treatment approaches involving Sdc4 inhibition for inflammatory disorders like arthritis, particular caution should be taken in case of adverse gastrointestinal side-effects.
Collapse
Affiliation(s)
- Mareike Fröhling
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Phil Tepasse
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Meike Sambale
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Nina-Marie Tiemeyer
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Tobias M Nowacki
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Markus Brückner
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Rudolf Mennigen
- Department of General Surgery, University Hospital Münster, Münster, Germany
| | | | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Medical University Hannover, Hannover, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Athanasios Stratis
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
19
|
Diquigiovanni C, Bergamini C, Evangelisti C, Isidori F, Vettori A, Tiso N, Argenton F, Costanzini A, Iommarini L, Anbunathan H, Pagotto U, Repaci A, Babbi G, Casadio R, Lenaz G, Rhoden KJ, Porcelli AM, Fato R, Bowcock A, Seri M, Romeo G, Bonora E. Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. Int J Cancer 2018; 143:1706-1719. [PMID: 29672841 DOI: 10.1002/ijc.31548] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
Abstract
Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - Federica Isidori
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Vettori
- Department of Biology, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | - Anna Costanzini
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Hima Anbunathan
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Repaci
- Endocrinology Unit, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - Kerry J Rhoden
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Anne Bowcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marco Seri
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Kim J, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Kim CY, Park JH. Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:304-312. [PMID: 29414352 DOI: 10.1016/j.envpol.2017.12.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an organic compound with a wide range of antibiotic activity and has been widely used in items ranging from hygiene products to cosmetics; however, recent studies suggest that it has several adverse effects. In particular, TCS can be passed to both fetus and infants, and while some evidence suggests in vitro neurotoxicity, there are currently few studies concerning the mechanisms of TCS-induced developmental neurotoxicity. Therefore, this study aimed to clarify the effect of TCS on neural development using zebrafish models, by analyzing the morphological changes, the alterations observed in fluorescence using HuC-GFP and Olig2-dsRED transgenic zebrafish models, and neurodevelopmental gene expression. TCS exposure decreased the body length, head size, and eye size in a concentration-dependent manner in zebrafish embryos. It increased apoptosis in the central nervous system (CNS) and particularly affected the structure of the CNS, resulting in decreased synaptic density and shortened axon length. In addition, it significantly up-regulated the expression of genes related to axon extension and synapse formation such as α1-Tubulin and Gap43, while decreasing Gfap and Mbp related to axon guidance, myelination and maintenance. Collectively, these changes indicate that exposure to TCS during neurodevelopment, especially during axonogenesis, is toxic. This is the first study to demonstrate the toxicity of TCS during neurogenesis, and suggests a possible mechanism underlying the neurotoxic effects of TCS in developing vertebrates.
Collapse
Affiliation(s)
- Jin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hanseul Oh
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Bokyeong Ryu
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ukjin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ji Min Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - C-Yoon Kim
- Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea.
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|