1
|
Masson F, Brown RL, Vizueta J, Irvine T, Xiong Z, Romiguier J, Stroeymeyt N. Pathogen-specific social immunity is associated with erosion of individual immune function in an ant. Nat Commun 2024; 15:9260. [PMID: 39461955 PMCID: PMC11513022 DOI: 10.1038/s41467-024-53527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Contagious diseases are a major threat to societies in which individuals live in close contact. Social insects have evolved collective defense behaviors, such as social care or isolation of infected workers, that prevent outbreaks of pathogens. It has thus been suggested that individual immunity is reduced in species with such 'social immunity'. However, this hypothesis has not been tested functionally. Here, we characterize the immune response of the ant Lasius niger using a combination of genomic analysis, experimental infections, gene expression quantification, behavioural observations and pathogen quantifications. We uncover a striking specialization of immune responses towards different pathogens. Systemic individual immunity is effective against opportunistic bacterial infections, which are not covered by social immunity, but is not elicited upon fungal infections, which are effectively controlled by social immunity. This specialization suggests that immune layers have evolved complementary functions predicted to ensure the most cost-effective response against a wide range of pathogens.
Collapse
Affiliation(s)
- Florent Masson
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | - Joel Vizueta
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Thea Irvine
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
2
|
Chang H, Lee DH. Positive Eusocial Impacts on Ants by Taurine Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:425-432. [DOI: 10.1007/978-3-030-93337-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Quigley TP, Amdam GV. Social modulation of ageing: mechanisms, ecology, evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190738. [PMID: 33678020 PMCID: PMC7938163 DOI: 10.1098/rstb.2019.0738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Human life expectancy increases, but the disease-free part of lifespan (healthspan) and the quality of life in old people may not show the same development. The situation poses considerable challenges to healthcare systems and economies, and calls for new strategies to increase healthspan and for sustainable future approaches to elder care. This call has motivated innovative research on the role of social relationships during ageing. Correlative data from clinical surveys indicate that social contact promotes healthy ageing, and it is time to reveal the causal mechanisms through experimental research. The fruit fly Drosophila melanogaster is a prolific model animal, but insects with more developed social behaviour can be equally instrumental for this research. Here, we discuss the role of social contact in ageing, and identify lines of study where diverse insect models can help uncover the mechanisms that are involved. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Tyler P. Quigley
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5002, N-1432 Aas, Norway
| |
Collapse
|
4
|
Liu Y, Cheng X, Zhen W, Zeng D, Qu L, Wang Z, Ning Z. Yeast Culture Improves Egg Quality and Reproductive Performance of Aged Breeder Layers by Regulating Gut Microbes. Front Microbiol 2021; 12:633276. [PMID: 33815314 PMCID: PMC8018237 DOI: 10.3389/fmicb.2021.633276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of dietary yeast culture (YC) supplementation on egg production, egg quality, reproductive performance, immune functions, antioxidant capacity, and intestinal microbial structure of aged hens. A total of 224 Hy-Line Brown layers (54 weeks old) were randomly assigned to two dietary treatments. The control group was fed a basal diet and the YC group was supplemented with YC at 2.0 g/kg of their diet. Each group had seven replicates with 16 hens each. The study was conducted over a period of 8 weeks. Results indicated that YC addition had no significant effect on laying performance. However, it significantly improved egg quality and hatching rate, enhanced ileum crude fat digestibility, increased the serum parameters of lysozyme (LZM) and total antioxidation capacity (T-AOC) (P < 0.05), and reduced serum aspartate aminotransferase (AST) levels (P < 0.05). Using 16S rRNA analysis, we found that addition of YC significantly altered ileum microbial composition. Linear discriminant analysis of effect size (LEfSe) showed significant enrichment of Bacilli and Lactobacilli in the YC group. PICRUSt analysis of the ileal microbiota found that glutathione metabolism, ubiquinone, and other terpenoid-quinone biosynthesis and lipopolysaccharide biosynthesis protein pathways were highly enriched in the YC group compared with the basal diet group. In summary, the addition of YC can improve egg quality, immune functions, antioxidant capacity, reproduction efficiency, and digestive absorption by increasing the abundance of Lactobacilli and Bacilli. Furthermore, it also improves the biosynthesis of lipopolysaccharide proteins, glutathione metabolism, and the synthesis of ubiquinone and other terpenoid-quinone metabolic pathways.
Collapse
Affiliation(s)
- Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Zeng
- Huayu Agricultural Science and Technology Co., Ltd., Handan, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
|
6
|
Sanhueza N, Donoso A, Aguilar A, Farlora R, Carnicero B, Míguez JM, Tort L, Valdes JA, Boltana S. Thermal Modulation of Monoamine Levels Influence Fish Stress and Welfare. Front Endocrinol (Lausanne) 2018; 9:717. [PMID: 30559717 PMCID: PMC6287116 DOI: 10.3389/fendo.2018.00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm organisms that move through different thermal zones according to their physiological requirements and environmental availability, a behavior known as thermoregulation. Thermoregulation in ectothermic animals is influenced by their ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown how physiological and/or metabolic traits are impacted by modifications in the thermal environment. In captivity (land-based infrastructures or nets located in the open sea), fish are often restricted to spatially constant temperature conditions within the containment unit and cannot choose among different thermal conditions for thermoregulation. In order to understand how spatial variation of temperature may affect fish welfare and stress, we designed an experiment using either restricted or wide thermal ranges, looking for changes at hormonal and molecular levels. Also, thermal variability impact on fish behavior was measured. Our results showed that in Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.8°C) was associated with significant increases in monoamines hormone levels and in the expression of clock genes. Aggressive and territoriality behavior decreased, positively affecting parameters linked to welfare, such as growth and fin damage. In contrast, a restricted thermal range (ΔT 1.4°C) showed the opposite pattern in all the analyzed parameters, therefore, having detrimental effects on welfare. In conclusion, our results highlight the key role of thermal range amplitude on fish behavior and on interactions with major metabolism-regulating processes, such as hormone performance and molecular regulatory mechanisms that have positive effects on the welfare.
Collapse
Affiliation(s)
- Nataly Sanhueza
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Donoso
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Rodolfo Farlora
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Beatriz Carnicero
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Jesús Manuel Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Lluis Tort
- Departamento de Biología Celular, Inmunología i Fisiologia Animal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Juan Antonio Valdes
- Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Sebastian Boltana
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
7
|
Parasite-mediated host behavioural modifications: Gyrodactylus turnbulli infected Trinidadian guppies increase contact rates with uninfected conspecifics. Parasitology 2017; 145:920-926. [PMID: 29113619 DOI: 10.1017/s0031182017001950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While group formation provides antipredatory defences, increases foraging efficiency and mating opportunities, it can be counterintuitive by promoting disease transmission amongst social hosts. Upon introduction of a pathogen, uninfected individuals often modify their social preferences to reduce infection risk. Infected hosts also exhibit behavioural changes, for example, removing themselves from a group to prevent an epidemic. Conversely, here we show how Trinidadian guppies infected with a directly transmitted ectoparasite, Gyrodactylus turnbulli, significantly increase their contact rates with uninfected conspecifics. As uninfected fish never perform this behaviour, this is suggestive of a parasite-mediated behavioural response of infected hosts, presumably to offload their parasites. In the early stages of infection, however, such behavioural modifications are ineffective in alleviating parasite burdens. Additionally, we show that fish exposed to G. turnbulli infections for a second time, spent less time associating than those exposed to parasites for the first time. We speculate that individuals build and retain an infection cue repertoire, enabling them to rapidly recognize and avoid infectious conspecifics. This study highlights the importance of considering host behavioural modifications when investigating disease transmission dynamics.
Collapse
|
8
|
Bordoni A, Miroddi MA, Dapporto L, Turillazzi S. Long-term assessment reveals the hidden and hiding effects of experimental stress on ant colonies. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2373-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Adamo SA, Easy RH, Kovalko I, MacDonald J, McKeen A, Swanburg T, Turnbull KF, Reeve C. Predator exposure-induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? ACTA ACUST UNITED AC 2016; 220:868-875. [PMID: 28011823 DOI: 10.1242/jeb.153320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Although predator exposure increases the risk of wound infections, it typically induces immunosuppression. A number of non-mutually exclusive hypotheses have been put forward to explain this immunosuppression, including: trade-offs between the immune system and other systems required for anti-predator behaviour, redistribution of immune resources towards mechanisms needed to defend against wound infections, and reconfiguration of the immune system to optimize defence under the physiological state of fight-or-flight readiness. We tested the ability of each hypothesis to explain the effects of chronic predator stress on the immune system of the caterpillar Manduca sexta Predator exposure induced defensive behaviours, reduced mass gain, increased development time and increased the concentration of the stress neurohormone octopamine. It had no significant effect on haemocyte number, melanization rate, phenoloxidase activity, lysozyme-like activity or nodule production. Predator stress reduced haemolymph glutathione concentrations. It also increased constitutive expression of the antimicrobial peptide attacin-1 but reduced attacin-1 expression in response to an immune challenge. These results best fit the immune reconfiguration hypothesis, although the other hypotheses are also consistent with some results. Interpreting stress-related changes in immune function may require an examination at the level of the whole organism.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Russell H Easy
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Jenna MacDonald
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Ashleigh McKeen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Taylor Swanburg
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | | | - Catherine Reeve
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|