1
|
Saeed S, Dai R, Janjua RA, Huang D, Wang H, Wang Z, Ding Z, Zhang Z. Fast-Response Metal-Semiconductor-Metal Junction Ultraviolet Photodetector Based on ZnS:Mn Nanorod Networks via a Cost-Effective Method. ACS OMEGA 2021; 6:32930-32937. [PMID: 34901644 PMCID: PMC8655908 DOI: 10.1021/acsomega.1c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 05/11/2023]
Abstract
In this work, Mn2+-doped ZnS nanorods were synthesized by a facile hydrothermal method. The morphology, structure, and composition of the as-prepared samples were investigated. The temperature-dependent photoluminescence of ZnS:Mn nanorods was analyzed, and the corresponding activation energies were calculated by using a simple two-step rate equation. Mn2+-related orange emission (4T1 → 6A1) demonstrates high stability and is comparatively less affected by the temperature variations than the defect-related emission. A metal-semiconductor-metal junction ultraviolet photodetector based on the nanorod networks has been fabricated by a cost-effective method. The device exhibits visible blindness, superior ultraviolet photodetection with a responsivity of 1.62 A/W, and significantly fast photodetection response with the rise and decay times of 12 and 25 ms, respectively.
Collapse
Affiliation(s)
- Sara Saeed
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| | - Raheel Ahmed Janjua
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
- National
Engineering Research Center for Optical Instruments, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Da Huang
- Department
of Physics, University of Science and Technology
of China, Hefei 230026, China
| | - He Wang
- Department
of Physics, University of Science and Technology
of China, Hefei 230026, China
| | - Zhongping Wang
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| | - Zejun Ding
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Zengming Zhang
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
|
3
|
Jeong SY, Kim JS, Lee JH. Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation Artificial Olfaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002075. [PMID: 32930431 DOI: 10.1002/adma.202002075] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/05/2020] [Indexed: 05/18/2023]
Abstract
Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine-learning algorithms, on-demand high-performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor-based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p-type oxide semiconductors, multinary perovskite and spinel oxides, carbon-based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high-throughput screening of sensing materials. In addition, the state-of-the-art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next-generation artificial olfaction is provided.
Collapse
Affiliation(s)
- Seong-Yong Jeong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jun-Sik Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
5
|
Hu W, Wan L, Jian Y, Ren C, Jin K, Su X, Bai X, Haick H, Yao M, Wu W. Electronic Noses: From Advanced Materials to Sensors Aided with Data Processing. ADVANCED MATERIALS TECHNOLOGIES 2018:1800488. [DOI: 10.1002/admt.201800488] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and TechnologyXidian University Shaanxi 710126 P. R. China
| | - Liangtian Wan
- The Key Laboratory for Ubiquitous Network and Service Software of Liaoning ProvinceSchool of SoftwareDalian University of Technology Dalian 116620 China
| | - Yingying Jian
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Cong Ren
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Ke Jin
- School of Aerospace Science and TechnologyXidian University Shaanxi 710126 P. R. China
| | - Xinghua Su
- School of Materials Science and EngineeringChang'an University Xi'an 710061 China
| | - Xiaoxia Bai
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Hossam Haick
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Mingshui Yao
- Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Weiwei Wu
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| |
Collapse
|
6
|
Murdock RJ, Putnam SA, Das S, Gupta A, Chase EDZ, Seal S. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602862. [PMID: 28090735 DOI: 10.1002/smll.201602862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 06/06/2023]
Abstract
A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL-1 and broad detection range of 10 pg mL-1 ≲ cBSA ≲ 100 µg mL-1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL-1 ≲ cBSA ≲ 500 ng mL-1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences.
Collapse
Affiliation(s)
- Richard J Murdock
- Health Sciences and Technology (HST), Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology and Harvard University, 77 Massachusetts Avenue 76-679, Cambridge, MA, 02139, USA
| | - Shawn A Putnam
- Department of Mechanical and Aerospace Engineering, University of Central Florida, P.O. Box, 162450, ENGR 1, Rm. 213, Orlando, FL, 32816, USA
| | - Soumen Das
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, (AMPAC), Nanoscience Technology Center (NSTC), University of Central Florida, P.O. Box 162455, ENGR 1, Rm. 207, Orlando, FL, 32816, USA
| | - Ankur Gupta
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, (AMPAC), Nanoscience Technology Center (NSTC), University of Central Florida, P.O. Box 162455, ENGR 1, Rm. 207, Orlando, FL, 32816, USA
| | - Elyse D Z Chase
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 229, Towne Building, 220 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Sudipta Seal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, (AMPAC), Nanoscience Technology Center (NSTC), University of Central Florida, P.O. Box 162455, ENGR 1, Rm. 207, Orlando, FL, 32816, USA
| |
Collapse
|
7
|
Xia H, Liu G, Zhao C, Meng X, Li F, Wang F, Duan L, Chen H. Fluorescence sensing of amine vapours based on ZnS-supramolecular organogel hybrid films. RSC Adv 2017. [DOI: 10.1039/c7ra00556c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A selective fluorescent ZnS-supramolecular organogel hybrid film was constructed for sensing volatile organic monoamines and diamines vapour by adopting supramolecular gel films as substrates.
Collapse
Affiliation(s)
- Huiyun Xia
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| | - Guanyu Liu
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| | - Chuan Zhao
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Xiaojuan Meng
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| | - Fangfang Li
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| | - Fengyan Wang
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| | - Li Duan
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| | - Huaxin Chen
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710064
- P. R. China
| |
Collapse
|