1
|
de Jesús-Pires C, Ferreira-Neto JRC, de Oliveira-Silva RL, da Silva JB, da Silva MD, da Costa AF, Benko-Iseppon AM. Genome-Wide Identification and Stress Responses of Cowpea Thaumatin-like Proteins: A Comprehensive Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3245. [PMID: 39599454 PMCID: PMC11598614 DOI: 10.3390/plants13223245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is an important legume cultivated mainly in regions with limited water availability across the African and American continents. Its productivity is significantly affected by environmental stresses. Thaumatin-like proteins (TLPs), which belong to the PR-5 (pathogenesis-related 5) protein family, are known to be responsive to both biotic and abiotic stresses. However, their role remains controversial, with some TLPs associated with plant defense (particularly against fungal infections) and others associated with abiotic stresses response. In this study, we evaluated the structural diversity and gene expression of TLPs in cowpea (VuTLPs) under different stress conditions, including biotic [mechanical injury followed by inoculation with Cowpea Aphid-borne Mosaic Virus (CABMV) or Cowpea Severe Mosaic Virus (CPSMV)] and abiotic (root dehydration). Genomic anchoring of VuTLPs revealed 34 loci encoding these proteins. Neighbor- joining analysis clustered the VuTLPs into three distinct groups. We identified 15 segmental duplication and 6 tandem duplication gene pairs, with the majority of VuTLP genes found to be under purifying selection. Promoter analysis associated VuTLPs with bHLH, Dof-type, and MYB- related transcription factors, supporting their diverse roles. Diversity in VuTLP function was also observed in their expression profiles under the studied stress conditions. Gene expression data showed that most VuTLPs are recruited within the first minutes after biotic stress imposition. For the root dehydration assay, the most transcripts were up-regulated 150 min post-stress. Moreover, the gene expression data suggested that VuTLPs exhibit functional specialization depending on the stress condition, highlighting their diverse roles and biotechnological potential.
Collapse
Affiliation(s)
- Carolline de Jesús-Pires
- Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (C.d.J.-P.); (R.L.d.O.-S.); (J.B.d.S.); (M.D.d.S.)
| | - José Ribamar Costa Ferreira-Neto
- Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (C.d.J.-P.); (R.L.d.O.-S.); (J.B.d.S.); (M.D.d.S.)
| | - Roberta Lane de Oliveira-Silva
- Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (C.d.J.-P.); (R.L.d.O.-S.); (J.B.d.S.); (M.D.d.S.)
| | - Jéssica Barboza da Silva
- Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (C.d.J.-P.); (R.L.d.O.-S.); (J.B.d.S.); (M.D.d.S.)
| | - Manassés Daniel da Silva
- Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (C.d.J.-P.); (R.L.d.O.-S.); (J.B.d.S.); (M.D.d.S.)
| | - Antônio Félix da Costa
- Pernambuco Agronomic Institute, Av. Gen. San Martin, 1371-Bongi, Recife 50761-000, PE, Brazil;
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (C.d.J.-P.); (R.L.d.O.-S.); (J.B.d.S.); (M.D.d.S.)
| |
Collapse
|
2
|
Huang Z, Ding Q, Wang Z, Jian S, Zhang M. Genome-Wide Identification and Expression Analyses of the Thaumatin-Like Protein Gene Family in Tetragonia tetragonoides (Pall.) Kuntze Reveal Their Functions in Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2355. [PMID: 39273839 PMCID: PMC11397343 DOI: 10.3390/plants13172355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought are two major abiotic stress factors significantly affecting the distribution of tropical coastal plants. The expression of stress resistance genes would help to alleviate the cellular damage caused by abiotic stress factors such as high temperature, salinity-alkalinity, and drought. This study aimed to better understand the functions of TLPs in the natural ecological adaptability of T. tetragonoides to harsh habitats. In the present study, we used bioinformatics approaches to identify 37 TtTLP genes as gene family members in the T. tetragonoides genome, with the purpose of understanding their roles in different developmental processes and the adaptation to harsh growth conditions in tropical coral regions. All of the TtTLPs were irregularly distributed across 32 chromosomes, and these gene family members were examined for conserved motifs of their coding proteins and gene structure. Expression analysis based on RNA sequencing and subsequent qRT-PCR showed that the transcripts of some TtTLPs were decreased or accumulated with tissue specificity, and under environmental stress challenges, multiple TtTLPs exhibited changeable expression patterns at short (2 h), long (48 h), or both stages. The expression pattern changes in TtTLPs provided a more comprehensive overview of this gene family being involved in multiple abiotic stress responses. Furthermore, several TtTLP genes were cloned and functionally identified using the yeast expression system. These findings not only increase our understanding of the role that TLPs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant TLP evolution. This study also provides a basis and reference for future research on the roles of plant TLPs in stress tolerance and ecological environment suitability.
Collapse
Affiliation(s)
- Zengwang Huang
- Guangdong Provincial Key Laboratory of Applied Botany, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Guo M, Ma X, Xu S, Cheng J, Xu W, Elsheery NI, Cheng Y. Genome-Wide Identification of TLP Gene Family in Populus trichocarpa and Functional Characterization of PtTLP6, Preferentially Expressed in Phloem. Int J Mol Sci 2024; 25:5990. [PMID: 38892187 PMCID: PMC11173255 DOI: 10.3390/ijms25115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in P. trichocarpa. The 49 PtTLP genes were classified into 10 clusters, and gene structures, conserved motifs, and expression patterns were analyzed in these PtTLP genes. Among 49 PtTLP genes, the PtTLP6 transcription level is preferentially high in stems, and GUS staining signals were mainly detected in the phloem tissues of the PtTLP6pro::GUS transgenic poplars. We generated transgenic Arabidopsis plants overexpressing the PtTLP6 gene, and its overexpression lines showed early flowering phenotypes. However, the expression levels of main flowering regulating genes were not significantly altered in these PtTLP6-overexpressing plants. Our data further showed that overexpression of the PtTLP6 gene led to a reactive oxygen species (ROS) burst in Arabidopsis, which might advance the development process of transgenic plants. In addition, subcellular localization of PtTLP6-fused green fluorescent protein (GFP) was in peroxisome, as suggested by tobacco leaf transient transformation. Overall, this work provides a comprehensive analysis of the TLP gene family in Populus and an insight into the role of TLPs in woody plants.
Collapse
Affiliation(s)
- Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Shiying Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Wenjing Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Nabil Ibrahim Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| |
Collapse
|
4
|
Garg A, Srivastava P, Verma PC, Ghosh S. ApCPS2 contributes to medicinal diterpenoid biosynthesis and defense against insect herbivore in Andrographis paniculata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112046. [PMID: 38395069 DOI: 10.1016/j.plantsci.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS. Further, we elucidated in planta function of the ent-CPP-producing diTPSs (ApCPS1,2,4) by integrating transcript-metabolite co-profiles, biochemical analysis and gene functional characterization. ApCPS1,2,4 localized to the plastids, where diterpenoid biosynthesis occurs in plants, but ApCPS1,2,4 transcript expression patterns and ent-LRD contents revealed a strong correlation of ApCPS2 expression and ent-LRD accumulation in kalmegh. ApCPS1,2,4 upstream sequences differentially activated β-glucuronidase (GUS) in Arabidopsis and transiently-transformed kalmegh. Similar to higher expression of ApCPS1 in kalmegh stem, ApCPS1 upstream sequence activated GUS in stem/hypocotyl of Arabidopsis and kalmegh. However, ApCPS2,4 upstream sequences weakly activated GUS expression in Arabidopsis, which was not well correlated with ApCPS2,4 transcript expression in kalmegh tissues. Whereas, ApCPS2,4 upstream sequences could activate GUS expression at a considerable level in kalmegh leaf and roots/calyx, respectively, suggesting the involvement of transcriptional regulator(s) of ApCPS2,4 that might participate in kalmegh-specific diterpenoid pathway. Interestingly, ApCPS2-silenced kalmegh showed a drastic reduction in AD, DDAD and NAD contents and compromised defense against insect herbivore Spodoptera litura. However, ent-LRD contents and herbivore defense in ApCPS1 or ApCPS4-silenced plants remained largely unaltered. Overall, these results suggested an important role of ApCPS2 in producing ent-CPP for medicinal ent-LRD biosynthesis and defense against insect herbivore.
Collapse
Affiliation(s)
- Anchal Garg
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Chandra Verma
- Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Gao Z, Sun M, Shao C, Chen Y, Xiang L, Wu J, Wang J, Chen X. Genome-wide analysis and characterization of the TaTLP gene family in wheat and functional characterization of the TaTLP44 in response to Rhizoctonia cerealis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108323. [PMID: 38183904 DOI: 10.1016/j.plaphy.2023.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Wheat sharp eyespot is a soil-borne disease caused by Rhizoctonia cerealis, which occurs in many countries worldwide and significantly reduces the yield. Thaumatin-like protein (TLP), also known as PR5, is a member of the pathogen response protein family and plays an essential role in plant resistance to pathogen infection. In this study, 131 TaTLP genes were identified from the wheat genome, of which 38 TaTLPs were newly discovered. The TaTLP gene family contains many tandem duplications and fragment duplications, which is a major pathway for gene amplification. Besides, we also analyzed the physicochemical properties, gene structure and promoter cis-acting regulatory elements of all the TaTLP genes. In addition, the expression patterns of nine TaTLPs in response to R. cerealis were analyzed by RT-qPCR. Six TaTLP proteins expressed in vitro had no significant inhibitory effect on R. cerealis, suggesting that these TaTLP proteins may function in other ways. Finally, we performed gene silencing of TaTLP44 in wheat, which increased the expression of some defense-associated genes and improved resistance to R. cerealis. In summary, we systematically analyzed TaTLP family members and demonstrated that TaTLP44 negatively regulates the resistance to R. cerealis by controlling expression of defense-associated genes. These results provide new insights into the functional mechanism of TaTLP proteins.
Collapse
Affiliation(s)
- Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Miao Sun
- College of Agronomy, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.
| | - Chunyu Shao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yihua Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Linrun Xiang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Wang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Zhao Y, Yang X, Zhang J, Huang L, Shi Z, Tian Z, Sha A, Lu G. Thaumatin-like protein family genes VfTLP4-3 and VfTLP5 are critical for faba bean's response to drought stress at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108243. [PMID: 38048701 DOI: 10.1016/j.plaphy.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Thaumatin-like proteins (TLPs) are a diverse family of pathogenesis-related proteins (PR-5) found in various plant species. Faba bean is an economically important crop known for its nutritional value and resilience to harsh environmental conditions, including drought. In this study, we conducted a comprehensive analysis of the gene structure, phylogenetics, and expression patterns of TLP genes in faba bean, with a specific focus on their response to drought stress. A total of 10 TLP genes were identified and characterized from the faba bean transcriptome, which could be classified into four distinct groups based on their evolutionary relationships. Conserved cysteine residues and REDDD motifs, which are characteristic features of TLPs, were found in most of the identified VfTLP members, and these proteins were likely to reside in the cytoplasm. Two genes, VfTLP4-3 and VfTLP5, exhibited significant upregulation under drought conditions. Additionally, ectopically expressing VfTLP4-3 and VfTLP5 in tobacco leaves resulted in enhanced drought tolerance and increased peroxidase (POD) activity. Moreover, the protein VfTLP4-3 was hypothesized to interact with glycoside hydrolase family 18 (GH18), endochitinase, dehydrin, Barwin, and aldolase, all of which are implicated in chitin metabolism. Conversely, VfTLP5 was anticipated to associate with peptidyl-prolyl cis-trans isomerase-like 3, a molecule linked to the synthesis of proline. These findings suggest that these genes may play crucial roles in mediating the drought response in faba bean through the regulation of these metabolic pathways, and serve as a foundation for future genetic improvement strategies targeting enhanced drought resilience in this economically important crop.
Collapse
Affiliation(s)
- Yongguo Zhao
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, PR China
| | - Xinyu Yang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Jiannan Zhang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; College of Agriculture, Yangtze University, Jinzhou, 434023, PR China
| | - Liqiong Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zechen Shi
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhitao Tian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430062, PR China.
| | - Aihua Sha
- College of Agriculture, Yangtze University, Jinzhou, 434023, PR China.
| | - Guangyuan Lu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| |
Collapse
|
7
|
Zhou H, Xie Y, Jiang Y, Nadeem H, Wang Y, Yang N, Zhu H, Tang C. GhTLP1, a thaumatin-like protein 1, improves Verticillium wilt resistance in cotton via JA, ABA and MAPK signaling pathway-plant pathways. Int J Biol Macromol 2023; 253:127388. [PMID: 37858648 DOI: 10.1016/j.ijbiomac.2023.127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Verticillium wilt of cotton is a very serious soil-borne disease and there is no effective control method. The mechanism of Gossypium hirsutum thaumatin-like protein 1(GhTLP1) in upland cotton regulating Verticillium wilt resistance has been an uncovered research approach. GhTLP1 is mainly localized in the cell wall. Overexpression of GhTLP1 significantly enhanced Arabidopsis plants resistance to Verticillium dahliae, while its homologous mutant tlp1 in Arabidopsis was more susceptible to the pathogen, and the heterologous complement line (EC) recovered resistance to V. dahliae. GhTLP1 responds to jasmonate acid (JA) and abscisic acid (ABA) hormones and regulates mitogen-activated protein kinase (MAPK) signaling pathway-plant pathway to enhance Arabidopsis plants resistance to V. dahliae. Silencing GhTLP1 resulted decrease in cotton plants resistance to V. dahliae. Moreover, the mutation of GhTLP1 at site Tyr97 and Tyr199 with the phosphorylation also decreased plant resistance to V. dahliae. Therefore, GhTLP1 phosphorylation was observed important in cotton plants against V. dahliae. Further analysis demonstrated that GhTLP1 interacted with gossypium hirsutum laccase 14 (GhLAC14) to enhance plants resistance to V. dahliae. Silencing GhLAC14 resulted decrease in cotton plants resistance to V. dahliae. Here, we propose that GhTLP1 is a potential molecular target for improving resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China; Key Laboratory of Crop Quality Improvement, Crop Research Institute, Anhui Academy of Agricultural Sciences, 230031 Hefei, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hasan Nadeem
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
8
|
Bhargav P, Chaurasia S, Kumar A, Srivastava G, Pant Y, Chanotiya CS, Ghosh S. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia. PLANT MOLECULAR BIOLOGY 2023; 113:219-236. [PMID: 37898975 DOI: 10.1007/s11103-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.
Collapse
Affiliation(s)
- Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Seema Chaurasia
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yatish Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Kok Z, Kuo YW, Soh ZT, Huang HC, Tseng BS, Hsieh HC, Tsai WA, Jeng ST, Chen SP, Lin JS. Regulatory roles of microRNA163 in responses to stresses in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e14053. [PMID: 37882263 DOI: 10.1111/ppl.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that participate in various biological processes by silencing target genes. In Arabidopsis, microRNA163 (miR163) was found to be involved in seed germination, root development, and biotic resistance. However, the regulatory roles of miR163 remain unclear. In the current study, the mir163 mutant was investigated to comprehensively understand and characterize its functions in Arabidopsis. RNA-sequencing and Gene Ontology enrichment analyses revealed that miR163 might be involved in "response to stimulus" and "metabolic process". Interestingly, "response to stress", including heat, cold, and oxidative stress, was enriched under the subcategory of "response to stimulus". We observed that miR163 and PXMT were repressed and induced under heat stress, respectively. Furthermore, the study detected significant differences in seed germination rate, hypocotyl length, and survival rate, indicating a variation in the thermotolerance between WT and mir163 mutant. The results revealed that the mir163 mutant had a lesser degree of germination inhibition by heat treatment than WT. In addition, the mir163 mutant showed a better survival rate and longer hypocotyl length under heat treatment than the WT. The metabolomes of WT and mir163 mutant were further analyzed. The contents of benzene derivatives and flavonoids were affected by miR163, which could enhance plants' defense abilities. In conclusion, miR163/targets regulated the expression of stress-responsive genes and the accumulation of defense-related metabolites to alter stress tolerance.
Collapse
Affiliation(s)
- Zhenyuan Kok
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Zhi Thong Soh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Bo-Shun Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Cheng Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wei-An Tsai
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shi-Peng Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Oladzad A, Roy J, Mamidi S, Miklas PN, Lee R, Clevenger J, Myers Z, Korani W, McClean PE. Linked candidate genes of different functions for white mold resistance in common bean ( Phaseolus vulgaris L) are identified by multiple QTL mapping approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1233285. [PMID: 37583595 PMCID: PMC10425182 DOI: 10.3389/fpls.2023.1233285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
White mold (WM) is a major disease in common bean (Phaseolus vulgaris L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.2, one of the nine meta-QTL with a major effect on WM tolerance, explains up to 35% of the phenotypic variation and was previously mapped to a large genomic interval on Pv02. Our objective was to narrow the interval of this QTL using combined approach of classic QTL mapping and QTL-based bulk segregant analysis (BSA), and confirming those results with Khufu de novo QTL-seq. The phenotypic and genotypic data from two RIL populations, 'Raven'/I9365-31 (R31) and 'AN-37'/PS02-029C-20 (Z0726-9), were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing. The QTL physical interval was determined by considering overlapping interval of the identified QTL or peak region in both populations by three independent QTL mapping analyses. Our findings revealed that meta-QTL WM2.2 consists of three regions, WM2.2a (4.27-5.76 Mb; euchromatic), WM 2.2b (12.19 to 17.61 Mb; heterochromatic), and WM2.2c (23.01-25.74 Mb; heterochromatic) found in both populations. Gene models encoding for gibberellin 2-oxidase 8, pentatricopeptide repeat, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein (Phvul.002G09200) and LRR domain containing family proteins are potential candidate genes associated with WM2.2b resistance. Nine gene models encoding disease resistance protein [pathogenesis-related thaumatin superfamily protein and disease resistance-responsive (dirigent-like protein) family protein etc] found within the WM2.2c QTL interval are putative candidate genes. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b and WM2.2c regions trigger physiological resistance based on putative candidate genes.
Collapse
Affiliation(s)
- Atena Oladzad
- Genomics Data Scientist II, Sound Agriculture, Emeryville, CA, United States
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Zachary Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Walid Korani
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
11
|
Marchese A, Balan B, Trippa DA, Bonanno F, Caruso T, Imperiale V, Marra FP, Giovino A. NGS transcriptomic analysis uncovers the possible resistance mechanisms of olive to Spilocea oleagina leaf spot infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1219580. [PMID: 37528972 PMCID: PMC10388255 DOI: 10.3389/fpls.2023.1219580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Spilocea oleagina is a dangerous obligate fungal pathogen of olive, feared in the Mediterranean countries, causing Peacock's eye or leaf spot infection, which can lead to a serious yield loss of approximately 20% or higher depending on climatic conditions. Coping with this disease is much more problematic for organic farms. To date, knowledge on the genetic control of possible mechanisms of resistance/low susceptibility is quite limited. In this work, comparative transcriptomic analysis (RNA-seq) was conducted in leaf tissues of a low susceptible cultivar Koroneiki and a high susceptible cultivar Nocellara del Belice, both tested in the field using the NaOH test, considering two stages-"zero sign of disease" and "evident sign of infection". Cultivars showed a very large number of differentially expressed genes (DEGs) in both stages. 'Koroneiki' showed an extensive hormonal crosstalk, involving Abscisic acid (ABA) and ethylene synergistically acting with Jasmonate, with early signaling of the disease and remarkable defense responses against Spilocea through the over-expression of many resistance gene analogs or pathogenesis-related (PR) genes: non-specific lipid-transfer genes (nsLTPs), LRR receptor-like serine/threonine-protein kinase genes, GDSL esterase lipase, defensin Ec-AMP-D2-like, pathogenesis-related leaf protein 6-like, Thaumatin-like gene, Mildew resistance Locus O (MLO) gene, glycine-rich protein (GRP), MADS-box genes, STH-21-like, endochitinases, glucan endo-1,3-beta-glucosidases, and finally, many proteinases. Numerous genes involved in cell wall biogenesis, remodeling, and cell wall-based defense, including lignin synthesis, were also upregulated in the resistant cultivar, indicating the possible role of wall composition in disease resistance. It was remarkable that many transcription factors (TS), some of which involved in Induced Systemic Resistance (ISR), as well as some also involved in abiotic stress response, were found to be uniquely expressed in 'Koroneiki', while 'Nocellara del Belice' was lacking an effective system of defense, expressing genes that overlap with wounding responses, and, to a minor extent, genes related to phenylpropanoid and terpenoid pathways. Only a Thaumatin-like gene was found in both cultivars showing a similar expression. In this work, the genetic factors and mechanism underlying the putative resistance trait against this fungal pathogen were unraveled for the first time and possible target genes for breeding resistant olive genotypes were found.
Collapse
Affiliation(s)
- Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Floriana Bonanno
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Palermo, Italy
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Valeria Imperiale
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Antonio Giovino
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Palermo, Italy
| |
Collapse
|
12
|
Zhang J, Li Y, Du S, Deng Z, Liang Q, Song G, Wang H, Yan M, Wang X. Transcriptomic and proteomic analysis reveals (E)-2-hexenal modulates tomato resistance against Botrytis cinerea by regulating plant defense mechanism. PLANT MOLECULAR BIOLOGY 2023; 111:505-522. [PMID: 37027117 DOI: 10.1007/s11103-023-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
In a previous study, we observed that (E)-2-hexenal stimulated systemic resistance against B. cinerea in tomato plants. However, the molecular mechanisms underlying (E)-2-hexenal-mediated regulation of systemic immunity against B. cinerea remained unclear. In the current study, the global mechanism underlying (E)-2-hexenal-meidated regulation of biotic stress tolerance in tomato was investigated using RNA-seq- and LC-MS/MS- integrated transcriptomic and proteomic analyses. Compared to control plants, (E)-2-hexenal-treated plants exhibited reduced susceptibility to B. cinerea, with a 50.51% decrease in lesion diameters. Meanwhile, (E)-2-hexenal vapor fumigation significantly increased total phenolic content and activities of various antioxidant enzymes peroxidase (POD), phenylalanine ammonia lyase (PAL), and lipoxygenase (LOX). A total of 233 differentially expressed genes (DEGs) and 400 differentially expressed proteins (DEPs), respectively, were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that (E)-2-hexenal treatment markedly affected the expression of genes involved in multiple metabolic pathways, especially glutathione metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and MAPK signaling pathway. Notably, proteomic analysis revealed modulation of the activities of several defense response proteins, such as pathogenesis-related (PR) proteins (Solyc02g031950.3.1, Solyc02g031920.4.1, and Solyc04g064870.3.1), peroxidases (Solyc06g050440.3.1, Solyc01g105070.3.1, Solyc01g015080.3.1, Solyc03g025380.3.1 and Solyc06g076630.3.1). Our results provide a comprehensive analysis of the effects of (E)-2-hexenal treatment on the transcriptome and proteome of tomato plants, which might be used as a reference in further studies on plant defense responses against pathogens.
Collapse
Affiliation(s)
- Jihong Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Yuqiong Li
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shenglong Du
- College of Chemical Engineering and Technology, Xiangtan University, Xiangtan, 411105, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310022, China
| | - Quanwu Liang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Ge Song
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
13
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Chromosome groups 5, 6 and 7 harbor major quantitative trait loci controlling root traits in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1092992. [PMID: 37021301 PMCID: PMC10067626 DOI: 10.3389/fpls.2023.1092992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Identifying genomic regions for root traits in bread wheat can help breeders develop climate-resilient and high-yielding wheat varieties with desirable root traits. This study used the recombinant inbred line (RIL) population of Synthetic W7984 × Opata M85 to identify quantitative trait loci (QTL) for different root traits such as rooting depth (RD), root dry mass (RM), total root length (RL), root diameter (Rdia) and root surface areas (RSA1 for coarse roots and RSA2 for fine roots) under controlled conditions in a semi-hydroponic system. We detected 14 QTL for eight root traits on nine wheat chromosomes; we discovered three QTL each for RD and RSA1, two QTL each for RM and RSA2, and one QTL each for RL, Rdia, specific root length and nodal root number per plant. The detected QTL were concentrated on chromosome groups 5, 6 and 7. The QTL for shallow RD (Q.rd.uwa.7BL: Xbarc50) and high RM (Q.rm.uwa.6AS: Xgwm334) were validated in two independent F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade, respectively. Genotypes containing negative alleles for Q.rd.uwa.7BL had 52% shallower RD than other Synthetic W7984 × Chara population lines. Genotypes with the positive alleles for Q.rm.uwa.6AS had 31.58% higher RM than other Opata M85 × Cascade population lines. Further, we identified 21 putative candidate genes for RD (Q.rd.uwa.7BL) and 13 for RM (Q.rm.uwa.6AS); TraesCS6A01G020400, TraesCS6A01G024400 and TraesCS6A01G021000 identified from Q.rm.uwa.6AS, and TraesCS7B01G404000, TraesCS7B01G254900 and TraesCS7B01G446200 identified from Q.rd.uwa.7BL encoded important proteins for root traits. We found germin-like protein encoding genes in both Q.rd.uwa.7BL and Q.rm.uwa.6AS regions. These genes may play an important role in RM and RD improvement. The identified QTL, especially the validated QTL and putative candidate genes are valuable genetic resources for future root trait improvement in wheat.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
14
|
Mohd Amnan MA, Teo WFA, Aizat WM, Khaidizar FD, Tan BC. Foliar Application of Oil Palm Wood Vinegar Enhances Pandanus amaryllifolius Tolerance under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:785. [PMID: 36840132 PMCID: PMC9958832 DOI: 10.3390/plants12040785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Drought stress severely threatens plant growth, yield and survivability. Wood vinegar, formed by the condensation of smoke produced during biochar production, has been shown to promote plant growth and enhance stress tolerance. They have now been recognized as a sustainable alternative and are frequently used exogenously to support plants coping with environmental stress. This study aimed to evaluate the efficacy of oil palm wood vinegar (OPWV) in mitigating the adverse effects of drought stress on Pandanus amaryllifolius. The optimal concentrations and frequencies of OPWV application were determined before the drought treatment. The results showed that the imposed drought stress negatively affected the plant growth parameters but applying OPWV at 1:500 dilution at 3-day intervals for 12 days increased its tolerance. These include increased leaf relative water content, root-to-shoot ratio, relative stem circumference, chlorophyll pigments and antioxidant enzyme activities. In contrast, the drought-stressed plants treated with OPWV showed decreased relative electrolyte leakage, hydrogen peroxide, proline, malondialdehyde, and enhanced drought-responsive gene expressions, such as HSP70, GAPDH, and Thau, while ENO and β-Fruc were reduced. These biostimulatory effects of OPWV might be due to several antioxidant compounds, such as anthranilic acid, tetrasiloxane, syringol, guaiacol, and catechol. Altogether, our results showed the effectiveness of OPWV in alleviating the adverse effects of drought stress, and as such, OPWV could be potentially applied in agriculture.
Collapse
Affiliation(s)
- Muhammad Asyraf Mohd Amnan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wee Fei Aaron Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Fiqri Dizar Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
15
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
16
|
Liang W, Wang M, Du B, Ling L, Bi Y, Zhang J, Sun Y, Zhou S, Zhang L, Ma X, Ma J, Wu L, Guo C. Transcriptome analysis of strawberry ( Fragaria × ananasa) responsive to Colletotrichum gloeosporioides inoculation and mining of resistance genes. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Wenwei Liang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Mingjie Wang
- Grape Laboratory, Gardening Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Binghao Du
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yingdong Bi
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jinghua Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Yimin Sun
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Shuang Zhou
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Xiao Ma
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jun Ma
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Liren Wu
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| |
Collapse
|
17
|
Hydropriming and Osmotic Priming Induce Resistance against Aspergillus niger in Wheat ( Triticum aestivum L.) by Activating β-1, 3-glucanase, Chitinase, and Thaumatin-like Protein Genes. Life (Basel) 2022; 12:life12122061. [PMID: 36556426 PMCID: PMC9781612 DOI: 10.3390/life12122061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Priming is used as a method to improve plant growth and alleviate the detrimental effects of pathogens. The present study was conducted to evaluate the effects of different priming methods in the context of resistance to Aspergillus niger in wheat (Triticum aestivum L.). Here, we show that different priming treatments—viz., hydropriming, osmotic priming, halopriming, and hormonal priming techniques can induce disease resistance by improving the biochemical contents of wheat, including chlorophyll, protein, proline, and sugar. In addition, physiological parameters—such as root length, shoot length, fresh and dry root/shoot ratios, and relative water content were positively affected by these priming methods. In essence, hydropriming and osmotic priming treatments were found to be more potent for enhancing wheat biochemical contents, along with all the physiological parameters, and for reducing disease severity. Hydropriming and osmotic priming significantly decreased disease severity, by 70.59−75.00% and 64.71−88.33%, respectively. RT-PCR and quantitative real-time PCR analyses of potentially important pathogenesis-related (PR)-protein genes (Thaumatin-like protein (TLP), chitinase, and β-1,3-glucanase) in primed plants were evaluated: β-1,3-glucanase was most highly expressed in all primed plants; Chitinase and TLP exhibited higher expression in hormonal-, halo-, osmotic-, and hydro-primed plants, respectively. These results suggest that the higher expression of β-1,3-glucanase, TLP, and chitinase after hydropriming and osmotic priming may increase disease resistance in wheat. Our study demonstrates the greater potential of hydropriming and osmotic priming for alleviating stress caused by A. niger inoculation, and enhancing resistance to it, in addition to significantly improving plant growth. Thus, these priming methods could be beneficial for better plant growth and disease resistance in other plants.
Collapse
|
18
|
Wang L, Xu Z, Yin W, Xu K, Wang S, Shang Q, Sa W, Liang J, Wang L. Genome-wide analysis of the Thaumatin-like gene family in Qingke ( Hordeum vulgare L. var. nudum) uncovers candidates involved in plant defense against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:912296. [PMID: 36061804 PMCID: PMC9428612 DOI: 10.3389/fpls.2022.912296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thaumatin-like proteins (TLPs) participate in the defense responses of plants as well as their growth and development processes, including seed germination. Yet the functioning of TLP family genes, in addition to key details of their encoded protein products, has not been thoroughly investigated for Qingke (Hordeum vulgare L. var. nudum). Here, a total of 36 TLP genes were identified in the genome of Qingke via HMM profiling. Of them, 25 TLPs contained a signal peptide at the N-terminus, with most proteins predicted to localize in the cytoplasm or outer membrane. Sequence alignment and motif analysis revealed that the five REDDD residues required for β-1,3-glucanase activity were conserved in 21 of the 36 Qingke TLPs. Phylogenetically, the TLPs in plants are clustered in 10 major groups. Our analysis of gene structure did not detect an intron in 15 Qingke TLPs whereas the other 21 did contain 1-7 introns. A diverse set of cis-acting motifs were found in the promoters of the 36 TLPs, including elements related to light, hormone, and stress responses, growth and development, circadian control, and binding sites of transcription factors, thus suggesting a multifaceted role of TLPs in Qingke. Expression analyses revealed the potential involvement of TLPs in plant defense against biotic and abiotic stresses. Taken together, the findings of this study deepen our understanding of the TLP family genes in Qingke, a staple food item in Tibet, which could strengthen future investigations of protein function in barley and its improved genetic engineering.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Zepeng Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Kai Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Shuai Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
19
|
Genome-wide comprehensive characterization and expression analysis of TLP gene family revealed its responses to hormonal and abiotic stresses in watermelon (Citrullus lanatus). Gene X 2022; 844:146818. [PMID: 35985412 DOI: 10.1016/j.gene.2022.146818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.
Collapse
|
20
|
Kaashyap M, Ford R, Mann A, Varshney RK, Siddique KHM, Mantri N. Comparative Flower Transcriptome Network Analysis Reveals DEGs Involved in Chickpea Reproductive Success during Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:434. [PMID: 35161414 PMCID: PMC8838858 DOI: 10.3390/plants11030434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Salinity is increasingly becoming a significant problem for the most important yet intrinsically salt-sensitive grain legume chickpea. Chickpea is extremely sensitive to salinity during the reproductive phase. Therefore, it is essential to understand the molecular mechanisms by comparing the transcriptomic dynamics between the two contrasting genotypes in response to salt stress. Chickpea exhibits considerable genetic variation amongst improved cultivars, which show better yields in saline conditions but still need to be enhanced for sustainable crop production. Based on previous extensive multi-location physiological screening, two identified genotypes, JG11 (salt-tolerant) and ICCV2 (salt-sensitive), were subjected to salt stress to evaluate their phenological and transcriptional responses. RNA-Sequencing is a revolutionary tool that allows for comprehensive transcriptome profiling to identify genes and alleles associated with stress tolerance and sensitivity. After the first flowering, the whole flower from stress-tolerant and sensitive genotypes was collected. A total of ~300 million RNA-Seq reads were sequenced, resulting in 2022 differentially expressed genes (DEGs) in response to salt stress. Genes involved in flowering time such as FLOWERING LOCUS T (FT) and pollen development such as ABORTED MICROSPORES (AMS), rho-GTPase, and pollen-receptor kinase were significantly differentially regulated, suggesting their role in salt tolerance. In addition to this, we identify a suite of essential genes such as MYB proteins, MADS-box, and chloride ion channel genes, which are crucial regulators of transcriptional responses to salinity tolerance. The gene set enrichment analysis and functional annotation of these genes in flower development suggest that they can be potential candidates for chickpea crop improvement for salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| | - Rebecca Ford
- School of Environment and Science, Griffith University, Nathan 4111, Australia;
| | - Anita Mann
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute (CSSRI), Zarifa Farm, Karnal 132001, India;
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India; or
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
| |
Collapse
|
21
|
Sharma A, Sharma H, Rajput R, Pandey A, Upadhyay SK. Molecular Characterization Revealed the Role of Thaumatin-Like Proteins of Bread Wheat in Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:807448. [PMID: 35087559 PMCID: PMC8786798 DOI: 10.3389/fpls.2021.807448] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 05/19/2023]
Abstract
Thaumatin-like proteins (TLPs) are related to pathogenesis-related-5 (PR-5) family and involved in stress response. Herein, a total of 93 TLP genes were identified in the genome of Triticum aestivum. Further, we identified 26, 27, 39, and 37 TLP genes in the Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Zea mays genomes for comparative characterization, respectively. They could be grouped into small and long TLPs with conserved thaumatin signature motif. Tightly clustered genes exhibited conserved gene and protein structure. The physicochemical analyses suggested significant differences between small and long TLPs. Evolutionary analyses suggested the role of duplication events and purifying selection in the expansion of the TLP gene family. Expression analyses revealed the possible roles of TLPs in plant development and abiotic and fungal stress response. Recombinant expression of TaTLP2-B in Saccharomyces cerevisiae provided significant tolerance against cold, heat, osmotic, and salt stresses. The results depicted the importance of TLPs in cereal crops that would be highly useful in future crop improvement programs.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Botany, Panjab University, Chandigarh, India
| | - Himanshu Sharma
- Department of Botany, Panjab University, Chandigarh, India
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Jalandhar, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
22
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021. [PMID: 34681789 DOI: 10.3390/ijms222011132/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
23
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021; 22:ijms222011132. [PMID: 34681789 PMCID: PMC8537552 DOI: 10.3390/ijms222011132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
- Correspondence: (H.L.); (C.W.)
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
24
|
Nawrot R, Musidlak O, Barylski J, Nowicki G, Bałdysz S, Czerwoniec A, Goździcka-Józefiak A. Characterization and expression of a novel thaumatin-like protein (CcTLP1) from papaveraceous plant Corydalis cava. Int J Biol Macromol 2021; 189:678-689. [PMID: 34390750 DOI: 10.1016/j.ijbiomac.2021.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Thaumatin-like proteins (TLPs, osmotins) form a protein family which shares a significant sequence homology to the sweet-tasting thaumatin from the plant Thaumatococcus daniellii. TLPs are not sweet-tasting and are involved in response to biotic stresses and developmental processes. Recently it has been shown using a proteomic approach that the tuber extract from Corydalis cava (Papaveraceae) contains a TLP protein. The aim of this work was to characterize the structure and expression of TLP from C. cava tubers. The results obtained using a PCR approach with degenerate primers demonstrated a coding sequence of a novel protein, named CcTLP1. It consists of 225 aa, has a predicted molecular weight of 24.2 kDa (NCBI GenBank accession no. KJ513303) and has 16 strictly conserved cysteine residues, which form 8 disulfide bridges and stabilize the 3D structure. CcTLP1 may be classified into class IX of plant TLPs. The highest CcTLP1 expression levels were shown by qPCR in the stem of the plant compared to other organs and in the medium-size plants compared to other growth phases. The results confirm that CcTLP1 is expressed during plant growth and development until flowering, with a possible defensive function against different stress conditions.
Collapse
Affiliation(s)
- Robert Nawrot
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Oskar Musidlak
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Jakub Barylski
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Grzegorz Nowicki
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sophia Bałdysz
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Czerwoniec
- Zylia Sp. z o. o., Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; INNO-GENE S.A.- Vita in Silica, ul. Inflancka 25, 61-132 Poznań, Poland
| | - Anna Goździcka-Józefiak
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
25
|
Faillace GR, Caruso PB, Timmers LFSM, Favero D, Guzman FL, Rechenmacher C, de Oliveira-Busatto LA, de Souza ON, Bredemeier C, Bodanese-Zanettini MH. Molecular Characterisation of Soybean Osmotins and Their Involvement in Drought Stress Response. Front Genet 2021; 12:632685. [PMID: 34249077 PMCID: PMC8267864 DOI: 10.3389/fgene.2021.632685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Osmotins are multifunctional proteins belonging to the thaumatin-like family related to plant stress responses. To better understand the functions of soybean osmotins in drought stress response, the current study presents the characterisation of four previously described proteins and a novel putative soybean osmotin (GmOLPa-like). Gene and protein structure as well as gene expression analyses were conducted on different tissues and developmental stages of two soybean cultivars with varying dehydration sensitivities (BR16 and EMB48 are highly and slightly sensitive, respectively). The analysed osmotin sequences share the conserved amino acid signature and 3D structure of the thaumatin-like family. Some differences were observed in the conserved regions of protein sequences and in the electrostatic surface potential. P21-like present the most similar electrostatic potential to osmotins previously characterised as promoters of drought tolerance in Nicotiana tabacum and Solanum nigrum. Gene expression analysis indicated that soybean osmotins were differentially expressed in different organs (leaves and roots), developmental stages (R1 and V3), and cultivars in response to dehydration. In addition, under dehydration conditions, the highest level of gene expression was detected for GmOLPa-like and P21-like osmotins in the leaves and roots, respectively, of the less drought sensitive cultivar. Altogether, the results suggest an involvement of these genes in drought stress tolerance.
Collapse
Affiliation(s)
- Giulia Ramos Faillace
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paula Bacaicoa Caruso
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Fernando Saraiva Macedo Timmers
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Débora Favero
- Programa de Pós-Graduação em Fitotecnia, Departamento de Plantas de Lavoura, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Lino Guzman
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ciliana Rechenmacher
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luisa Abruzzi de Oliveira-Busatto
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Osmar Norberto de Souza
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Christian Bredemeier
- Programa de Pós-Graduação em Fitotecnia, Departamento de Plantas de Lavoura, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
26
|
Park EJ, Kim TH. Thaumatin-like genes function in the control of both biotic stress signaling and ABA signaling pathways. Biochem Biophys Res Commun 2021; 567:17-21. [PMID: 34130180 DOI: 10.1016/j.bbrc.2021.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
Thaumatin was isolated as a sweet-tasting protein. Arabidopsis has over 20 Thaumatin-Like Protein (TLP)/Osmoti-Like Protein (OLP) genes that belong to the PR5 family. Although biotic stress-related functions of TLPs have been reported from transgenic lines expressing TLPs, it is nonetheless necessary to investigate genetic phenotypes produced by defects in the TLP genes. In this report, four TLP genes were selected based on sequence similarities (Thau1/2/3/4), and the corresponding mutant thau1/2/3/4 was examined for biotic and abiotic stress responses. The thau1/2/3/4 mutant showed increased susceptibility to the Pseudomonas syringae pv. tomato DC3000 infection, and reduced sensitivity to the ABA and drought stress treatments. Each of the four thaumatin genes showed different gene expression patterns for ABA treatment. Moreover, ABA-inductions of Thau1/2/3/4 were largely dependent on the intact ABA signaling pathway mediated by PYR/PYL receptors. Among the many ABA-responsive genes affected by the defects of Thau1/2/3/4, reduced expression of P5CS1 with decreased accumulation phenotype of prolines indicates that compromised proline synthesis may be associated with the stress phenotypes of thau1/2/3/4. Our data suggest that Thau1/2/3/4 have a function in both biotic stress and abiotic stress signal transduction through the regulation of proline synthesis.
Collapse
Affiliation(s)
- Eun Joo Park
- Department of Bio-Health Convergence, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Tae-Houn Kim
- Department of Bio-Health Convergence, Duksung Women's University, Seoul, 01369, Republic of Korea; Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
27
|
Muoki RC, Paul A, Kaachra A, Kumar S. Membrane localized thaumatin-like protein from tea (CsTLP) enhanced seed yield and the plant survival under drought stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:36-44. [PMID: 33812225 DOI: 10.1016/j.plaphy.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Thaumatin-like proteins (TLPs) are pathogenesis-related (PR5) proteins, which are induced in response to various biotic and abiotic stresses. The present work was carried out to clone TLP of Camellia sinensis (CsTLP) and to evaluate the response of transgenic lines of Arabidopsis constitutively expressing CsTLP under drought conditions. Data showed that transgenic lines exhibited lower relative electrolyte leakage and higher water retention capacity as compared to the wild-type (WT) plants under drought stress. In addition, results with confocal microscopy showed CsTLP + GFP fusion protein to be localized in the cell membrane which moved to the intercellular spaces under prolonged drought stress. Expression of CsTLP enhanced seed yield and the plant survival in transgenic lines as compared to the WT plants under drought stress. Results suggested the importance of CsTLP in improving drought tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Richard Chalo Muoki
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Tea Breeding and Genetic Improvement Division - Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization - Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Asosii Paul
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Department of Botany, Nagaland University, Lumami, Nagaland, 798627, India
| | - Anish Kaachra
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Sanjay Kumar
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
28
|
Khizar M, Haroon U, Kamal A, Inam W, Chaudhary HJ, Munis MFH. Evaluation of virulence potential of Aspergillus tubingensis and subsequent biochemical and enzymatic defense response of cotton. Microsc Res Tech 2021; 84:2694-2701. [PMID: 34002427 DOI: 10.1002/jemt.23832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 11/09/2022]
Abstract
Aspergillus tubingensis is a causative known pathogen of various important crops, worldwide. The existing study was aimed to examine the virulence potential of A. tubingensis on resistant (NIA-Sadori) and susceptible (CIM-573) cultivars of cotton. For this purpose, both cultivars were inoculated with pathogen and altered morphology of diseased leaves was observed with light and scanning electron microscope. Disease severity was measured and estimated to be 68.7 and 27.1% in susceptible and resistant cultivars, respectively. To understand and compare defense mechanism of resistant and susceptible cultivars, different biochemical and enzymatic changes were observed. After the infection of A. tubingensis, increase in the concentrations of sugar, total protein, proline, phenol, and phenylalanine ammonia lyase (PAL) was more prominent in resistant cultivar, than the susceptible one. Moreover, due to increased number of dead cells, significantly higher electrolyte leakage was detected in susceptible cultivar. Principal component analysis confirmed the effect of A. tubingensis on growth attributes and various physiological and biochemical activities of cotton. These findings help us to suggest a possible role of proline content, protein content, and PAL activity in resistance mechanism of Cotton plant.
Collapse
Affiliation(s)
- Maria Khizar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wardah Inam
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
29
|
Wang S, Liu L, Mi X, Zhao S, An Y, Xia X, Guo R, Wei C. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:862-875. [PMID: 33595875 DOI: 10.1111/tpj.15203] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 05/18/2023]
Abstract
Gray blight (GB) is one of the most destructive diseases of tea plants, causing considerable damage and productivity losses; however, the dynamic roles of defense genes during pathogen infection remain largely unclear. To explore the numerous molecular interactions associated with GB stress in tea plants, we employed transcriptome, sRNAome and degradome sequencing from 1 to 13 days post-inoculation (dpi) at 3-day intervals. The transcriptomics results showed that differentially expressed genes (DEGs) related to flavonoid synthesis, such as chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL), were particularly induced at 4 dpi. Consistent with this, the contents of catechins (especially gallocatechin), which are the dominant flavonoids in tea plants, also increased in the leaves of tea plants infected with GB. Combined analysis of the sRNAome and degradome revealed that microRNAs could mediate tea plant immunity by regulating DEG expression at the post-transcriptional level. Co-expression network analysis demonstrated that miR530b-ethylene responsive factor 96 (ERF96) and miRn211-thaumatin-like protein (TLP) play crucial roles in the response to GB. Accordingly, gene-specific antisense oligonucleotide assays suggested that suppressing ERF96 decreased the levels of reactive oxygen species (ROS), whereas suppressing TLP increased the levels of ROS. Furthermore, ERF96 was induced, but TLP was suppressed, in susceptible tea cultivars. Our results collectively demonstrate that ERF96 is a negative regulator and TLP is a positive regulator in the response of tea plants to GB. Taken together, our comprehensive integrated analysis reveals a dynamic regulatory network linked to GB stress in tea plants and provides candidate genes for improvement of tea plants.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
30
|
Mani SD, Pandey S, Govindan M, Muthamilarasan M, Nagarathnam R. Transcriptome dynamics underlying elicitor-induced defense responses against Septoria leaf spot disease of tomato ( Solanum lycopersicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:873-888. [PMID: 33967469 PMCID: PMC8055812 DOI: 10.1007/s12298-021-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Elicitor-induced defense response against potential plant pathogens has been widely reported in several crop plants; however, transcriptome dynamics underlying such defense response remains elusive. Our previous study identified and characterized a novel elicitor, κ-carrageenan, from Kappaphycus alvarezii, a marine red seaweed. Our preliminary studies have shown that the elicitor-treatment enhances the tolerance of a susceptible tomato cultivar to Septoria lycopersici (causative agent of leaf spot disease). To gain further insights into the genes regulated during elicitor treatment followed by pathogen infection, we have performed RNA-Seq experiments under different treatments, namely, control (untreated and uninfected), elicitor treatment, pathogen infection alone, and elicitor treatment followed by pathogen infection. To validate the results, forty-three genes belonging to five different classes, namely, ROS activating and detoxifying enzyme encoding genes, DEAD-box RNA helicase genes, autophagy-related genes, cysteine proteases, and pathogenesis-related genes, were chosen. Expression profiling of each gene was performed using qRT-PCR, and the data was correlated with the RNA-seq data. Altogether, the study has pinpointed a repertoire of genes that could be potential candidates for further functional characterization to provide insights into novel elicitor-induced fungal defense and develop transgenic lines resistant to foliar diseases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00970-y.
Collapse
Affiliation(s)
- Sumithra Devi Mani
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Tamil Nadu, Guindy Campus, Chennai, 600 025 India
| | - Saurabh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110 067 India
| | - Muthukumar Govindan
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Tamil Nadu, Guindy Campus, Chennai, 600 025 India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046 Telangana India
| | - Radhakrishnan Nagarathnam
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Tamil Nadu, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
31
|
Gulzar B, Mujib A, Rajam MV, Zafar N, Mamgain J, Malik M, Syeed R, Ejaz B. Shotgun label-free proteomic and biochemical study of somatic embryos (cotyledonary and maturation stage) in Catharanthus roseus (L.) G. Don. 3 Biotech 2021; 11:86. [PMID: 33505840 PMCID: PMC7817727 DOI: 10.1007/s13205-021-02649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
Somatic embryogenesis is an important and wonderful biotechnological tool used to develop whole plant from a single or a group of somatic cells. The differentiated somatic cells become totipotent stem cells by drastic reprogramming of a wide range of cellular activities, leading to the acquisition of embryogenic competence. After acquiring competence, the cells pass through globular, heart, torpedo and cotyledonary stages of embryo; however, all advanced embryos do not convert into full plant, produce adventive embryos or callus instead, thus reverses the programming. This is a big limitation in propagation of many plants. Understanding and unraveling the proteins at this 'embryo to plantlet' transition stage will help to get more numbers of plants. Thus, our study was aimed at an identification of differentially abundant proteins between two important advanced stages, i.e. cotyledonary-(T1) and maturation stage (T2) of somatic embryos in Catharanthus roseus. A total of 2949 and 3030 proteins were identified in cotyledonary and maturation stage, respectively. Of these, 1129 proteins were common to both. Several proteins were found to be differentially accumulated in two different embryo stages in which over 60 proteins were most accumulated during somatic embryo maturation time. More chlorophyll accumulation was noted at this time under the influence of gibberellic acid (GA3). Proteins like Mg-protoporphyrin IX chelatase, chlorophyll a-b-binding protein, photosystem I iron-sulfur center, photosystem II Psb, photosystem II subunit P-1, P-II domain-containing protein, RuBisCO large chain, RuBisCO small chain, RuBisCO activase, RuBisCO large subunit-binding proteins were synthesized. Some of the identified proteins are linked to chlorophyll synthesis, carbohydrate metabolism and stress. The identified proteins are categorized into different groups on the basis of their cellular location, role and other metabolic processes. Biochemical attributes like protein, sugar, proline, antioxidant enzyme (APX, SOD and CAT) activities were high in T2 as compared to T1. The proteins like peroxidases, pathogenesis-related proteins, the late-embryogenesis abundant proteins, argonaute, germin and others have been discussed in C. roseus somatic embryo maturation process.
Collapse
Affiliation(s)
- Basit Gulzar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Nadia Zafar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
de Jesús-Pires C, Ferreira-Neto JRC, Pacifico Bezerra-Neto J, Kido EA, de Oliveira Silva RL, Pandolfi V, Wanderley-Nogueira AC, Binneck E, da Costa AF, Pio-Ribeiro G, Pereira-Andrade G, Sittolin IM, Freire-Filho F, Benko-Iseppon AM. Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2021; 21:36-51. [PMID: 30887921 DOI: 10.2174/1389203720666190318164905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.
Collapse
Affiliation(s)
- Carolline de Jesús-Pires
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - João Pacifico Bezerra-Neto
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Ederson Akio Kido
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Valesca Pandolfi
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Soja, Londrina, Parana, Brazil
| | | | - Gilvan Pio-Ribeiro
- Departamento de Agronomia/Fitossanidade, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Genira Pereira-Andrade
- Departamento de Agronomia/Fitossanidade, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Ilza Maria Sittolin
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Meio-Norte, Teresina, Piaui, Brazil
| | - Francisco Freire-Filho
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Amazonia Oriental, Belem, Para, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
33
|
Ding T, Zhang W, Li Y, Duan T. Effect of the AM Fungus Sieverdingia tortuosa on Common Vetch Responses to an Anthracnose Pathogen. Front Microbiol 2021; 11:542623. [PMID: 33391193 PMCID: PMC7775565 DOI: 10.3389/fmicb.2020.542623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum lentis Damm causes anthracnose in Vicia sativa L, otherwise known as common vetch. It was first reported in China in 2019. This study evaluates the effects of the arbuscular mycorrhizal (AM) fungus Sieverdingia tortuosa (N.C. Schenck & G.S. Sm.) Błaszk., Niezgoda, & B.T. Goto on growth and disease severity in common vetch. Our main finding is that the AM fungus increased root biomass and reduced anthracnose severity of common vetch. Responses correlated with defense, such as chitinase activity, polyphenol oxidase (PPO) activity, the concentrations of jasmonic acid and proline, and the expression of resistance-related genes (e.g., upregulated "signal transduction," "MAPK signaling pathway," "chitinase activity," "response to stress," and the KEGG pathways "phenylpropanoid biosynthesis," "MAPK signaling pathways," and "plant-pathogen interactions"), were also affected These findings provide insight into the mechanism by which this AM fungus regulates the defense response of common vetch to C. lentis.
Collapse
Affiliation(s)
- Tingting Ding
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Weizhen Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Yingde Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Li Z, Wang X, Cui Y, Qiao K, Zhu L, Fan S, Ma Q. Comprehensive Genome-Wide Analysis of Thaumatin-Like Gene Family in Four Cotton Species and Functional Identification of GhTLP19 Involved in Regulating Tolerance to Verticillium dahlia and Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:575015. [PMID: 33193513 PMCID: PMC7606878 DOI: 10.3389/fpls.2020.575015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Thaumatin-like proteins (TLPs) present in the form of large multigene families play important roles in biotic stress and abiotic stress. However, there has been no systematic analysis of the TLPs in cotton. In this study, comprehensive identification and evolutionary analysis of TLPs in four species of cotton were conducted. In total, 50, 48, 91, and 90 homologous sequences were identified in Gossypium raimondii, G. arboreum, G. barbadense, and G. hirsutum, respectively. Gene structure, protein motifs, and gene expression were further investigated. Transcriptome and quantitative real-time PCR analysis indicated that GhTLPs participate in abiotic, biotic stress and cotton fiber development. GhTLP19 on chromosome At05 was selected as a candidate gene for further study. When GhTLP19 was silenced by virus-induced gene silencing (VIGS) in cotton, with the increase of malondialdehyde (MDA) content and the decrease of catalase (CAT) content, and as the increase of disease index (DI) and hyphae accumulation, the plants were more sensitive to drought and Verticillium dahliae. Furthermore, the GhTLP19 overexpressing Arabidopsis transgenic lines exhibited higher proline content, thicker and longer trichomes and more tolerance to drought when compared to wild type. This study will provide a basis and reference for future research on their roles in stress tolerance and fiber development.
Collapse
Affiliation(s)
- Zhanshuai Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
35
|
SAEIDI M, ZAREIE R. Prediction, isolation, overexpression and antifungal activity analysis of Medicago truncatula var. truncatula putative thaumatin like proteins (TLP-1, -2, -3, -4 and -5). Turk J Biol 2020; 44:176-187. [PMID: 32922125 PMCID: PMC7478138 DOI: 10.3906/biy-1912-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pathogenesis-related proteins (PR-proteins) are induced in response to environmental stresses such as osmotic and drought stress, wounding, microbial infections and treatment with specific plant hormones and elicitors. These proteins are classified into several groups (PR-1 through PR-17) based on their amino acid sequence and biochemical functions. The present study focuses on prediction, isolation, over-expression and analysis of the antifungal activities of the thaumatin-like proteins (i.e. PR-5) in the model legume M. truncatula var. truncatula. Analysis of M. truncatula genome sequence, available freely on the NCBI website, indicated the presence of at least 15 PR-5 Open Reading Frames (ORFs), 5 of them (dubbed TLP-1, -2, -3, -4 and -5) were selected for this study. Using gene-specific primers, the genomic coding sequences were isolated, sequenced and all confirmed to match with those reported in the database. All the fragments were, then, cloned in Escherichia coli isolate BL21 (DE3), using pET-21c(+) plasmids for subsequent overexpression (overexpression). All 5 genes were expressed as inclusion bodies (IBs) with masses, estimated by SDS PAGE, corresponding to the theoretical values. As expected, none of the protein IBs had no detectable effect on the phytopathogenic fungi Rhizoctonia solani, Alternaria alternata, Fusarium graminearum, Fusarium solani, Verticillium sp. and Phytophtora spp. However, when the in vitro refolded IB preparations were applied, all displayed comparable strong antifungal activities against the tested fungi. The current study is the first report of overexpression and evaluation of antifungal activities of PR-5 family of proteins from M. truncatula Var. truncatula, and provides experimental evidence that all investigated proteins have the potential for enhancing resistance against some important fungal pathogens.
Collapse
Affiliation(s)
- Maryam SAEIDI
- Department of Biotechnology, Faculty of Agriculture, Isfahan University of Technology, IsfahanIran
| | - Reza ZAREIE
- Department of Biotechnology, Faculty of Agriculture, Isfahan University of Technology, IsfahanIran
| |
Collapse
|
36
|
Bashir MA, Silvestri C, Ahmad T, Hafiz IA, Abbasi NA, Manzoor A, Cristofori V, Rugini E. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. PLANTS 2020; 9:plants9080992. [PMID: 32759884 PMCID: PMC7464907 DOI: 10.3390/plants9080992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
- Correspondence: ; Tel.: +39-761-357533
| | - Touqeer Ahmad
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ishfaq Ahmad Hafiz
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Nadeem Akhtar Abbasi
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ayesha Manzoor
- Barani Agricultural Research Institute, Chakwal 48800, Pakistan;
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Eddo Rugini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| |
Collapse
|
37
|
Corrado G, Lucini L, Miras-Moreno B, Chiaiese P, Colla G, De Pascale S, Rouphael Y. Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different Nitrate/Chloride Ratios in the Nutrient Solution. Int J Mol Sci 2020; 21:E2482. [PMID: 32260073 PMCID: PMC7177776 DOI: 10.3390/ijms21072482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Sweet basil (Ocimum basilicum L.) is a highly versatile and globally popular culinary herb, and a rich source of aromatic and bioactive compounds. Particularly for leafy vegetables, nutrient management allows a more efficient and sustainable improvement of crop yield and quality. In this work, we investigated the effects of balanced modulation of the concentration of two antagonist anions (nitrate and chlorine) in basil. Specifically, we evaluated the changes in yield and leaf metabolic profiles in response to four different NO3-:Cl- ratios in two consecutive harvests, using a full factorial design. Our work indicated that the variation of the nitrate-chloride ratio exerts a large effect on both metabolomic profile and yield in basil, which cannot be fully explained only by an anion-anion antagonist outcome. The metabolomic reprogramming involved different biochemical classes of compounds, with distinctive traits as a function of the different nutrient ratios. Such changes involved not only a response to nutrients availability, but also to redox imbalance and oxidative stress. A network of signaling compounds, including NO and phytohormones, underlined the modeling of metabolomic signatures. Our work highlighted the potential and the magnitude of the effect of nutrient solution management in basil and provided an advancement towards understanding the metabolic response to anion antagonism in plants.
Collapse
Affiliation(s)
- Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| |
Collapse
|
38
|
Ectopic Expression of AhGLK1b (GOLDEN2-like Transcription Factor) in Arabidopsis Confers Dual Resistance to Fungal and Bacterial Pathogens. Genes (Basel) 2020; 11:genes11030343. [PMID: 32213970 PMCID: PMC7141132 DOI: 10.3390/genes11030343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
GOLDEN2-LIKE (GLK) is a member of the myeloblastosis (MYB) family transcription factor and it plays an important role in the regulation of plastid development and stress tolerance. In this study, a gene named AhGLK1b was identified from a cultivated peanut showing down-regulation in response to low calcium with a complete open reading frame (ORF) of 1212 bp. The AhGLK1b has 99.26% and 96.28% sequence similarities with its orthologs in Arachis ipaensis and A. duranensis, respectively. In the peanut, the AhGLK1b was localized in the nucleus and demonstrated the highest expression in the leaf, followed by the embryo. Furthermore, the expression of AhGLK1b was induced significantly in response to a bacterial pathogen, Ralstonia solanacearum infection. Ectopic expression of AhGLK1b in Arabidopsis showed stronger resistance against important phytopathogenic fungi S. sclerotiorum. It also exhibited high resistance to infection of the bacterial pathogen Pst DC3000. AhGLK1b-expressing Arabidopsis induced defense-related genes including PR10 and Phox/Bem 1 (PBI), which are involved in multiple disease resistance. Taken together, the results suggest that AhGLK1b might be useful in providing dual resistance to fungal and bacterial pathogens as well as tolerance to abiotic stresses.
Collapse
|
39
|
Srivastava G, Garg A, Misra RC, Chanotiya CS, Ghosh S. Transcriptome analysis and functional characterization of oxidosqualene cyclases of the arjuna triterpene saponin pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110382. [PMID: 32005387 DOI: 10.1016/j.plantsci.2019.110382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/25/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Arjuna (Terminalia arjuna) tree has been popular in Indian traditional medicine to treat cardiovascular ailments. The tree accumulates bioactive triterpene glycosides (saponins) and aglycones (sapogenins), in a tissue-preferential manner. Oleanane triterpenes/saponins (derived from β-amyrin) with potential cardioprotective function predominantly accumulate in the bark. However, arjuna triterpene saponin pathway enzymes remain to be identified and biochemically characterized. Here, we employed a combined transcriptomics, metabolomics and biochemical approach to functionally define a suite of oxidosqualene cyclases (OSCs) that catalyzed key reactions towards triterpene scaffold diversification. De novo assembly of 131 millions Illumina NextSeq500 sequencing reads obtained from leaf and stem bark samples led to a total of 156,650 reference transcripts. Four distinct OSCs (TaOSC1-4) with 54-71 % sequence identities were identified and functionally characterized. TaOSC1, TaOSC3 and TaOSC4 were biochemically characterized as β-amyrin synthase, cycloartenol synthase and lupeol synthase, respectively. However, TaOSC2 was found to be a multifunctional OSC producing both α-amyrin and β-amyrin, but showed a preference for α-amyrin product. Both TaOSC1 and TaOSC2 produced β-amyrin, the direct precursor for oleanane triterpene/saponin biosynthesis; but, TaOSC1 transcript expressed preferentially in bark, suggesting a major role of TaOSC1 in the biosynthesis of oleanane triterpenes/saponins in bark.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Chemical Sciences Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
40
|
Liu Y, Cui J, Zhou X, Luan Y, Luan F. Genome-wide identification, characterization and expression analysis of the TLP gene family in melon (Cucumis melo L.). Genomics 2020; 112:2499-2509. [PMID: 32044327 DOI: 10.1016/j.ygeno.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Thaumatin-like proteins (TLPs), which belong to pathogenesis-related (PR) protein family 5 (PR5), are involved in plant host defense and various developmental processes. The functions of the TLP family have been extensively discussed in multiple organisms, whereas the detailed information of this family in melon has not been reported yet. In this study, we identified 28 TLP genes in the melon genome and a N-terminal signal peptide was found highly conserved within each member of this family. Phylogeny analysis indicated that TLPs from melon and other plant species were clustered into ten groups. Twelve segmental and seven tandem duplication gene pairs that underwent purifying selection were identified. TLP genes expressed differentially in different tissues/organs, and were significantly induced after Podosphaera xanthii infection. TLPs in breeding line MR-1 tend to express early after pathogen infection compared with cultivar Top Mark. Our study provides a comprehensive understanding of the melon TLP family and demonstrates their potential roles in disease resistance, therefore provides more reference for further research.
Collapse
Affiliation(s)
- Yarong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China
| | - Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
Wang P, Yao S, Kosami K, Guo T, Li J, Zhang Y, Fukao Y, Kaneko‐Kawano T, Zhang H, She Y, Wang P, Xing W, Hanada K, Liu R, Kawano Y. Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:415-428. [PMID: 31301098 PMCID: PMC6953209 DOI: 10.1111/pbi.13208] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 05/10/2023]
Abstract
Small signalling peptides, generated from larger protein precursors, are important components to orchestrate various plant processes such as development and immune responses. However, small signalling peptides involved in plant immunity remain largely unknown. Here, we developed a pipeline using transcriptomics- and proteomics-based screening to identify putative precursors of small signalling peptides: small secreted proteins (SSPs) in rice, induced by rice blast fungus Magnaporthe oryzae and its elicitor, chitin. We identified 236 SSPs including members of two known small signalling peptide families, namely rapid alkalinization factors and phytosulfokines, as well as many other protein families that are known to be involved in immunity, such as proteinase inhibitors and pathogenesis-related protein families. We also isolated 52 unannotated SSPs and among them, we found one gene which we named immune response peptide (IRP) that appeared to encode the precursor of a small signalling peptide regulating rice immunity. In rice suspension cells, the expression of IRP was induced by bacterial peptidoglycan and fungal chitin. Overexpression of IRP enhanced the expression of a defence gene, PAL1 and induced the activation of the MAPKs in rice suspension cells. Moreover, the IRP protein level increased in suspension cell medium after chitin treatment. Collectively, we established a simple and efficient pipeline to discover SSP candidates that probably play important roles in rice immunity and identified 52 unannotated SSPs that may be useful for further elucidation of rice immunity. Our method can be applied to identify SSPs that are involved not only in immunity but also in other plant functions.
Collapse
Affiliation(s)
- Pingyu Wang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaolun Yao
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ken‐ichi Kosami
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Ting Guo
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Li
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanyuan Zhang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yoichiro Fukao
- Department of BioinformaticsRitsumeikan UniversityShigaJapan
| | | | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Yi‐Min She
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Present address:
Centre for Biologics EvaluationBiologics and Genetic Therapies Directorate, Health CanadaOttawaOntarioCanada
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Weiman Xing
- Biomolecular Structure and DesignShanghai Center for Plant Stress BiologyShanghaiChina
| | - Kousuke Hanada
- Department of Bioscience and BioinformaticsKyushu Institute of TechnologyFukuokaJapan
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yoji Kawano
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Kihara Institute for Biological ResearchYokohama City UniversityKanagawaJapan
- Institute of Plant Science and ResourcesOkayama UniversityOkayamaJapan
| |
Collapse
|
42
|
Sharma A, Tyagi S, Alok A, Singh K, Upadhyay SK. Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020. [PMID: 31779910 DOI: 10.1101/2020.09.24.311928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Thaumatin-like protein kinases (TLPKs) are defense related proteins having antimicrobial property. Herein, we identified two TLPKs in the genome of Brachypodium distachyon and Oryza sativa, four in Hordeum vulgare and Sorghum bicolor, and 16 in Triticum aestivum. All the TLPKs were located at only one chromosome in each plant except T. aestivum, where they were located on chromosome 2 and chromosome 3. Paralogous analysis suggested the occurrence of one duplication event (DE) in each B. distachyon and O. sativa, two in H. vulgare while four DEs in T. aestivum genome during the evolution of TLPKs. The majority of TLPKs were intron less, while a few contains one or two introns. The introns were found in each 0, 1 and 2 phase. Protein structure analysis suggested the occurrence of a thaumatin and a kinase domain with a transmembrane (TM) helix in each TLPK. Further, a thaumatin family signature motif "GX[GF]XCXT[GA]DCX(1,2)GX(2,3)C", a "REDDD" motif and 16 cysteine residues were found conserved in the majority of TLPKs. Expression analysis indicated variable expression of TLPKs in various tissues of different cereal crops. They were high expressing in reproductive tissues in B. distachyon, while in leaves in T. aestivum. Modulated expression of TaTLPKs in the presence of fungal pathogen, and heat, drought and salt stress in T. aestivum suggested their roles in stress response. Co-expression analysis showed interaction of TLPKs with various development and stress related genes. The results indicated diverse roles of TLPKs, which can be utilized for the development of eco-friendly pest resistant crops in future.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Anshu Alok
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
43
|
Wang J, Vanga SK, Raghavan V. Structural responses of kiwifruit allergen Act d 2 to thermal and electric field stresses based on molecular dynamics simulations and experiments. Food Funct 2020; 11:1373-1384. [DOI: 10.1039/c9fo02427a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kiwifruit is considered to be the most common plant-based food causing allergic reactions, after peanuts, soybeans, and wheat.
Collapse
Affiliation(s)
- Jin Wang
- Department of Bioresource Engineering
- Faculty of Agricultural and Environmental Sciences
- McGill University
- Quebec
- Canada
| | - Sai Kranthi Vanga
- Department of Bioresource Engineering
- Faculty of Agricultural and Environmental Sciences
- McGill University
- Quebec
- Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering
- Faculty of Agricultural and Environmental Sciences
- McGill University
- Quebec
- Canada
| |
Collapse
|
44
|
Wang G, Xu J, Li L, Guo Z, Si Q, Zhu G, Wang X, Guo W. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:222-238. [PMID: 31207065 PMCID: PMC6920168 DOI: 10.1111/pbi.13190] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/06/2023]
Abstract
Suberin acts as stress-induced antipathogen barrier in the root cell wall. CYP86A1 encodes cytochrome P450 fatty acid ω-hydroxylase, which has been reported to be a key enzyme for suberin biosynthesis; however, its role in resistance to fungi and the mechanisms related to immune responses remain unknown. Here, we identified a disease resistance-related gene, GbCYP86A1-1, from Gossypium barbadense cv. Hai7124. There were three homologs of GbCYP86A1 in cotton, which are specifically expressed in roots and induced by Verticillium dahliae. Among them, GbCYP86A1-1 contributed the most significantly to resistance. Silencing of GbCYP86A1-1 in Hai7124 resulted in severely compromised resistance to V. dahliae, while heterologous overexpression of GbCYP86A1-1 in Arabidopsis improved tolerance. Tissue sections showed that the roots of GbCYP86A1-1 transgenic Arabidopsis had more suberin accumulation and significantly higher C16-C18 fatty acid content than control. Transcriptome analysis revealed that overexpression of GbCYP86A1-1 not only affected lipid biosynthesis in roots, but also activated the disease-resistant immune pathway; genes encoding the receptor-like kinases (RLKs), receptor-like proteins (RLPs), hormone-related transcription factors, and pathogenesis-related protein genes (PRs) were more highly expressed in the GbCYP86A1-1 transgenic line than control. Furthermore, we found that when comparing V. dahliae -inoculated and noninoculated plants, few differential genes related to disease immunity were detected in the GbCYP86A1-1 transgenic line; however, a large number of resistance genes were activated in the control. This study highlights the role of GbCYP86A1-1 in the defence against fungi and its underlying molecular immune mechanisms in this process.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lechen Li
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Qingxin Si
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
45
|
Barbosa MS, da Silva Souza B, Silva Sales AC, de Sousa JDL, da Silva FDS, Araújo Mendes MG, da Costa KRL, de Oliveira TM, Daboit TC, de Oliveira JS. Antifungal Proteins from Plant Latex. Curr Protein Pept Sci 2019; 21:497-506. [PMID: 31746293 DOI: 10.2174/1389203720666191119101756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants' defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Bruna da Silva Souza
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Ana Clara Silva Sales
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Jhoana D'arc Lopes de Sousa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | | | - Maria Gabriela Araújo Mendes
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Káritta Raquel Lustoza da Costa
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Taiane Maria de Oliveira
- Research Center on Biodiversity and Biotechnology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Tatiane Caroline Daboit
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| |
Collapse
|
46
|
Martínez-Ferri E, Moreno-Ortega G, van den Berg N, Pliego C. Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC PLANT BIOLOGY 2019; 19:458. [PMID: 31664901 PMCID: PMC6821026 DOI: 10.1186/s12870-019-2016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. The eradication of WRR is a difficult task and environmentally friendly control methods are needed to lessen its impact. Priming plants with a stressor (biotic or abiotic) can be a strategy to enhance plant defense/tolerance against future stress episodes but, despite the known underlying common mechanisms, few studies use abiotic-priming for improving tolerance to forthcoming biotic-stress and vice versa ('cross-factor priming'). To assess whether cross-factor priming can be a potential method for enhancing avocado tolerance to WRR disease, 'Dusa' avocado rootstocks, susceptible to R. necatrix, were subjected to two levels of water stress (mild-WS and severe-WS) and, after drought-recovery, inoculated with R. necatrix. Physiological response and expression of plant defense related genes after drought-priming as well as the disease progression were evaluated. RESULTS Water-stressed avocado plants showed lower water potential and stomatal limitations of photosynthesis compared to control plants. In addition, NPQ and qN values increased, indicating the activation of energy dissipating mechanisms closely related to the relief of oxidative stress. This response was proportional to the severity of the water stress and was accompanied by the deregulation of pathogen defense-related genes in the roots. After re-watering, leaf photosynthesis and plant water status recovered rapidly in both treatments, but roots of mild-WS primed plants showed a higher number of overexpressed genes related with plant defense than severe-WS primed plants. Disease progression after inoculating primed plants with R. necatrix was significantly delayed in mild-WS primed plants. CONCLUSIONS These findings demonstrate that mild-WS can induce a primed state in the WRR susceptible avocado rootstock 'Dusa' and reveal that 'cross-factor priming' with water stress (abiotic stressor) is effective for increasing avocado tolerance against R. necatrix (biotic stressor), underpinning that plant responses against biotic and abiotic stress rely on common mechanisms. Potential applications of these results may involve an enhancement of WRR tolerance of current avocado groves and optimization of water use via low frequency deficit irrigation strategies.
Collapse
Affiliation(s)
- E. Martínez-Ferri
- IFAPA. Centro de Málaga. Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain
| | - G. Moreno-Ortega
- IFAPA. Centro de Málaga. Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain
| | - N. van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - C. Pliego
- IFAPA. Centro de Málaga. Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain
| |
Collapse
|
47
|
Li Y, Duan T, Nan Z, Li Y. Arbuscular mycorrhizal fungus alleviates alfalfa leaf spots caused by Phoma medicaginis revealed by RNA-seq analysis. J Appl Microbiol 2019; 130:547-560. [PMID: 31310670 DOI: 10.1111/jam.14387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023]
Abstract
AIMS One of the major limitations to the production of alfalfa (Medicago sativa) is the fungus Phoma medicaginis, which infects alfalfa and causes leaf spots. This study aims to understand alfalfa's response to P. medicaginis infection, the colonization of arbuscular mycorrhizal fungus (AMF) and the effect of AMF on plant-pathogen interactions. METHODS AND RESULTS Transcriptome analysis (RNA-seq) was used to identify differentially expressed genes (DEGs) in alfalfa infected by P. medicaginis and colonized by AMF Rhizophagus intraradices. AMF ameliorated the effects of P. medicaginis infection on alfalfa by reducing leaf spot incidence and disease index by 39·48 and 56·18% respectively. Inoculation with pathogen and AMF induced the activity of defence pathways, including peroxidase (POD), polyphenol oxidase activities and jasmonic acid (JA), salicylic acid concentration. Plants showed differential expression of P. medicaginis resistance-related genes, including genes belonging to pathogenesis-related (PR) proteins, chitinase activity, flavonoid biosynthesis, phenylpropanoid biosynthesis, glutathione metabolism, phenylalanine metabolism and photosynthesis. Inoculation with AMF led to changes in the expression of genes involved in PR proteins, chitinase activity, phenylalanine metabolism and photosynthesis. CONCLUSION The physiological and transcriptional changes caused by P. medicaginis infection in non-mycorrhizal and mycorrhizal alfalfa provides crucial information for understanding AMF's association with pathogenic systems. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed that AMF alleviated alfalfa leaf spots demonstrating that AMF can serve as a biocontrol strategy for alfalfa disease management.
Collapse
Affiliation(s)
- Y Li
- State Key Laboratory of Grassland Agro-Ecosystems Lanzhou Unviersity, Lanzhou, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - T Duan
- State Key Laboratory of Grassland Agro-Ecosystems Lanzhou Unviersity, Lanzhou, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Z Nan
- State Key Laboratory of Grassland Agro-Ecosystems Lanzhou Unviersity, Lanzhou, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Y Li
- State Key Laboratory of Grassland Agro-Ecosystems Lanzhou Unviersity, Lanzhou, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
48
|
Hasan MMU, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, Shen H, Chen Y, Wang X. Comparative Transcriptomic Analysis of Biological Process and Key Pathway in Three Cotton ( Gossypium spp.) Species Under Drought Stress. Int J Mol Sci 2019; 20:E2076. [PMID: 31035558 PMCID: PMC6539811 DOI: 10.3390/ijms20092076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Drought is one of the most important abiotic stresses that seriously affects cotton growth, development, and production worldwide. However, the molecular mechanism, key pathway, and responsible genes for drought tolerance incotton have not been stated clearly. In this research, high-throughput next generation sequencing technique was utilized to investigate gene expression profiles of three cotton species (Gossypium hirsutum, Gossypium arboreum, and Gossypium barbadense L.) under drought stress. A total of 6968 differentially expressed genes (DEGs) were identified, where 2053, 742, and 4173 genes were tested as statistically significant; 648, 320, and 1998 genes were up-regulated, and 1405, 422, and 2175 were down-regulated in TM-1, Zhongmian-16, and Pima4-S, respectively. Total DEGs were annotated and classified into functional groups under gene ontology analysis. The biological process was present only in tolerant species(TM-1), indicating drought tolerance condition. The Kyoto encyclopedia of genes and genomes showed the involvement of plant hormone signal transduction and metabolic pathways enrichment under drought stress. Several transcription factors associated with ethylene-responsive genes (ICE1, MYB44, FAMA, etc.) were identified as playing key roles in acclimatizing to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to abscisic acid (ABA) responses (NCED, PYL, PP2C, and SRK2E), reactive oxygen species (ROS) related in small heat shock protein and 18.1 kDa I heat shock protein, YLS3, and ODORANT1 genes. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in cotton.
Collapse
Affiliation(s)
- Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Examination Controller Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Sajid
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zakaria H Prodhan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Yadong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Nie HZ, Zhang L, Zhuang HQ, Shi WJ, Yang XF, Qiu DW, Zeng HM. The Secreted Protein MoHrip1 Is Necessary for the Virulence of Magnaporthe oryzae. Int J Mol Sci 2019; 20:E1643. [PMID: 30987045 PMCID: PMC6480625 DOI: 10.3390/ijms20071643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Secreted effectors from Magnaporthe oryzae play critical roles in the interaction with rice to facilitate fungal infection and disease development. M. oryzae-secreted protein MoHrip1 can improve plant defense as an elicitor in vitro, however, its biological function in fungal infection is not clear. In this study, we found that the expression of mohrip1 was significantly induced in the stages of fungal penetration and colonization. Although dispensable for the growth and conidiation, MoHrip1 was necessary for the full virulence of M. oryzae. Deletion of mohrip1 remarkably compromised fungal virulence on rice seedlings and even on rice leaves with wounds. Rice sheath inoculation assay further demonstrated the defects of mohrip1-deleted mutants on penetration and proliferation in rice cells. Additionally, compared with WT and complementation strain, the inoculation of mohrip1-deleted mutants induced a higher expression of specific defense related genes and a higher production of specific defensive compounds in rice leaves. These data collectively indicated that MoHrip1 is necessary for fungal penetration and invasive expansion, and further full virulence of rice blast fungus.
Collapse
Affiliation(s)
- Hai-Zhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hui-Qian Zhuang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen-Jiong Shi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiu-Fen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Wen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong-Mei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
50
|
Sandeep, Misra RC, Chanotiya CS, Mukhopadhyay P, Ghosh S. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. THE NEW PHYTOLOGIST 2019; 222:408-424. [PMID: 30472753 DOI: 10.1111/nph.15606] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Pentacyclic triterpenes (PCTs) represent a major class of bioactive metabolites in banaba (Lagerstroemia speciosa) leaves; however, biosynthetic enzymes and their involvement in the temporal accumulation of PCTs remain to be studied. We use an integrated approach involving transcriptomics, metabolomics and gene function analysis to identify oxidosqualene cyclases (OSCs) and cytochrome P450 monooxygenases (P450s) that catalyzed sequential cyclization and oxidative reactions towards PCT scaffold diversification. Four monofunctional OSCs (LsOSC1,3-5) converted the triterpene precursor 2,3-oxidosqualene to either lupeol, β-amyrin or cycloartenol, and a multifunctional LsOSC2 formed α-amyrin as a major product along with β-amyrin. Two CYP716 family P450s (CYP716A265, CYP716A266) catalyzed C-28 oxidation of α-amyrin, β-amyrin and lupeol to form ursolic acid, oleanolic acid and betulinic acid, respectively. However, CYP716C55 catalyzed C-2α hydroxylation of ursolic acid and oleanolic acid to produce corosolic acid and maslinic acid, respectively. Besides, combined transcript and metabolite analysis suggested major roles for the LsOSC2, CYP716A265 and CYP716C55 in determining leaf ursane and oleanane profiles. Combinatorial expression of OSCs and CYP716s in Saccharomyces cerevisiae and Nicotiana benthamiana led to PCT pathway reconstruction, signifying the utility of banaba enzymes for bioactive PCT production in alternate plant/microbial hosts that are more easily tractable than the tree species.
Collapse
Affiliation(s)
- Sandeep
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Chemical Sciences Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Pradipto Mukhopadhyay
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| |
Collapse
|