1
|
Qiu L, Lu X, Xue W, Fu H, Deng S, Li L, Chen M, Wang Y. Ischemic stroke susceptibility associated with ALPK1 single nucleotide polymorphisms by inhibiting URAT1 in uric acid hemostasis. Gene 2025; 934:149017. [PMID: 39437898 DOI: 10.1016/j.gene.2024.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ischemic stroke (IS) prevalence rising annually, the necessity of discovering non-interventional genetic influences is progressing. Single nucleotide polymorphism (SNP) plays a pivotal role in stable inheritance of disease susceptibility. Based on the relationship between Alpha- Kinase 1 (ALPK1) and traditional IS risk factors especially hyperuricemia, our study investigated the association and function of ALPK1 SNPs with IS susceptibility. METHODS A case-control study of 1539 patients and 933 controls from northeast China was conducted. Genotyping information of ALPK1 rs2074379 and rs2074388 was collected. Four types of plasmids including rs2074379/rs2074388 G/G, A/G, G/A, and A/A were transfected into 293T cells to observe ALPK1 and SLC22A12 expression. Possible ALPK1 structures of different SNPs were predicted online. RESULTS Genotype GG (OR = 1.371, CI = 1.029-1.828, P = 0.031) and GA (OR = 1.326, CI = 1.110-1.584, P = 0.002) of rs2074379 and GA of rs2074388 (OR = 1.359, CI = 1.137-1.624, P = 0.001) were found significantly susceptible to IS, with G allele on sites to be a risk allele. Rs2074379 had a multiplicative interaction with hyperuricemia (OR = 1.637, CI = 1.157-2.315, P = 0.005). Uric acid levels differed in genotypes (P < 0.001). The expression of ALPK1 (P < 0.01) and SLC22A12 in membrane urate transporter 1 (URAT1) protein (P < 0.05) functionally changed with G allele on either site. With glycine changing into aspartic acid at rs2074388, the protein secondary structure changed, but the ALPK1 protein subtype remained still. CONCLUSIONS ALPK1 rs2074379 and rs2074388 SNPs were functionally associated with IS susceptibility. The wild allele progressed IS risk probably by reducing ALPK1 expression and inhibiting URAT1 raising the uric acid level, contributing to further exploration of pathogenetic mechanisms of stroke. Chinese Clinical Trial Registration number: ChiCTR-COC-17013559.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaoqin Lu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Hefei Fu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Meilin Chen
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Zhu T, Li H, Chen Y, Jia X, Ma X, Liu X, Feng Y, Ke J. ALPK1 Expressed in IB4-Positive Neurons of Mice Trigeminal Ganglions Promotes MIA-Induced TMJ pain. Mol Neurobiol 2023; 60:6264-6274. [PMID: 37442857 DOI: 10.1007/s12035-023-03462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Pain is one of the main reasons for patients with temporomandibular joint (TMJ) disorders seeking medical care. However, there is no effective treatment yet as its mechanism remains unclear. Herein, we found that the injection of monoiodoacetate (MIA) into mice TMJs can induce typical joint pain as early as 3 days, accompanied by an increased percentage of calcitonin gene-related peptide positive (CGRP+) neurons and isolectin B4 positive (IB4+) in the trigeminal ganglions (TGs). Our previous study has discovered that alpha-kinase 1 (ALPK1) may be involved in joint pain. Here, we detected the expression of ALPK1 in neurons of TGs in wild-type (WT) mice, and it was upregulated after intra-TMJ injection of MIA. Meanwhile, the increased percentage of neurons in TGs expressing ALPK1 and CGRP or ALPK1 and IB4 was also demonstrated by the immunofluorescent double staining. Furthermore, after the MIA injection, ALPK1-/- mice exhibited attenuated pain behavior, as well as a remarkably decreased percentage of IB4+ neurons and an unchanged percentage of CGRP+ neurons, as compared with WT mice. In vitro assay showed that the value of calcium intensity was weakened in Dil+ neurons from ALPK1-/- mice of TMJ pain induced by the MIA injection, in relation to those from WT mice, while it was significantly enhanced with the incubation of recombinant human ALPK1 (rhA). Taken together, these results suggest that ALPK1 promotes mice TMJ pain induced by MIA through upregulation of the sensitization of IB4+ neurons in TGs. This study will provide a new potential therapeutic target for the treatment of TMJ pain.
Collapse
Affiliation(s)
- Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuxiang Chen
- GuangDong Women and Children Hospital, Guangdong, 511400, China
| | - Xueke Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China.
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Liu X, Zhao J, Jiang H, Guo H, Li Y, Li H, Feng Y, Ke J, Long X. ALPK1 Accelerates the Pathogenesis of Osteoarthritis by Activating NLRP3 Signaling. J Bone Miner Res 2022; 37:1973-1985. [PMID: 36053817 DOI: 10.1002/jbmr.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/08/2022]
Abstract
Alpha-kinase 1 (ALPK1), a member of the alpha-kinase family, has been shown to be involved in mediating inflammatory responses and is strongly associated with gout; however, its modulatory role in osteoarthritis (OA) remains unclear. Here, we uncovered elevation of ALPK1 in degraded cartilage of destabilized medial meniscus (DMM) and collagenase-induced osteoarthritis (CIOA), two different mouse OA models induced by mechanical stress or synovitis. Intraarticular administration of recombinant human ALPK1 (rhALPK1) in vivo exacerbated OA pathogenesis in both DMM and CIOA mice, whereas ALPK1 knockout reversed this process. In vitro study demonstrated that ALPK1 aggravates metabolic disturbances in chondrocytes by enhancing the production of NOD-like receptor protein 3 (NLRP3), an inflammasome sensors driving interlukin-1β (IL-1β)-mediated inflammatory conditions. Furthermore, the selective inhibition of nuclear factor-κB (NF-κB) or NLRP3 indicates that NLRP3 is a downstream signaling governed by NF-κB in ALPK1-activated chondrocytes. Collectively, these results establish ALPK1 as a novel catabolic regulator of OA pathogenesis, and targeting this signaling may be a promising treatment strategy for OA. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huilin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yingjie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Systematic Review of the Role of Alpha-Protein Kinase 1 in Cancer and Cancer-Related Inflammatory Diseases. Cancers (Basel) 2022; 14:cancers14184390. [PMID: 36139553 PMCID: PMC9497133 DOI: 10.3390/cancers14184390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Aside from the basic phosphorylation function of alpha-kinase 1 (ALPK1), little is known about its major functions. Researchers have used various forms of biotechnology and human, animal, and cellular models to better understand the relationship of ALPK1 with cancer and cancer-related inflammatory diseases. ALPK1 is involved in the progression of breast, lung, colorectal, oral, and skin cancer as well as lymphoblastic leukemia. ALPK1 has also been implicated in gout, diabetes, and chronic kidney disease, which are thought to be associated with breast, lung, colorectal, urinary tract, pancreatic, and endometrial cancers and lymphoblastic leukemia. ALPK1 upregulates inflammatory cytokines and chemokines during carcinogenesis. The major cytokine involved in carcinogenesis is TNF-α, which activates the NF-κB pathway, and similar inflammatory responses exist in gout, diabetes, and chronic kidney disease. ALPK1 regulates downstream inflammatory mechanisms that lead to cancer development through certain pathways and plays a key role in cancer initiation and metastasis. Abstract Background: Deregulation of conventional protein kinases is associated with the growth and development of cancer cells. Alpha-kinase 1 (ALPK1) belongs to a newly discovered family of serine/threonine protein kinases with no sequence homology to conventional protein kinases, and its function in cancer is poorly understood. Methods: In this systematic review, we searched for and analyzed studies linking ALPK1 to cancer development and progression. Results: Based on the current evidence obtained using human, animal, cellular, and tissue models, ALPK1 is located upstream and triggers cancer cell development and metastasis by regulating the inflammatory response through phosphorylation. Its mRNA and protein levels were found to correlate with advanced tumor size and lymph node metastasis, which occur from the cellular cytoplasm into the nucleus. ALPK1 is also strongly associated with gout, chronic kidney disease, and diabetes, which are considered as inflammatory diseases and associated with cancer. Conclusion: ALPK1 is an oncogene involved in carcinogenesis. Chronic inflammation is the common regulatory mechanism between cancer and these diseases. Future research should focus on identifying inhibitors of serine/threonine and ALPK1 at their phosphorylation sites, which would block various signal transductions and potentially offer kinase-targeted therapeutic agents for patients with cancer and inflammatory diseases.
Collapse
|
5
|
Lee CP, Ko AMS, Nithiyanantham S, Lai CH, Ko YC. Long noncoding RNA HAR1A regulates oral cancer progression through the alpha-kinase 1, bromodomain 7, and myosin IIA axis. J Mol Med (Berl) 2021; 99:1323-1334. [PMID: 34097087 DOI: 10.1007/s00109-021-02095-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Studies suggested that long noncoding HAR1A RNA may be a tumor suppressor, but its association with oral cancer remains unclear. Here, we show the functional role and mechanisms of HAR1A in oral cancer progression. Microarray analysis was performed to screen the related candidates of long noncoding RNA (lncRNA) in human monocytes. Following lncRNA HAR1A, the regulation of HAR1A, ALPK1, myosin IIA, and BRD7 was tested using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in oral cancer cells. The inflammatory and epithelial-to-mesenchymal transition marker expressions were analyzed using enzyme-linked immunosorbent assay and western blot. Phenotypic experiments were verified by colony formation assay, transwell migration assay, and Annexin V-apoptotic assay. In the nuclei of cancer cells, HAR1A functions upstream of signaling pathways and knockdown of HAR1A promoted ALPK1 expression and downregulated BRD7 resulting in inflammation and oral cancer progression. In monocytes, the expressions of TNF-α and CCL2 were increased following HAR1A knockdown and reduced following ALPK1 knockdown. HAR1A knockdown upregulated the expression of ALPK1, slug, vimentin, fibronectin, and N-cadherin but reduced the expression of E-cadherin in oral cancer cells. Myosin IIA was primarily located in the cytoplasm and that its decrease in the nuclei of oral cancer cells was likely to demonstrate suppressive ability in late-stage cancer. Our findings suggest that the HAR1A, BRD7, and myosin IIA are tumor suppressors while ALPK1 has oncogene-like property in the nucleus and is involved in inflammation and oral cancer progression. More research for HAR1A activators or ALPK1 inhibitors is required to develop potential therapeutic agents for advanced oral cancer. KEY MESSAGES: lncRNA HAR1A, BRD7, and myosin IIA are tumor suppressors whereas ALPK1 has an oncogenic-like property in the nucleus. lncRNA HAR1A/ALPK1/BRD7/myosin IIA axis plays a critical role in the progression of oral cancer. lncRNA HAR1A localizes upstream of signaling pathways to inhibit ALPK1 expression and then upregulated BRD7. lncRNA HAR1A and ALPK1 are involved in cancer progression via epithelial-to-mesenchymal transition regulations. ALPK1 inhibitors are potential kinase-targeted therapeutic agents for patients with advanced oral cancer.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing, 100044, China
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan
| | - Chu-Hu Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan.
| |
Collapse
|
6
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
7
|
Juvenile Onset Splenomegaly and Oculopathy Due to Germline Mutation in ALPK1. J Clin Immunol 2020; 40:350-358. [PMID: 31939038 DOI: 10.1007/s10875-020-00741-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022]
Abstract
ROSAH syndrome was recently identified as an autosomal dominant systemic disorder due to mutations in ALPK1. It was characterized by retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. We collected and summarized the clinical data of two patients with juvenile onset splenomegaly and oculopathy. Whole exome sequencing (WES) was adapted for genetic analysis. Mutations in ALPK1 were confirmed by Sanger sequencing. Besides juvenile oculopathy and splenomegaly, both patients had intermittent fever and anhidrosis. Patient 2 also experienced recurrent upper respiratory infections in her infancy and developed dental and nail problems in childhood. Elevated TNF-α was their prominent laboratory features. Both patients were found to have a previously reported mutation, c.710C>T, p. T237M (NM_001102406) in ALPK1. Anti-TNF treatment of adalimumab was applied to patient 1, after which her optic disc edema in the left eye continued and the visual acuity deteriorated further. Patient 1 underwent elective splenectomy due to concern for spontaneous rupture of the spleen. Up to date, 18 patients of ROSAH syndrome have been reported. The clinical manifestations were relatively homogeneous, prominently presenting with juvenile onset oculopathy and splenomegaly. As it mainly involves ocular fundus, severe oculopathy deeply affects the quality of life and prognosis of ROSAH patients. Now little has been known about its treatment. As a newly recognized inherited systemic disorder, ROSAH syndrome needs to be paid more attention to, especially for those with juvenile onset splenomegaly and oculopathy.
Collapse
|
8
|
Lee CP, Nithiyanantham S, Hsu HT, Yeh KT, Kuo TM, Ko YC. ALPK1 regulates streptozotocin-induced nephropathy through CCL2 and CCL5 expressions. J Cell Mol Med 2019; 23:7699-7708. [PMID: 31557402 PMCID: PMC6815771 DOI: 10.1111/jcmm.14643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
ALPK1 is associated with chronic kidney disease, gout and type 2 diabetes mellitus. Raised renal ALPK1 level in patients with diabetes was reported. Accelerated fibrotic nephropathies were observed in hyperglycaemic mice with up-regulated ALPK1. The aim of this study was to identify the mediators contributing to ALPK1 effect involving in nephropathies induction. The haematoxylin and eosin staining, Masson's trichrome and immunohistochemical analysis of ALPK1, NFkB, CCL2 and CCL5 were performed in the mice kidney. Cytokine antibody array analysis was performed in streptozotocin-treated wild-type mice (WT-STZ) and streptozotocin-treated ALPK1 transgenic mice (TG-STZ). The ALPK1 levels were measured in mice kidney and in cultured cells. We found that the higher levels of renal CCL2/MCP-1, CCL5/Rantes and G-CSF expression in TG-STZ compared with the WT-STZ. Glucose increased ALPK1 expressions in monocytic THP1 and human kidney-2 cells. The protein expression of ALPK1, NFkB and lectin was up-regulated in glucose-treated HK-2 cells. Knockdown of ALPK1 reduced CCL2 and CCL5 mRNA levels, whereas overexpressed ALPK1 increased CCL2 and CCL5 in cultured kidney cells. Taken together, these results show that high glucose increases ALPK1 and chemokine levels in the kidney. Elevated ALPK1 expression enhances renal CCL2 and CCL5 expressions in vivo and in vitro. ALPK1 is a mediator for CCL2 and CCL5 chemokine up-regulation involving in diabetic nephropathies induction.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Sangiorgi E, Azzarà A, Molinario C, Pietrobono R, Rigante D, Verrecchia E, Sicignano LL, Genuardi M, Gurrieri F, Manna R. Rare missense variants in the ALPK1 gene may predispose to periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome. Eur J Hum Genet 2019; 27:1361-1368. [PMID: 31053777 PMCID: PMC6777630 DOI: 10.1038/s41431-019-0421-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
PFAPA is an autoinflammatory syndrome characterized by periodic fever, aphthous stomatitis, sterile pharingitis, and adenitis, with an onset usually before the age of five. While the condition is most commonly sporadic, a few cases are familial and are usually compatible with an autosomal dominant (AD) transmission pattern, with reduced penetrance in some pedigrees. We performed exome analysis in a family where PFAPA was present in three relatives in two generations showing apparent AD segregation, identifying several rare and/or novel heterozygous variants in genes involved in the autoinflammatory pathway. Following segregation analysis of candidate variants, only one, c. 2770T>C p.(S924P) in the ALPK1 gene, was found to be consistently present in affected family members. ALPK1 is broadly expressed in different tissues and its protein is the intracellular kinase activated by the bacterial ADP-heptose bisphosphate that phosphorylates and activates TRAF-Interacting protein with Forkhead-Associated domain (TIFA) and triggers the immediate response to Gram-negative bacterial invasion. Sequencing analysis of 13 additional sporadic cases and 10 familial PFAPA cases identified two additional heterozygous missense variants c.1024G>C p.(D342H) and c.710C>T p.(T237M) in two sporadic patients, suggesting that rare variants in ALPK1 may represent a predisposing factor for recurrent periodic fever in a pediatric population.
Collapse
Affiliation(s)
- Eugenio Sangiorgi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Alessia Azzarà
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Clelia Molinario
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Roberta Pietrobono
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Donato Rigante
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Elena Verrecchia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ludovico Luca Sicignano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Fiorella Gurrieri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy.
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Raffaele Manna
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
- Istituto di Medicina Interna, Rare diseases and periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
10
|
Lee CP, Huang YN, Nithiyanantham S, Huang CM, Ko YC. LncRNA-Jak3:Jak3 coexpressed pattern regulates monosodium urate crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression. ENVIRONMENTAL TOXICOLOGY 2019; 34:179-187. [PMID: 30387921 DOI: 10.1002/tox.22672] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
LncRNA transcripts have been emerged as gene regulators through transcriptional and posttranscriptional regulation. Monosodium urate monohydrate (MSU) elicits inflammatory response and a critical regulator of bone erosion in gout. The aim of this study is to clarify the pro-osteogenic role of LncRNA in MSU-induced osteoclast differentiation. We performed microarray analysis to identify stage specific expressions of LncRNA and mRNA during osteoclast differentiation in RAW264.7 cells. Among the 314 pairs of LncRNA-mRNA coexpressed patterns in the osteoclast lineage, 22 pairs revealed to have inflammatory function. Importantly, LncRNA-Jak3 and Jak3 co-expression patterns were significantly upregulated in the osteoclasts. In specific, Jak3 contributes to MSU-induced osteoclasts differentiation by positively regulating expression of the osteoclast factor, nuclear factor of activated T-cells 1 (Nfatc1). Mechanistically, LncRNA-Jak3-mediated Nfatc1 activation upregulated cathepsin K (Ctsk) expressions. LncRNA-Jak3 knockdown abolished formation of MSU-induced mature osteoclasts. In addition, we found that gout patients showed increased levels of LncRNA-Jak3 in the mononuclear cells. Our data demonstrate that the critical functional role of LncRNA-Jak3 in osteoclast differentiation via Jak3/Nfatc1/Ctsk axis. Finally, characterization of these regulatory networks is likely to reveal novel drug targets and opportunities for therapeutic intervention in bone erosion.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Nan Huang
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chung-Ming Huang
- Division of Rheumatology and Immunology, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Lee CP, Ko AMS, Chiang SL, Lu CY, Tsai EM, Ko YC. Regulatory elements in vectors containing the ctEF-1α first intron and double enhancers for an efficient recombinant protein expression system. Sci Rep 2018; 8:15396. [PMID: 30337625 PMCID: PMC6193983 DOI: 10.1038/s41598-018-33500-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
To establish a stable and scalable transient protein production system, we modified the EF-1 first intron size and verified the order of two recombinant enhancers downstream of the SV40 polyA sequence. This new vector was named pHH-Gemini (pHH-GM1) and was used to express alpha kinase 1 (ALPK1) and various other proteins, NLRP3, F-actin, Camodulin, PP2A, URAT1, Rab11a and myosin IIA. The results showed that, compared with six commercial plasmids, pHH-GM1 significantly enhanced His-HA-ALPK1 expression in a western blot analysis of transfected HEK293T cells. The expression of various other genes was also successful using the pHH-GM1 vector. In addition, we inserted turbo green florescence protein (tGFP) into the pHH-GM1 vector, and an improvement in fluorescence intensity was observed after transient transfection of HEK293T cells. For large-scale production, protein production was tested by standard supplementation with one volume of medium, and volumetric yields of 2 and 2.3 mg/L were achieved with pHH-GM1-ALPK1 in HEK293-F and CHO-S cells, respectively. We found that cell viability was more than 70% 11 days after cells were transfected with the pHH-GM1 vector. The pHH-GM1 vector with the ctEF-1α first intron and double enhancers, Simian virus 40 and Cytomegalovirus (SV40 and CMV) is an efficient CMV promoter-based gene expression system that can potentially be applied to study genes of interest and improve protein production.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Diseases Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, China
| | - Shang-Lun Chiang
- Environment-Omics-Diseases Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Health Risk Management, College of Public Health, China Medical University, Taichung, 40402, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Diseases Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
12
|
ALPK1 Expression Is Associated with Lymph Node Metastasis and Tumor Growth in Oral Squamous Cell Carcinoma Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:190-199. [PMID: 30315765 DOI: 10.1016/j.ajpath.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer, with high mortality rates in advanced stages. Recent studies have shown that the expression of ALPK1 mRNA and its inhibitory differentiation function are associated with cancer progression. However, the expression and clinicopathologic features of ALPK1 in OSCC remain unexplored. Herein, the authors investigated the expression patterns of ALPK1 in 39 matched OSCC patients and examined the relationship between ALPK1 protein expression and clinicopathologic factors using immunohistochemical scores. Using Western blot analysis, ALPK1 expression was found to be significantly higher in tumor tissues than that in nontumor tissues. Through an immunoreactive scoring system, a significantly higher number of advanced-stage tumor size T4 and lymph node metastasis N2 exhibited higher ALPK1 expression levels than that exhibited by T1/T2/T3 tumors and N0/N1. In addition, ALPK1 protein expression was aberrant in malignant oral cancer cell lines compared with that in pre-malignant oral epithelial cells, whereas minimal expression was observed in normal oral epithelial cells. Knockdown of ALPK1 resulted in a significant reduction in cell growth, migration, and invasion capacity in vitro. Consequently, expression of N-cadherin and vimentin decreased in ALPK1-deficient cells. Thus, these results suggest that ALPK1 serves as a potential biomarker and target for OSCC development in late stages.
Collapse
|
13
|
Ryzhakov G, West NR, Franchini F, Clare S, Ilott NE, Sansom SN, Bullers SJ, Pearson C, Costain A, Vaughan-Jackson A, Goettel JA, Ermann J, Horwitz BH, Buti L, Lu X, Mukhopadhyay S, Snapper SB, Powrie F. Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat Commun 2018; 9:3797. [PMID: 30228258 PMCID: PMC6143560 DOI: 10.1038/s41467-018-06085-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) are heterogenous disorders of the gastrointestinal tract caused by a spectrum of genetic and environmental factors. In mice, overlapping regions of chromosome 3 have been associated with susceptibility to IBD-like pathology, including a locus called Hiccs. However, the specific gene that controls disease susceptibility remains unknown. Here we identify a Hiccs locus gene, Alpk1 (encoding alpha kinase 1), as a potent regulator of intestinal inflammation. In response to infection with the commensal pathobiont Helicobacter hepaticus (Hh), Alpk1-deficient mice display exacerbated interleukin (IL)-12/IL-23 dependent colitis characterized by an enhanced Th1/interferon(IFN)-γ response. Alpk1 controls intestinal immunity via the hematopoietic system and is highly expressed by mononuclear phagocytes. In response to Hh, Alpk1-/- macrophages produce abnormally high amounts of IL-12, but not IL-23. This study demonstrates that Alpk1 promotes intestinal homoeostasis by regulating the balance of type 1/type 17 immunity following microbial challenge.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Nathaniel R West
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
- Genentech, Department of Cancer Immunology, South San Francisco, CA, 94080, USA
| | - Fanny Franchini
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Alice Costain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Alun Vaughan-Jackson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Jeremy A Goettel
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joerg Ermann
- Department of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce H Horwitz
- Department of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ludovico Buti
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Xin Lu
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | | | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
14
|
Norwood Toro LE, Wang Y, Condeelis JS, Jones JG, Backer JM, Bresnick AR. Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Exp Cell Res 2018; 370:273-282. [PMID: 29953877 PMCID: PMC6117828 DOI: 10.1016/j.yexcr.2018.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022]
Abstract
Nonmuscle myosin-IIA (NMHC-IIA) heavy chain phosphorylation has gained recognition as an important feature of myosin-II regulation. In previous work, we showed that phosphorylation on S1943 promotes myosin-IIA filament disassembly in vitro and enhances EGF-stimulated lamellipod extension of breast tumor cells. However, the contribution of NMHC-IIA S1943 phosphorylation to the modulation of invasive cellular behavior and metastasis has not been examined. Stable expression of phosphomimetic (S1943E) or non-phosphorylatable (S1943A) NMHC-IIA in breast cancer cells revealed that S1943 phosphorylation enhances invadopodia function, and is critical for matrix degradation in vitro and experimental metastasis in vivo. These studies demonstrate a novel link between NMHC-IIA S1943 phosphorylation, the regulation of extracellular matrix degradation and tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Laura E Norwood Toro
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
15
|
Tu HP, Min-Shan Ko A, Lee SS, Lee CP, Kuo TM, Huang CM, Ko YC. Variants of ALPK1 with ABCG2, SLC2A9, and SLC22A12 increased the positive predictive value for gout. J Hum Genet 2017; 63:63-70. [PMID: 29215084 DOI: 10.1038/s10038-017-0368-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/15/2022]
Abstract
We investigated the interactions of ALPK1 variants and the loci of ABCG2, SLC2A9, and SLC22A12 on gout risk. We conducted two case-control studies. Participants were recruited from hospitals (n = 410; 104 gout cases and 306 controls) and communities (n = 678; 373 gout cases and 305 controls) in Taiwan. The genotypes of ALPK1 (rs11726117 M861T, rs231247 R1084R, and rs231253 3' UTR), ABCG2 (rs2231142 Q141K and rs2231137 V12M), SLC2A9 (rs3733591 R265H and rs1014290), and SLC22A12 (rs3825016 H86H, rs11231825 H142H, and rs475688) were genotyped. Under a recessive model, the joint effects of ALPK1 variants and the SNPs rs2231142 of ABCG2, rs1014290 of SLC2A9, or rs475688 and rs3825016 of SLC22A12 were associated with gout. The rs11726117 [CC] of ALPK1 and rs2231142 [TT] of ABCG2 with the sequential addition of the rs1014290 [AA] of SLC2A9 and rs3825016 [CC] of SLC22A12 were associated with gout risk (odds ratio (OR): 13.01, 15.11, and 55.00 and positive predictive value (PPV): 56%, 69%, and 99% in the Han group, respectively; OR: 3.76, 5.78, and 12.30 and PPV: 74%, 80%, and 81% in the aboriginal group, respectively). Combined exposure to the four high-risk genotypes of ALPK1 and the uric-acid-related loci of ABCG2, SLC2A9, and SLC22A12 was associated with an increased gout risk and a high PPV for gout.
Collapse
Affiliation(s)
- Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, China
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Chung-Ming Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
16
|
Zimmermann S, Pfannkuch L, Al-Zeer MA, Bartfeld S, Koch M, Liu J, Rechner C, Soerensen M, Sokolova O, Zamyatina A, Kosma P, Mäurer AP, Glowinski F, Pleissner KP, Schmid M, Brinkmann V, Karlas A, Naumann M, Rother M, Machuy N, Meyer TF. ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Rep 2017; 20:2384-2395. [DOI: 10.1016/j.celrep.2017.08.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
|
17
|
Kuo TM, Huang CM, Tu HP, Min-Shan Ko A, Wang SJ, Lee CP, Ko YC. URAT1 inhibition by ALPK1 is associated with uric acid homeostasis. Rheumatology (Oxford) 2017; 56:654-659. [PMID: 28039413 DOI: 10.1093/rheumatology/kew463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to identify a protein for urate transporter 1 (URAT1) regulation. Methods The clinical dataset consisted of 492 case-control samples of Han Chinese (104 gout and 388 controls). Three alpha kinase 1 ( ALPK1 ) and SLC22A12 loci associated with high gout risk and uric acid levels were genotyped. The overexpression of ALPK1 on URAT1 protein expression was evaluated in vivo in h ALPK1 transgenic mice. The in vitro protein levels of ALPK1 and URAT1 in ALPK1 small interfering RNA-transfected human kidney-2 cells with MSU crystal stimulation were examined. Results ALPK1 , which is a single nucleotide polymorphism (SNP) of rs11726117 (M861T; T), reduced the risk of gout via the SLC22A12 gene SNPs rs3825016 and rs475688, as compared with the subject of ALPK1 rs11726117 (C) allele {rs11726117 [CT + TT] vs rs3825016, odds ratio [OR] 0.39 [95% confidence interval (CI) 0.23, 0.67]; rs11726117 [CT + TT] vs rs475688, OR 0.39 [95% CI 0.23, 0.67]}. ALPK1-overexpressed mice demonstrated lower levels of URAT1 protein ( P = 0.0045). Mouse endogenous ALPK1 proteins were detected in renal proximal tubule cells. MSU crystals inhibited URAT1 expressions through an upregulation of ALPK1 in human kidney-2 cells. Conclusion Elevated ALPK1 expression decreased URAT1 expression. ALPK1 might prevent the impact of urate reuptake via SLC22A12 and appeared to be negatively associated with gout. ALPK1 is a potential repressor of URAT1 protein expression.
Collapse
Affiliation(s)
- Tzer-Min Kuo
- Environment-Omics-Disease Research Centre, China Medical University Hospital
| | - Chung-Ming Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Albert Min-Shan Ko
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Shu-Jung Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chi-Pin Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Centre, China Medical University Hospital.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|