1
|
Sieskind R, Missoury S, Madru C, Commenge I, Niogret G, Hollenstein M, Rondelez Y, Sauguet L, Haouz A, Legrand P, Delarue M. Crystal structures of monomeric BsmI restriction endonuclease reveal coordinated sequential cleavage of two DNA strands. Commun Biol 2025; 8:387. [PMID: 40055548 PMCID: PMC11889245 DOI: 10.1038/s42003-025-07612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
BsmI, a thermophilic Type IIS restriction endonuclease from Bacillus stearothermophilus, presents a unique structural composition, housing two distinct active sites within a single monomer. Recognition of the non-symmetrical 5'-GAATGC-3' sequence enables precise cleavage of the top and bottom DNA strands. Synthetic biology interventions have led to the transformation of BsmI into Nb.BsmI, a nicking endonuclease. Here we introduce Nt*.BsmI, tailored for top-strand cleavage, which is inactive on standard double-stranded DNA, but active on bottom-strand nicked DNA, suggesting a sequential cleavage mechanism. Crystallographic structures of pre- and post-reactive complexes with cognate DNA show one major conformational change, a retractable loop possibly governing sequential active site accessibility. The x-ray structures reveal the position of the divalent metal ions in the active sites and the DNA:protein interactions, while the models predicted by Alphafold3 are incorrect. This comprehensive structural and functional study lays a foundation for rational enzyme redesign and potential applications in biotechnology.
Collapse
Affiliation(s)
- Rémi Sieskind
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France
| | - Sophia Missoury
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France
| | - Clément Madru
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France
| | - Isciane Commenge
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France
| | - Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unit of Bioorganic Chemistry of Nucleic Acids, 75724, Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unit of Bioorganic Chemistry of Nucleic Acids, 75724, Paris, France
| | - Yannick Rondelez
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Ludovic Sauguet
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de cristallographie-C2RT, 75724, Paris, France
| | | | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France.
| |
Collapse
|
2
|
Lardeux H, Stavenhagen K, Paris C, Dueholm R, Kurek C, De Maria L, Gnerlich F, Leek T, Czechtizky W, Guillarme D, Jora M. Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography. Anal Chem 2024; 96:9994-10002. [PMID: 38855895 PMCID: PMC11190878 DOI: 10.1021/acs.analchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.
Collapse
Affiliation(s)
- Honorine Lardeux
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Kathrin Stavenhagen
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Clément Paris
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Rikke Dueholm
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Camille Kurek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Felix Gnerlich
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Tomas Leek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Werngard Czechtizky
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Manasses Jora
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| |
Collapse
|
3
|
Chen T, Tang S, Fu Y, Napolitano JG, Zhang K. Analytical techniques for characterizing diastereomers of phosphorothioated oligonucleotides. J Chromatogr A 2022; 1678:463349. [PMID: 35908512 DOI: 10.1016/j.chroma.2022.463349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
Oligonucleotides have emerged as powerful therapeutics for treating diverse diseases. To fully unlock the therapeutic potential of oligonucleotides, there is still a great need to further improve their drug-like properties. Numerous chemical modifications have been explored to achieve this goal, with phosphorothioation being one of the most widely used strategies. However, phosphorothioate modification produces diastereomers that are reported to have different properties and performances, demanding detailed characterization of these diastereomers. Here we provide an overview of phosphorothioated oligonucleotide diastereomers, covering their origin and configurations, physicochemical and pharmacological properties, and stereo-selective chemical synthesis, followed by a summary of currently available analytical techniques for characterizing these diastereomers, with a focus on liquid chromatography-based approaches, including ion-pair reversed-phase liquid chromatography, anion exchange chromatography, mixed-mode chromatography, and hybrid approaches. Non-chromatographic techniques, such as capillary electrophoresis, spectroscopy and other methods, are also being reviewed.
Collapse
Affiliation(s)
- Tao Chen
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Shijia Tang
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Yige Fu
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - José G Napolitano
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Kelly Zhang
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
4
|
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 2021; 17:1281-1292. [PMID: 34643122 DOI: 10.1080/17425255.2021.1992382] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) have emerged as a promising novel drug modality that aims to address unmet medical needs. A record of six ASO drugs have been approved since 2016, and more candidates are in clinical development. ASOs are the most advanced class within the RNA-based therapeutics field. AREAS COVERED This review highlights the two major backbones that are currently used to build the most advanced ASO platforms - the phosphorodiamidate morpholino oligomers (PMOs) and the phosphorothioates (PSs). The absorption, distribution, metabolism, and excretion (ADME) properties of the PMO and PS platforms are discussed in detail. EXPERT OPINION Understanding the ADME properties of existing ASOs can foster further improvement of this cutting-edge therapy, thereby enabling researchers to safely develop ASO drugs and enhancing their ability to innovate. ABBREVIATIONS 2'-MOE, 2'-O-methoxyethyl; 2'PS, 2 modified PS; ADME, absorption, distribution, metabolism, and excretion; ASO, antisense oligonucleotide; AUC, area under the curve; BNA, bridged nucleic acid; CPP, cell-penetrating peptide; CMV, cytomegalovirus; CNS, central nervous system; CYP, cytochrome P; DDI, drug-drug interaction; DMD, Duchenne muscular dystrophy; FDA, Food and Drug Administration; GalNAc3, triantennary N-acetyl galactosamine; IT, intrathecal; IV, intravenous; LNA, locked nucleic acid; mRNA, messenger RNA; NA, not applicable; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamic; PK, pharmacokinetic; PMO, phosphorodiamidate morpholino oligomer; PMOplus, PMOs with positionally specific positive molecular charges; PPMO, peptide-conjugated PMO; PS, phosphorothioate; SC, subcutaneous; siRNA, small-interfering RNA; SMA, spinal muscular atrophy.
Collapse
Affiliation(s)
- Mohammad Shadid
- Nonclinical Development, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Mohamed Badawi
- Clinical Pharmacology Fellow, Ohio State University, Columbus, OH, USA
| | - Abedelnasser Abulrob
- Senior Research Officer, Human Health Therapeutics Centre, Translational Bioscience, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Saran R, Huang Z, Liu J. Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Yuan Y, Ma Y, Huo D, Mills MJL, Wei J, Su W, Zhang R. Multipolar Description of Atom-Atom Electrostatic Interaction Energies in Single/Double-Stranded DNAs. J Phys Chem B 2020; 124:10089-10103. [PMID: 33138384 DOI: 10.1021/acs.jpcb.0c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular force field simulation is an effective method to explore the properties of DNA molecules in depth. Almost all current popular force fields calculate atom-atom electrostatic interaction energies for DNAs based on the atomic charge and dipole or quadrupole moments, without considering high-rank atomic multipole moments for more accurate electrostatics. Actually, the distribution of electrons around atomic nuclei is not spherically symmetric but is geometry dependent. In this work, a multipole expansion method that allows us to combine polarizability and anisotropy was applied. One single-stranded DNA and one double-stranded DNA were selected as pilot systems. Deoxynucleotides were cut out from pilot systems and capped by mimicking the original DNA environment. Atomic multipole moments were integrated instead of fixed-point charges to calculate atom-atom electrostatic energies to improve the accuracy of force fields for DNA simulations. Also, the applicability of modeling the behavior of both single-stranded and double-stranded DNAs was investigated. The calculation results indicated that the models can be transferred from pilot systems to test systems, which is of great significance for the development of future DNA force fields.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Yan Ma
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Dongxu Huo
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Matthew J L Mills
- 3M Corporate Research Analytical Laboratory, Saint Paul, Minnesota 55114, United States
| | - Jiaxuan Wei
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
7
|
Dai Z, Tan Y, He K, Chen H, Liu J. Strict DNA Valence Control in Ultrasmall Thiolate-Protected Near-Infrared-Emitting Gold Nanoparticles. J Am Chem Soc 2020; 142:14023-14027. [DOI: 10.1021/jacs.0c00443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhiyi Dai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Islam MA, Fujisaka A, Kawakami J, Yamaguchi T, Obika S. Different reactivity of Sp and Rp isomers of phosphorothioate-modified oligonucleotides in a duplex structure. Bioorg Med Chem Lett 2020; 30:127166. [PMID: 32527537 DOI: 10.1016/j.bmcl.2020.127166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
The presence of a stereoisomeric center at the phosphorus atom in phosphorothioate-modified oligonucleotides (PS-ONs) has been recognized as an important feature since the early stages of their development. Therefore, several studies have been conducted on the chirality of PS-ONs. In this study, we evaluated the stereo-biased chemistry of PS-ON duplexes. Depending on their absolute configurations, PS-ON duplexes were found to have significantly different and stereospecific reactivities towards simple alkylating reagent.
Collapse
Affiliation(s)
- Md Ariful Islam
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Aki Fujisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Faculty of Pharmacy, Osaka Ohtani University, Nishikiori-Kita 3-11-1, Tondabayashi, Osaka 584-8540, Japan
| | - Junji Kawakami
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Jing Z, Qi R, Thibonnier M, Ren P. Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides. J Chem Theory Comput 2019; 15:6422-6432. [PMID: 31553600 PMCID: PMC6889957 DOI: 10.1021/acs.jctc.9b00519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are attractive drug candidates for many diseases as they can modulate the expression of gene networks. Recently, we discovered that DNAs targeting microRNA-22-3p (miR-22-3p) hold the potential for treating obesity and related metabolic disorders (type 2 diabetes mellitus, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)) by turning fat-storing white adipocytes into fat-burning adipocytes. In this work, we explored the effects of chemical modifications, including phosphorothioate (PS), locked nucleic acid (LNA), and peptide nucleic acid (PNA), on the structure and energy of DNA analogs by using molecular dynamics (MD) simulations. To achieve a reliable prediction of the hybridization free energy, the AMOEBA polarizable force field and the free energy perturbation technique were employed. The calculated hybridization free energies are generally compatible with previous experiments. For LNA and PNA, the enhanced duplex stability can be explained by the preorganization mechanism, i.e., the single strands adopt stable helical structures similar to those in the duplex. For PS, the S and R isomers (Sp and Rp) have preferences for C2'-endo and C3'-endo sugar puckering conformations, respectively, and therefore Sp is less stable than Rp in DNA/RNA hybrids. In addition, the solvation penalty of Rp accounts for its destabilization effect. PS-LNA is similar to LNA as the sugar puckering is dominated by the locked sugar ring. This work demonstrated that MD simulations with polarizable force fields are useful for the understanding and design of modified nucleic acids.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | | | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
10
|
Yao P, Liu Y, Wang C, Lan W, Wang C, Cao C. Investigating the interactions between DNA and DndE during DNA phosphorothioation. FEBS Lett 2019; 593:2790-2799. [PMID: 31276192 DOI: 10.1002/1873-3468.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
The DNA phosphorothioate modification is a novel physiological variation in bacteria. DndE controls this modification by binding to dsDNA via a mechanism that remains unclear. Structural analysis of the wild-type DndE tetramer suggests that a positively charged region in its center is important for DNA binding. In the present study, we replaced residues G21 and G24 in this region with lysines, which increases the DNA binding affinity but does not affect the DNA degradation phenotype. Structural analysis of the mutant indicates that it forms a new tetrameric conformation and that DndE interacts with DNA as a monomer rather than as a tetramer. A structural model of the DndE-DNA complex, based on its structural homolog P22 Arc repressor, indicates that two flexible loops in DndE are determinants of DNA binding.
Collapse
Affiliation(s)
- Penfei Yao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengkun Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Wang L, Jiang S, Deng Z, Dedon PC, Chen S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev 2019; 43:109-122. [PMID: 30289455 PMCID: PMC6435447 DOI: 10.1093/femsre/fuy036] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.
Collapse
Affiliation(s)
- Lianrong Wang
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Masschusetts Avenue, Cambridge, Massachusetts, USA
| | - Shi Chen
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
12
|
Investigation of factors influencing the separation of diastereomers of phosphorothioated oligonucleotides. Anal Bioanal Chem 2019; 411:3383-3394. [PMID: 31020370 PMCID: PMC6543027 DOI: 10.1007/s00216-019-01813-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
This study presents a systematic investigation of factors influencing the chromatographic separation of diastereomers of phosphorothioated pentameric oligonucleotides as model solutes. Separation was carried out under ion-pairing conditions using an XBridge C18 column. For oligonucleotides with a single sulfur substitution, the diastereomer selectivity was found to increase with decreasing carbon chain length of the tertiary alkylamine used as an ion-pair reagent. Using an ion-pair reagent with high selectivity for diastereomers, triethylammonium, it was found the selectivity increased with decreased ion-pair concentration and shallower gradient slope. Selectivity was also demonstrated to be dependent on the position of the modified linkage. Substitutions at the center of the pentamer resulted in higher diastereomer selectivity compared to substitutions at either end. For mono-substituted oligonucleotides, the retention order and stereo configuration were consistently found to be correlated, with Rp followed by Sp, regardless of which linkage was modified. The type of nucleobase greatly affects the observed selectivity. A pentamer of cytosine has about twice the diastereomer selectivity of that of thymine. When investigating the retention of various oligonucleotides eluted using tributylammonium as the ion-pairing reagent, no diastereomer selectivity could be observed. However, retention was found to be dependent on both the degree and position of sulfur substitution as well as on the nucleobase. When analyzing fractions collected in the front and tail of overloaded injections, a significant difference was found in the ratio between Rp and Sp diastereomers, indicating that the peak broadening observed when using tributylammonium could be explained by partial diastereomer separation.
Collapse
|
13
|
Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: Isolation and properties. Biochem Biophys Res Commun 2019; 513:807-811. [PMID: 31000201 DOI: 10.1016/j.bbrc.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Recently, a new type of nucleic acid analogues with modified phosphate group, namely, phosphoryl guanidine oligonucleotides, has been described. In the present work, we assess the difference between diastereomers of a mono-substituted phosphoryl guanidine oligonucleotide and analyze their resistance to nuclease digestion. Individual diastereomers ('fast' and 'slow') of a trideoxynucleotide d (TpCp*A) were isolated by reverse-phase HPLC. Snake venom phosphodiesterase digestion showed that the native trideoxynucleotide was fully degraded after 30 min, whereas both 'fast' and 'slow' diastereomers of d (TpCp*A) were not completely digested even after 7 days. UV and CD spectra revealed similarities in the structure of the diastereomers. Structural analysis by 1D and 2D NMR spectroscopy also uncovered significant similarity in the properties of Rp and Sp diastereomers. Structural analysis of nuclear Overhauser effect spectroscopy (NOESY) data and restrained molecular dynamics methods showed very flexible single-stranded oligonucleotide structures. Detailed computational analysis of restraint penalty energies via restrained molecular dynamics simulations with the 2D NMR interproton distance data allowed us to conclude that most likely, the 'fast' isomer is the Sp diastereomer, and the 'slow' isomer is the Rp diastereomer.
Collapse
|
14
|
Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun 2018; 9:4689. [PMID: 30409991 PMCID: PMC6224610 DOI: 10.1038/s41467-018-07093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
Collapse
|
15
|
Tomaszewska-Antczak A, Jastrzębska K, Maciaszek A, Mikołajczyk B, Guga P. P-Stereodefined phosphorothioate analogs of glycol nucleic acids-synthesis and structural properties. RSC Adv 2018; 8:24942-24952. [PMID: 35542141 PMCID: PMC9082371 DOI: 10.1039/c8ra05568h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
Enantiomerically pure, protected acyclic nucleosides of the GNA type (glycol nucleic acids) (GN'), obtained from (R)-(+)- and (S)-(-)-glycidols and the four canonical DNA nucleobases (Ade, Cyt, Gua and Thy), were transformed into 3'-O-DMT-protected 2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane derivatives (OTP-GN') containing a second stereogenic center at the phosphorus atom. These monomers were chromatographically separated into P-diastereoisomers, which were further used for the synthesis of P-stereodefined "dinucleoside" phosphorothioates GNPST (GN = GA, GC, GG, GT). The absolute configuration at the phosphorus atom for all eight GNPST was established enzymatically and verified chemically, and correlated with chromatographic mobility of the OTP-GN' monomers on silica gel. The GNPS units (derived from (R)-(+)-glycidol) were introduced into self-complementary PS-(DNA/GNA) octamers of preselected, uniform absolute configuration at P-atoms. Thermal dissociation experiments showed that the thermodynamic stability of the duplexes depends on the stereochemistry of the phosphorus centers and relative arrangement of the GN units in the oligonucleotide strands. These results correlate with the changes of conformation assessed from circular dichroism spectra.
Collapse
Affiliation(s)
- Agnieszka Tomaszewska-Antczak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry Sienkiewicza 112 90-363 Łódź Poland
| | - Katarzyna Jastrzębska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry Sienkiewicza 112 90-363 Łódź Poland
| | - Anna Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry Sienkiewicza 112 90-363 Łódź Poland
| | - Barbara Mikołajczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry Sienkiewicza 112 90-363 Łódź Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry Sienkiewicza 112 90-363 Łódź Poland
| |
Collapse
|
16
|
Milton J, Zhang T, Bellamy C, Swayze E, Hart C, Weisser M, Hecht S, Rotstein S. HELM Software for Biopolymers. J Chem Inf Model 2017; 57:1233-1239. [PMID: 28471655 DOI: 10.1021/acs.jcim.6b00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hierarchical Editing Language for Macromolecules (HELM version 2.0) is a molecular line notation similar to SMILEs but specifically for communicating and managing biopolymer structures. The HELM project, part of the Pistoia Alliance nonprofit organization, has been tasked to develop and promote HELM as a global exchange format and recently released version 2.0 of the specification. Here we will describe the specifics of the HELM v2.0 notation along with the large ecosystem of software to support HELM-based structure management. We will highlight a recent open-source software and database for HELM monomers and a new, simpler approach to deploying a large complicated molecular management system.
Collapse
Affiliation(s)
- Jeff Milton
- Ionis Pharmaceuticals, Inc , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Tianhong Zhang
- Pfizer Inc. , One Burtt Road, Andover, Massachusetts 01810, United States
| | - Claire Bellamy
- Pistoia Alliance , 401 Edgewater Place, Wakefield, Massachusetts 01880-6201, United States
| | - Eric Swayze
- Ionis Pharmaceuticals, Inc , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Christopher Hart
- Ionis Pharmaceuticals, Inc , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Markus Weisser
- Quattro Research , Fraunhoferstraße 18a 82152 Planegg-Martinsried, Germany
| | - Sabrina Hecht
- Quattro Research , Fraunhoferstraße 18a 82152 Planegg-Martinsried, Germany
| | - Sergio Rotstein
- Pfizer Inc. , One Burtt Road, Andover, Massachusetts 01810, United States
| |
Collapse
|
17
|
Mechanistic Investigation on ROS Resistance of Phosphorothioated DNA. Sci Rep 2017; 7:42823. [PMID: 28216673 PMCID: PMC5316992 DOI: 10.1038/srep42823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 11/23/2022] Open
Abstract
Phosphorothioated DNA (PT-DNA) exhibits a mild anti-oxidant property both in vivo and in vitro. It was found that 8-OHdG and ROS levels were significantly lower in dnd+ (i.e. S+) E. coli., compared to a dnd− (i.e. S−) strain. Furthermore, different from traditional antioxidants, phosphorothioate compound presents an unexpectedly high capacity to quench hydroxyl radical. Oxidative product analysis by liquid chromatography-mass spectrometry and quantum mechanistic computation supported its unique anti-oxidant characteristic of the hydroxyl selectivity: phosphorothioate donates an electron to either hydroxyl radical or guanine radical derived from hydroxyl radical, leading to a PS• radical; a complex of PS• radical and OH− (i.e. the reductive product of hydroxyl radical) releases a highly reductive HS• radical, which scavenges more equivalents of oxidants in the way to high-covalent sulphur compounds such as sulphur, sulphite and sulphate. The PS-PO conversion (PS and PO denote phosphorus-sulphur and phosphorus-oxygen compounds, respectively) made a switch of extremely oxidative OH• to highly reductive HS• species, endowing PT-DNA with the observed high capacity in hydroxyl-radical neutralization. This plausible mechanism provides partial rationale as to why bacteria develop the resource-demanding PT modification on guanine-neighboring phosphates in genome.
Collapse
|
18
|
Dai D, Du A, Xiong K, Pu T, Zhou X, Deng Z, Liang J, He X, Wang Z. DNA Phosphorothioate Modification Plays a Role in Peroxides Resistance in Streptomyces lividans. Front Microbiol 2016; 7:1380. [PMID: 27630631 PMCID: PMC5005934 DOI: 10.3389/fmicb.2016.01380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd− mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd− mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.
Collapse
Affiliation(s)
- Daofeng Dai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Kangli Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|