1
|
Schmitz M, Ballestin JB, Liang J, Tomas F, Freist L, Voigt K, Di Ventura B, Öztürk MA. Int&in: A machine learning-based web server for active split site identification in inteins. Protein Sci 2024; 33:e4985. [PMID: 38717278 PMCID: PMC11078102 DOI: 10.1002/pro.4985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 05/12/2024]
Abstract
Inteins are proteins that excise themselves out of host proteins and ligate the flanking polypeptides in an auto-catalytic process called protein splicing. In nature, inteins are either contiguous or split. In the case of split inteins, the two fragments must first form a complex for the splicing to occur. Contiguous inteins have previously been artificially split in two fragments because split inteins allow for distinct applications than contiguous ones. Even naturally split inteins have been split at unnatural split sites to obtain fragments with reduced affinity for one another, which are useful to create conditional inteins or to study protein-protein interactions. So far, split sites in inteins have been heuristically identified. We developed Int&in, a web server freely available for academic research (https://intein.biologie.uni-freiburg.de) that runs a machine learning model using logistic regression to predict active and inactive split sites in inteins with high accuracy. The model was trained on a dataset of 126 split sites generated using the gp41-1, Npu DnaE and CL inteins and validated using 97 split sites extracted from the literature. Despite the limited data size, the model, which uses various protein structural features, as well as sequence conservation information, achieves an accuracy of 0.79 and 0.78 for the training and testing sets, respectively. We envision Int&in will facilitate the engineering of novel split inteins for applications in synthetic and cell biology.
Collapse
Affiliation(s)
- Mirko Schmitz
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
- 4HF Biotec GmbHFreiburgGermany
| | - Jara Ballestin Ballestin
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
- Bioprocess Innovation Unit, ViraTherapeutics GmbHRumAustria
| | - Junsheng Liang
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
| | - Franziska Tomas
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Leon Freist
- Institute of Biology III, University of FreiburgFreiburgGermany
| | - Karsten Voigt
- Institute of Biology III, University of FreiburgFreiburgGermany
| | - Barbara Di Ventura
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
| | - Mehmet Ali Öztürk
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
| |
Collapse
|
2
|
Sleman S, Hao H, Najmuldeen H, Jalal P, Saeed N, Othman D, Qian Z. Human Cytomegalovirus UL24 and UL43 Cooperate to Modulate the Expression of Immunoregulatory UL16 Binding Protein 1. Viral Immunol 2022; 35:529-544. [PMID: 36179070 DOI: 10.1089/vim.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL24 and UL43 are tegument proteins that have recently been shown to interact with each other in a yeast two-hybrid system. By their overexpression in MRC5 cells, we demonstrate that these viral proteins interact with several important host proteins, especially Dicer and trans-activation response RNA binding protein. As these hots proteins are involved in regulating the production of cellular micro-RNAs, the cytomegalovirus (CMV) proteins could interfere with their actions to favor viral replication directly or through an immune escape mechanism. Double knockout of UL24 and UL43 does not show a remarkable effect on CMV entry or replication, but it significantly downregulates the expression of CMV-encoded miR-UL59, which is thought to regulate the expression of a downstream target UL16 binding protein 1 (ULBP1). Interestingly, the double knockout increases the expression of the ULBP1 recognized by the NKG2D activating receptor of natural killer cells. This study investigates the potential role of several proteins encoded by HCMV in regulating the host cellular environment to favor escape from immunity, and it also provides some basis for the future development of RNA-targeted small molecules to control HCMV infection.
Collapse
Affiliation(s)
- Sirwan Sleman
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq.,Medical Laboratory Analysis, College of Health Science, Cihan University of Sulaimaniya, Sulaymaniyah, Iraq.,Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongyun Hao
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hastyar Najmuldeen
- Medical Laboratory Analysis, College of Health Science, Cihan University of Sulaimaniya, Sulaymaniyah, Iraq.,Biology Department, College of Sciences, University of Sulaimani, Sulaymaniyah, Iraq
| | - Paywast Jalal
- Biology Department, College of Sciences, University of Sulaimani, Sulaymaniyah, Iraq
| | - Nahla Saeed
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Dyary Othman
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Chen HS, Zhang XL, Yang RR, Wang GL, Zhu XY, Xu YF, Wang DY, Zhang N, Qiu S, Zhan LJ, Shen ZM, Xu XH, Long G, Xu C. An intein-split transactivator for intersectional neural imaging and optogenetic manipulation. Nat Commun 2022; 13:3605. [PMID: 35739125 PMCID: PMC9226064 DOI: 10.1038/s41467-022-31255-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-type-specific recording and manipulation is instrumental to disentangle causal neural mechanisms in physiology and behavior and increasingly requires intersectional control; however, current approaches are largely limited by the number of intersectional features, incompatibility of common effectors and insufficient gene expression. Here, we utilized the protein-splicing technique mediated by intervening sequences (intein) and devised an intein-based intersectional synthesis of transactivator (IBIST) to selectively control gene expression of common effectors in multiple-feature defined cell types in mice. We validated the specificity and sufficiency of IBIST to control fluorophores, optogenetic opsins and Ca2+ indicators in various intersectional conditions. The IBIST-based Ca2+ imaging showed that the IBIST can intersect five features and that hippocampal neurons tune differently to distinct emotional stimuli depending on the pattern of projection targets. Collectively, the IBIST multiplexes the capability to intersect cell-type features and controls common effectors to effectively regulate gene expression, monitor and manipulate neural activities.
Collapse
Affiliation(s)
- Hao-Shan Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Long Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Rong-Rong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guang-Ling Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin-Yue Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan-Fang Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan-Yang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Na Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jie Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Ming Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gang Long
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
4
|
O’Brien BS, Mokry RL, Schumacher ML, Pulakanti K, Rao S, Terhune SS, Ebert AD. Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. iScience 2022; 25:104098. [PMID: 35391828 PMCID: PMC8980761 DOI: 10.1016/j.isci.2022.104098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that can cause severe birth defects including vision and hearing loss, microcephaly, and seizures. Currently, no approved treatment options exist for in utero infections. Here, we aimed to determine the impact of HCMV infection on the transcriptome of developing neurons in an organoid model system. Cell populations isolated from organoids based on a marker for infection and transcriptomes were defined. We uncovered downregulation in key cortical, neurodevelopmental, and functional gene pathways which occurred regardless of the degree of infection. To test the contributions of specific HCMV immediate early proteins known to disrupt neural differentiation, we infected NPCs using a recombinant virus harboring a destabilization domain. Despite suppressing their expression, HCMV-mediated transcriptional downregulation still occurred. Together, our studies have revealed that HCMV infection causes a profound downregulation of neurodevelopmental genes and suggest a role for other viral factors in this process.
Collapse
Affiliation(s)
- Benjamin S. O’Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Ryan A, Liu J, Deiters A. Targeted Protein Degradation through Fast Optogenetic Activation and Its Application to the Control of Cell Signaling. J Am Chem Soc 2021; 143:9222-9229. [PMID: 34121391 DOI: 10.1021/jacs.1c04324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of methodologies for optically triggered protein degradation enables the study of dynamic protein functions, such as those involved in cell signaling, that are difficult to be probed with traditional genetic techniques. Here, we describe the design and implementation of a novel light-controlled peptide degron conferring N-end pathway degradation to its protein target. The degron comprises a photocaged N-terminal amino acid and a lysine-rich, 13-residue linker. By caging the N-terminal residue, we were able to optically control N-degron recognition by an E3 ligase, consequently controlling ubiquitination and proteasomal degradation of the target protein. We demonstrate broad applicability by applying this approach to a diverse set of target proteins, including EGFP, firefly luciferase, the kinase MEK1, and the phosphatase DUSP6 (also known as MKP3). The caged degron can be used with minimal protein engineering and provides virtually complete, light-triggered protein degradation on a second to minute time scale.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Muldoon JJ, Kandula V, Hong M, Donahue PS, Boucher JD, Bagheri N, Leonard JN. Model-guided design of mammalian genetic programs. SCIENCE ADVANCES 2021; 7:eabe9375. [PMID: 33608279 PMCID: PMC7895425 DOI: 10.1126/sciadv.abe9375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 06/10/2023]
Abstract
Genetically engineering cells to perform customizable functions is an emerging frontier with numerous technological and translational applications. However, it remains challenging to systematically engineer mammalian cells to execute complex functions. To address this need, we developed a method enabling accurate genetic program design using high-performing genetic parts and predictive computational models. We built multifunctional proteins integrating both transcriptional and posttranslational control, validated models for describing these mechanisms, implemented digital and analog processing, and effectively linked genetic circuits with sensors for multi-input evaluations. The functional modularity and compositional versatility of these parts enable one to satisfy a given design objective via multiple synonymous programs. Our approach empowers bioengineers to predictively design mammalian cellular functions that perform as expected even at high levels of biological complexity.
Collapse
Affiliation(s)
- J J Muldoon
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - V Kandula
- Honors Program in Medical Education, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - M Hong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - P S Donahue
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - J D Boucher
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - N Bagheri
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Chemistry of Life Processes Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
- Departments of Biology and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - J N Leonard
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Chemistry of Life Processes Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
7
|
Murine Cytomegalovirus Protein pM49 Interacts with pM95 and Is Critical for Viral Late Gene Expression. J Virol 2020; 94:JVI.01956-19. [PMID: 31896598 DOI: 10.1128/jvi.01956-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Late gene expression of betaherpesviruses and gammaherpesviruses is tightly controlled by virus-encoded transactivation factors (vTFs). We recently proved that the 6 vTFs of murine cytomegalovirus (MCMV) form a complex to regulate late gene transcription. pM49, one of the vTFs that has not been studied before, was identified to be a component of the complex that interacts with pM95. In this study, we began to investigate the potential role of pM49 in viral late gene expression. A recombinant MCMV expressing C-terminal FLAG-tagged pM49 was constructed to study the expression kinetics and localization of pM49. pM49 was expressed at the late time of virus infection. Inhibition of viral DNA synthesis by phosphonate sodium phosphonic acid (PAA) abolished pM49 expression, indicating that it is a late protein. pM49 colocalized with pM44 at the viral replication compartment, similarly to other viral vTFs that have been reported. Mutant virus lacking full-length pM49 expression failed to express viral late genes, leading to nonproductive infection. The expression of immediate early and early genes was not affected, and viral DNA synthesis was only minimally affected during pM49-deficient virus infection. All of these data support the role of pM49 in viral late gene expression. After a series of mutagenesis analyses, two key residues, K325 and C326, were identified as required for pM49-pM95 interaction. Cells expressing pM49 with either single mutation of these two residues failed to rescue the late gene expression and support the replication of pM49-deficient virus. Our results indicated that pM49-pM95 interaction is essential for viral late gene expression.IMPORTANCE Cytomegalovirus (CMV) infections result in morbidity and mortality in immunocompromised individuals, and the virus is also a major cause of birth defects in newborns. Currently, because of the unavailability of vaccines against this virus and restricted antiviral therapies with low toxicity, as well as the emergency of resistant strain of this virus, the understanding of viral late gene regulation may provide clues to study new antiviral drugs or vaccines. In this study, we report that MCMV protein pM49 is critical for viral late gene transcription, based on its interaction with pM95. This finding reveals the important role of pM49-pM95 interaction in the regulation of viral late gene expression and that it could be a future potential target for therapeutic intervention in CMV diseases.
Collapse
|
8
|
Abstract
In recent years, split inteins have seen widespread use as molecular platforms for the design of a variety of peptide and protein chemistry technologies, most notably protein ligation. The development of these approaches is dependent on the identification and/or design of split inteins with robust activity, stability, and solubility. Here, we describe two approaches to characterize and compare the activities of newly identified or engineered split inteins. The first assay employs an E. coli-based selection system to rapidly screen the activities of many inteins and can be repurposed for directed evolution. The second assay utilizes reverse-phase high-performance liquid chromatography (RP-HPLC) to provide insights into individual chemical steps in the protein splicing reaction, information that can guide further engineering efforts. These techniques provide useful alternatives to common assays that utilize SDS-PAGE to analyze splicing reaction progress.
Collapse
|
9
|
Murine Cytomegalovirus Protein pM91 Interacts with pM79 and Is Critical for Viral Late Gene Expression. J Virol 2018; 92:JVI.00675-18. [PMID: 29997217 DOI: 10.1128/jvi.00675-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/05/2018] [Indexed: 02/02/2023] Open
Abstract
Viral gene expression is tightly regulated during cytomegalovirus (CMV) lytic replication, but the detailed mechanism of late gene transcription remains to be fully understood. Previous studies reported that six viral proteins (named viral transactivation factors [vTFs]) supporting late gene expression were conserved in beta- and gammaherpesviruses but not in alphaherpesviruses. Here, we performed coimmunoprecipitation experiments to elucidate the organization of these six proteins in murine CMV. Our results showed that these proteins formed a complex by both direct and indirect interactions. Specifically, pM91 strongly bound to pM79 even in the absence of other vTFs. Similar to pM79, pM91 exhibited early-late expression kinetics and localized within nuclear viral replication compartments during infection. Functional analysis was also performed using the pM91-deficient virus. Real-time PCR results revealed that abrogation of M91 expression markedly reduced viral late gene expression and progeny virus production without affecting viral DNA synthesis. Using mutagenesis, we found that residues E61, D62, D89, and D96 in pM91 were required for the pM91-pM79 interaction. Disruption of the interaction via E61A/D62A or D89A/D96A double mutation in the context of virus infection inhibited progeny virus production. Our data indicate that pM91 is a component of the viral late gene transcription factor complex and that the pM91-pM79 interaction is essential for viral late gene expression.IMPORTANCE Cytomegalovirus (CMV) infection is the leading cause of birth defects and causes morbidity and mortality in immunocompromised patients. The regulation of viral late gene transcription is not well elucidated, and understanding of this process benefits the development of novel therapeutics against CMV infection. This study (i) identified that six viral transactivation factors encoded by murine CMV form a complex, (ii) demonstrated that pM91 interacts with pM79 and that pM91 and pM79 colocalize in the nuclear viral replication compartments, (iii) confirmed that pM91 is critical for viral late gene expression but dispensable for viral DNA replication, and (iv) revealed that the pM91-pM79 interaction is required for progeny virus production. These findings give an explanation of how CMV regulates late gene expression and have important implications for the design of antiviral strategies.
Collapse
|
10
|
Huang H, Yang B, Ge B, Lao J, Zhou S, Huang F. Using self-cleavable ternary fusion pattern for efficient preparation of Bacteriorhodopsin. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|