1
|
Arlt FA, Sperber PS, von Rennenberg R, Gebert P, Teegen B, Georgakis MK, Fang R, Dewenter A, Görtler M, Petzold GC, Wunderlich S, Zerr I, Dichgans M, Prüss H, Endres M. Serum anti-NMDA receptor antibodies are linked to memory impairment 12 months after stroke. Mol Psychiatry 2025; 30:1359-1368. [PMID: 39478168 PMCID: PMC11919755 DOI: 10.1038/s41380-024-02744-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 03/20/2025]
Abstract
Patients suffering from strokes are at increased risk of developing post-stroke dementia. Serum anti-NMDA receptor autoantibodies (NMDAR1-abs) have been associated with unfavorable post-stroke outcomes. However, their effect on specific cognitive domains remains unclear. We used data from the prospective multicenter DZNE-mechanisms after stroke (DEMDAS) cohort, and measured NMDAR1-abs in serum at baseline. Cognitive function was assessed with a comprehensive neuropsychological test battery at 6- and 12-months follow-up. We employed crude and stepwise confounder adjusted linear and logistic regression models as well as generalized estimating equation models (GEE) to determine the relevance of NMDAR1-abs seropositivity on cognitive function after stroke. 10.2% (58/569) DEMDAS patients were NMDAR1-abs seropositive (IgM:n = 44/IgA:n = 21/IgG:n = 2). Seropositivity was not associated with global cognitive impairment after stroke. However, NMDAR1-abs seropositive patients performed lower in the memory domain (βadjusted = -0.11; 95%CI = -0.57 to -0.03) and were at increased risk for memory impairment (ORadjusted = 3.8; 95%CI = 1.33-10.82) compared to seronegative patients, 12 months after stroke. Further, NMDAR1-abs were linked to memory impairment over time in GEE from 6- to 12-months follow-up (ORadjusted = 2.41; 95%CI = 1.05-5.49). Our data suggests that NMDAR1-abs contribute to memory dysfunction 1 year after stroke while not affecting other cognitive subdomains. Hence, antineuronal autoimmunity may be involved in distinct mechanisms of post-stroke memory impairment. Clinical trial name and registration number: The Determinants of Dementia After Stroke (DEMDAS; study identifier on clinical trials.gov: NCT01334749).
Collapse
Affiliation(s)
- Friederike A Arlt
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| | - Pia S Sperber
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany.
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Cardiovascular Diseases (DZHK), Partner Site Berlin, Berlin, Germany.
| | - Regina von Rennenberg
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Pimrapat Gebert
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Stöcker, Groß Grönau, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rong Fang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Michael Görtler
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg, Germany
| | - Gabor C Petzold
- Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar School of Medicine, Technical University of Munich, Munich, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK, Munich), Munich, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- German Center for Cardiovascular Diseases (DZHK), Partner Site Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
2
|
Akaiwa M, Kurokawa R, Matsuda Y, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K. Enhancement of beta rebound elicited by proprioceptive stimulation in the sensorimotor cortex by transcranial alternating current stimulation matched to the dominant beta frequency. Neurosci Res 2025:S0168-0102(25)00067-7. [PMID: 40158629 DOI: 10.1016/j.neures.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/08/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Transcranial alternating current stimulation (tACS) can modulate endogenous brain oscillations in a frequency-specific manner. Previous studies have reported that beta tACS modulates the excitability of primary motor cortex and improves task performance. Tactile and proprioceptive stimuli also elicit event-related synchronization of the beta rhythm in contralateral sensorimotor cortex, termed beta rebound, and a strong correlation was reported between proprioception-induced rebound strength and clinical recovery in stroke patients. We investigated the effects of tACS matched to the dominant beta frequency on the strength of proprioception-induced beta rebound.We recorded the beta rebound from 14 healthy young adults in response to passive index finger movement by electroencephalography to determine individual peak beta frequency. Electroencephalograms (EEG) were recorded during passive movements before and after active or sham tACS. We recorded beta rebound of all participants to determine their individual peak frequency of beta rebound prior to this experiment. Active tACS at individually matched frequencies increased beta rebound strength during subsequent passive movement compared to sham tACS in the majority of participants, while the remaining participants demonstrated no significant change or a decrease. These findings on healthy participants provide an essential foundation for further studies on the effects of beta frequency-matched tACS for stroke patient rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan; Department of Rehabilitation, Sapporo Hakuyokai Hospital, Sapporo, Hokkaido, Japan.
| | - Ryo Kurokawa
- Department of Rehabilitation, Sapporo Hakuyokai Hospital, Sapporo, Hokkaido, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Yasushi Sugawara
- Department of Rehabilitation, Sapporo Hakuyokai Hospital, Sapporo, Hokkaido, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa, Hokkaido, Japan
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Metwally S, Capuk O, Wang J, Bhuiyan MIH, Li Q, Kaliyappan K, Chen B, Fields D, Sun D. Cerebellum KCC2 protein expression plasticity in response to cerebral cortical stroke. Neurochem Int 2025; 184:105939. [PMID: 39909157 DOI: 10.1016/j.neuint.2025.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Recent evidence suggests extra-cortical adaptations within the cerebellum may contribute to motor recovery in patients with cortical ischemic strokes. The molecular/cellular adaptations enabling this effect to have not been identified. Chloride transport proteins (NKCC1 and KCC2) are important regulators of neuronal transmission and may underlie adaptive changes following ischemic stroke. OBJECTIVE Examine changes in cerebellar NKCC1 and KCC2 protein expression following cortical ischemic stroke. METHODS Adult C57BL/6J male mice underwent sham or the left middle cerebral artery occlusion (tMCAo)-induced ischemic stroke. Changes of NKCC1 and KCC2 proteins within the deep cerebellar nuclei (DCN) were assessed by immunofluorescence staining. RESULTS tMCAo induced selective infarct lesion in the left striatum and cortex of the stroke mice but not in other brain regions including cerebellum. The inwardly directed chloride transporter NKCC1 was equivocally expressed within bi-hemispheric DCN of both sham control and stroke mice. In contrast, the outwardly directed chloride transporter KCC2 protein expression was significantly higher in the bi-hemispheric DCN of stroke brains, compared to sham controls. Double immunostaining analysis revealed a statistically significant increase in KCC2 intensity within VGLUT-1+ neurons of the ipsilateral DCN of the stroke mice, but not in the VGAT+ neurons. CONCLUSIONS Ischemic cortical stroke stimulates KCC2 protein expression in the DCN VGLUT-1+ neurons, without a change in NKCC1 protein expression.
Collapse
Affiliation(s)
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Qiang Li
- University of Texas, Medical Branch, USA
| | | | - Bo Chen
- University of Texas, Medical Branch, USA
| | - Daryl Fields
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Mordyl B, Fajkis-Zajączkowska N, Szafrańska K, Siwek A, Głuch-Lutwin M, Żmudzki P, Jończyk J, Karcz T, Słoczyńska K, Pękala E, Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Sałach A, Jastrzębska-Więsek M, Walczak M, Gawlik MT, Smolik M, Kolaczkowski M, Marcinkowska M. Preferential Synaptic Type of GABA-A Receptor Ligands Enhancing Neuronal Survival and Facilitating Functional Recovery After Ischemic Stroke. J Med Chem 2024; 67:21859-21889. [PMID: 39668673 DOI: 10.1021/acs.jmedchem.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Selective enhancement of synaptic GABA signaling mediated by GABA-A receptors has been previously reported to promote functional recovery after ischemic stroke, while tonic GABA signaling has been detrimental. To identify agents that enhance synaptic signaling, we synthesized GABA-A ligands based on three chemotypes with affinity values pKi= 6.44-8.32. Representative compounds showed a preference in functional responses toward synaptic type of GABA-A receptors, compared to the extrasynaptic ones. In a cellular ischemia model (OGD), selected compounds showed the potential to improve neuronal recovery. The selected lead, compound 4, demonstrated the ability to reduce mitochondrial dysfunction, regulate intracellular calcium levels, decrease caspase 3 levels, and promote neurite outgrowth in in vitro assays. In an animal model, compound 4 enhanced motor recovery and showed neuroprotective activity by reducing infarct volume and decreasing poststroke acidosis. These findings underscore the value of selective ligands modulating synaptic GABA-A receptors in promoting recovery from ischemic stroke.
Collapse
Affiliation(s)
- Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Nikola Fajkis-Zajączkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szafrańska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bartosz Pomierny
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Jakub Jurczyk
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Alicja Skórkowska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Sałach
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maciej Tadeusz Gawlik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Smolik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| |
Collapse
|
5
|
Suo JL, Li JY, Zhou CM, Jin RL, Song JH, Wang YL, Huo DS, Tan BH, Li YC. Long-term changes in phospholipids and free fatty acids and the possible subcellular origins for phospholipid degradation in kainic acid-damaged mouse hippocampus. Brain Res 2024; 1845:149243. [PMID: 39293679 DOI: 10.1016/j.brainres.2024.149243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Kainic acid (KA)-induced excitotoxicity induces acute degradation of phospholipids and release of free fatty acids (FFAs) in rodent hippocampus, but the long-term changes in phospholipids or the subcellular origins of liberated FFAs remain unclarified. Phospholipids and FFAs were determined in KA-damaged mouse hippocampus by enzyme-coupled biochemical assays. The evolution of membrane injuries in the hippocampus was examined by a series of morphological techniques. The levels of phospholipids in the hippocampus decreased shortly after KA injection but recovered close to the control levels at 24 h. The decline in phospholipids was accelerated again from 72 to 120 after KA treatment. The levels of FFAs were negatively related to those of phospholipids, exhibiting a similar but opposite trend of changes. KA treatment caused progressively severe damage to vulnerable neurons, which was accompanied by increased permeability in the cell membrane and increased staining of membrane-bound dyes in the cytoplasm. Double fluorescence staining showed that the latter was partially overlapped with abnormally increased endocytic and autophagic components in damaged neurons. Our results revealed intricate and biphasic changes in phospholipid and FFA levels in KA-damaged hippocampus. Disrupted endomembrane system may be one of the major origins for KA-induced FFA release.
Collapse
Affiliation(s)
- Jia-Le Suo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China; Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia 014040, PR China
| | - Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Ling Wang
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - De-Sheng Huo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China.
| |
Collapse
|
6
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
7
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
8
|
van van Hugte EJH, Schubert D, Nadif Kasri N. Excitatory/inhibitory balance in epilepsies and neurodevelopmental disorders: Depolarizing γ-aminobutyric acid as a common mechanism. Epilepsia 2023; 64:1975-1990. [PMID: 37195166 DOI: 10.1111/epi.17651] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.
Collapse
Affiliation(s)
- Eline J H van van Hugte
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| |
Collapse
|
9
|
Páscoa Dos Santos F, Vohryzek J, Verschure PFMJ. Multiscale effects of excitatory-inhibitory homeostasis in lesioned cortical networks: A computational study. PLoS Comput Biol 2023; 19:e1011279. [PMID: 37418506 DOI: 10.1371/journal.pcbi.1011279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/18/2023] [Indexed: 07/09/2023] Open
Abstract
Stroke-related disruptions in functional connectivity (FC) often spread beyond lesioned areas and, given the localized nature of lesions, it is unclear how the recovery of FC is orchestrated on a global scale. Since recovery is accompanied by long-term changes in excitability, we propose excitatory-inhibitory (E-I) homeostasis as a driving mechanism. We present a large-scale model of the neocortex, with synaptic scaling of local inhibition, showing how E-I homeostasis can drive the post-lesion restoration of FC and linking it to changes in excitability. We show that functional networks could reorganize to recover disrupted modularity and small-worldness, but not network dynamics, suggesting the need to consider forms of plasticity beyond synaptic scaling of inhibition. On average, we observed widespread increases in excitability, with the emergence of complex lesion-dependent patterns related to biomarkers of relevant side effects of stroke, such as epilepsy, depression and chronic pain. In summary, our results show that the effects of E-I homeostasis extend beyond local E-I balance, driving the restoration of global properties of FC, and relating to post-stroke symptomatology. Therefore, we suggest the framework of E-I homeostasis as a relevant theoretical foundation for the study of stroke recovery and for understanding the emergence of meaningful features of FC from local dynamics.
Collapse
Affiliation(s)
- Francisco Páscoa Dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom
| | - Paul F M J Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Xu P, Huang X, Niu W, Yu D, Zhou M, Wang H. Metabotropic glutamate receptor 5 upregulation of γ-aminobutyric acid transporter 3 expression ameliorates cognitive impairment after traumatic brain injury in mice. Brain Res Bull 2022; 183:104-115. [DOI: 10.1016/j.brainresbull.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
11
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
12
|
Mu JD, Ma LX, Zhang Z, Yu WY, Sun TY, Qian X, Tian Y, Wang JX. Acupuncture alleviates spinal hyperreflexia and motor dysfunction in post-ischemic stroke rats with spastic hypertonia via KCC2-mediated spinal GABA A activation. Exp Neurol 2022; 354:114027. [PMID: 35245503 DOI: 10.1016/j.expneurol.2022.114027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The majority of patients simultaneously develop motor dysfunction and spastic hypertonia after ischemic strokes, which can be associated with an increasing trend in motor impairments, seriously impeding the rehabilitation process. Evidence suggests that some deficits in the KCC2 expression in the spinal cord along with maladaptive endogenous plasticity via GABAA receptors are often involved in the pathology of spastic hypertonia after a stroke. In this respect, acupuncture has been commonly used in clinical settings for post-stroke patients' rehabilitation. Nevertheless, the mechanism of the modulating activity of this alternative medicine in the spinal pathways to relieve spasticity and improve functional recovery after a stroke has still remained unclear. Utilizing laser speckle imaging, functional assessments (viz. neurologic function scale, muscular tension scale, foot balance test, and gait analysis), H-reflex recording, TTC, Western blotting, RT-qPCR, ELISA, and immunofluorescence molecular assay, the study results illustrated that acupuncture could significantly alleviate the spinal hyperreflexia, decrease muscle tone, and enhance locomotor function by elevating the GABA, KCC2, and GABAAγ2 expressions in the lumbar spine of a rat model of post-ischemic stroke with spastic hypertonia. Furthermore, the KCC2 antagonist DIOA abolished the benefits induced by this practice. Overall, the data revealed that acupuncture is a promising therapeutic approach for spastic hypertonia after a stroke, and the positive outcomes in this sense could be achieved via activating the KCC2-mediated spinal GABAA signaling pathway.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China; The Key Unit of State Administration of Traditional Chinese Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing 100029, China.
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Yan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Tian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun-Xiang Wang
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
13
|
Páscoa dos Santos F, Verschure PFMJ. Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex. Front Syst Neurosci 2022; 15:806544. [PMID: 35082606 PMCID: PMC8785563 DOI: 10.3389/fnsys.2021.806544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients.
Collapse
Affiliation(s)
- Francisco Páscoa dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Department of Information and Communications Technologies (DTIC), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paul F. M. J. Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
15
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
17
|
Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy. Nat Commun 2021; 12:6112. [PMID: 34671051 PMCID: PMC8528851 DOI: 10.1038/s41467-021-26405-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability in a murine model of photothrombotic stroke and show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.
Collapse
|
18
|
Michalettos G, Walter HL, Antunes ARP, Wieloch T, Talhada D, Ruscher K. Effect of Anti-inflammatory Treatment with AMD3100 and CX 3CR1 Deficiency on GABA A Receptor Subunit and Expression of Glutamate Decarboxylase Isoforms After Stroke. Mol Neurobiol 2021; 58:5876-5889. [PMID: 34417725 PMCID: PMC8599239 DOI: 10.1007/s12035-021-02510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Following stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, β3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the β3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Helene L Walter
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ana Rita Pombo Antunes
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden. .,LUBIN Lab - Lunds Laboratorium För Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
19
|
Shi Y, Tian T, Cai EL, Yang C, Yang X. miR-214 Alleviates Ischemic Stroke-Induced Neuronal Death by Targeting DAPK1 in Mice. Front Neurosci 2021; 15:649982. [PMID: 33841091 PMCID: PMC8032895 DOI: 10.3389/fnins.2021.649982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ischemic stroke induces neuronal cell death and causes brain dysfunction. Preventing neuronal cell death after stroke is key to protecting the brain from stroke damage. Nevertheless, preventative measures and treatment strategies for stroke damage are scarce. Emerging evidence suggests that microRNAs (miRNAs) play critical roles in the pathogenesis of central nervous system (CNS) disorders and may serve as potential therapeutic targets. METHODS A photochemically induced thrombosis (PIT) mouse model was used as an ischemic stroke model. qRT-PCR was employed to assess changes in miRNAs in ischemic lesions of PIT-stroke mice and primary cultured neurons subjected to oxygen-glucose deprivation (OGD). 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed to evaluate brain infarction tissues in vivo. TUNEL staining was employed to assess neuronal death in vitro. Neurological scores and motor coordination were investigated to evaluate stroke damage, including neurological deficits and motor function. RESULTS In vivo and in vitro results demonstrated that levels of miR-124 were significantly decreased following stroke, whereas changes in death-associated protein kinase 1 (DAPK1) levels exhibited the converse pattern. DAPK1 was identified as a direct target of miR-124. N-methyl-D-aspartate (NMDA) and OGD-induced neuronal death was rescued by miR-124 overexpression. Upregulation of miR-124 levels significantly improved PIT-stroke damage, including the overall neurological function in mice. CONCLUSION We demonstrate the involvement of the miR-124/DAPK1 pathway in ischemic neuronal death. Our results highlight the therapeutic potential of targeting this pathway for ischemic stroke.
Collapse
Affiliation(s)
- Yan Shi
- Faculty of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Tian Tian
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Guangdong Key Lab of Brain Connectomics, Shenzhen, China
| | - Er-Li Cai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Can Yang
- Department of Emergency Surgery, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Xin Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Guangdong Key Lab of Brain Connectomics, Shenzhen, China
| |
Collapse
|
20
|
Khirug S, Soni S, Saez Garcia M, Tessier M, Zhou L, Kulesskaya N, Rauvala H, Lindholm D, Ludwig A, Molinari F, Rivera C. Protective Role of Low Ethanol Administration Following Ischemic Stroke via Recovery of KCC2 and p75 NTR Expression. Mol Neurobiol 2021; 58:1145-1161. [PMID: 33099743 PMCID: PMC7878264 DOI: 10.1007/s12035-020-02176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
A striking result from epidemiological studies show a correlation between low alcohol intake and lower incidence for ischemic stroke and severity of derived brain injury. Although reduced apoptosis and inflammation has been suggested to be involved, little is known about the mechanism mediating this effect in vivo. Increase in intracellular chloride concentration and derived depolarizing GABAAR-mediated transmission are common consequences following various brain injuries and are caused by the abnormal expression levels of the chloride cotransporters NKCC1 and KCC2. Downstream pro-apoptotic signaling through p75NTR may link GABAA depolarization with post-injury neuronal apoptosis. Here, we show that changes in GABAergic signaling, Cl- homeostasis, and expression of chloride cotransporters in the post-traumatic mouse brain can be significantly reduced by administration of 3% ethanol to the drinking water. Ethanol-induced upregulation of KCC2 has a positive impact on neuronal survival, preserving a large part of the cortical peri-infarct zone, as well as preventing the massive post-ischemic upregulation of the pro-apoptotic protein p75NTR. Importantly, intracortical multisite in vivo recordings showed that ethanol treatment could significantly ameliorate stroke-induced reduction in cortical activity. This surprising finding discloses a pathway triggered by low concentration of ethanol as a novel therapeutically relevant target.
Collapse
Affiliation(s)
- Stanislav Khirug
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
| | - Shetal Soni
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marta Saez Garcia
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marine Tessier
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| | - Liang Zhou
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Anastasia Ludwig
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Claudio Rivera
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
21
|
Borah P, Deb PK, Chandrasekaran B, Goyal M, Bansal M, Hussain S, Shinu P, Venugopala KN, Al-Shar’i NA, Deka S, Singh V. Neurological Consequences of SARS-CoV-2 Infection and Concurrence of Treatment-Induced Neuropsychiatric Adverse Events in COVID-19 Patients: Navigating the Uncharted. Front Mol Biosci 2021; 8:627723. [PMID: 33681293 PMCID: PMC7930836 DOI: 10.3389/fmolb.2021.627723] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor and invade the human cells to cause COVID-19-related pneumonia. Despite an emphasis on respiratory complications, the evidence of neurological manifestations of SARS-CoV-2 infection is rapidly growing, which is substantially contributing to morbidity and mortality. The neurological disorders associated with COVID-19 may have several pathophysiological underpinnings, which are yet to be explored. Hypothetically, SARS-CoV-2 may affect the central nervous system (CNS) either by direct mechanisms like neuronal retrograde dissemination and hematogenous dissemination, or via indirect pathways. CNS complications associated with COVID-19 include encephalitis, acute necrotizing encephalopathy, diffuse leukoencephalopathy, stroke (both ischemic and hemorrhagic), venous sinus thrombosis, meningitis, and neuroleptic malignant syndrome. These may result from different mechanisms, including direct virus infection of the CNS, virus-induced hyper-inflammatory states, and post-infection immune responses. On the other hand, the Guillain-Barre syndrome, hyposmia, hypogeusia, and myopathy are the outcomes of peripheral nervous system injury. Although the therapeutic potential of certain repurposed drugs has led to their off-label use against COVID-19, such as anti-retroviral drugs (remdesivir, favipiravir, and lopinavir-ritonavir combination), biologics (tocilizumab), antibiotics (azithromycin), antiparasitics (chloroquine and hydroxychloroquine), and corticosteroids (dexamethasone), unfortunately, the associated clinical neuropsychiatric adverse events remains a critical issue. Therefore, COVID-19 represents a major threat to the field of neuropsychiatry, as both the virus and the potential therapies may induce neurologic as well as psychiatric disorders. Notably, potential COVID-19 medications may also interact with the medications of pre-existing neuropsychiatric diseases, thereby further complicating the condition. From this perspective, this review will discuss the possible neurological manifestations and sequelae of SARS-CoV-2 infection with emphasis on the probable underlying neurotropic mechanisms. Additionally, we will highlight the concurrence of COVID-19 treatment-associated neuropsychiatric events and possible clinically relevant drug interactions, to provide a useful framework and help researchers, especially the neurologists in understanding the neurologic facets of the ongoing pandemic to control the morbidity and mortality.
Collapse
Affiliation(s)
- Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Monika Bansal
- Department of Neuroscience Technology College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati, India
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
22
|
Ghasemiyeh P, Borhani-Haghighi A, Karimzadeh I, Mohammadi-Samani S, Vazin A, Safari A, Qureshi AI. Major Neurologic Adverse Drug Reactions, Potential Drug-Drug Interactions and Pharmacokinetic Aspects of Drugs Used in COVID-19 Patients with Stroke: A Narrative Review. Ther Clin Risk Manag 2020; 16:595-605. [PMID: 32669846 PMCID: PMC7335700 DOI: 10.2147/tcrm.s259152] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/10/2020] [Indexed: 01/20/2023] Open
Abstract
Stroke has been considered as one of the underlying diseases that increases the probability of severe infection and mortality. Meanwhile, there are ongoing reports of stroke subsequent to COVID-19 infection. In this narrative paper, we reviewed major neurologic adverse drug reactions (ADRs) and pharmacokinetics of drugs which are routinely used for COVID-19 infection and their potential drug-drug interactions (PDDIs) with common drugs used for the treatment of stroke. It is highly recommended to monitor patients on chloroquine (CQ), hydroxychloroquine (HCQ), antiviral drugs, and/or corticosteroids about initiation or progression of cardiac arrhythmias, delirium, seizure, myopathy, and/or neuropathy. In addition, PDDIs of anti-COVID-19 drugs with tissue plasminogen activator (tPA), anticoagulants, antiaggregants, statins, antihypertensive agents, and iodine-contrast agents should be considered. The most dangerous PDDIs were interaction of lopinavir/ritonavir or atazanavir with clopidogrel, prasugrel, and new oral anticoagulants (NOACs).
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adnan I Qureshi
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
23
|
Sabaghi A, Heirani A, Kiani A, Yousofvand N, Sabaghi S. The Reduction of Seizure Intensity and Attenuation of Memory Deficiency and Anxiety-Like Behavior through Aerobic Exercise by Increasing the BDNF in Mice with Chronic Epilepsy. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Gandolfi D, Bigiani A, Porro CA, Mapelli J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int J Mol Sci 2020; 21:E1805. [PMID: 32155701 PMCID: PMC7084224 DOI: 10.3390/ijms21051805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity is the cellular and molecular counterpart of learning and memory and, since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here, we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and characterized in different brain areas. In particular, we focus our attention on the molecular pathways involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we discuss, from the computational perspective, how IP can contribute to the emergence of functional properties of brain circuits.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
- Department of Brain and behavioral sciences, University of Pavia, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| |
Collapse
|
25
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
26
|
Chiu CQ, Barberis A, Higley MJ. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nat Rev Neurosci 2019; 20:272-281. [PMID: 30837689 DOI: 10.1038/s41583-019-0141-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cellular mechanisms that regulate the interplay of synaptic excitation and inhibition are thought to be central to the functional stability of healthy neuronal circuits. A growing body of literature demonstrates the capacity for inhibitory GABAergic synapses to exhibit long-term plasticity in response to changes in neuronal activity. Here, we review this expanding field of research, focusing on the diversity of mechanisms that link glutamatergic signalling, postsynaptic action potentials and inhibitory synaptic strength. Several lines of evidence indicate that multiple, parallel forms of plasticity serve to regulate activity at both the input and output domains of individual neurons. Overall, these varied phenomena serve to promote both stability and flexibility over the life of the organism.
Collapse
Affiliation(s)
- Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | | | - Michael J Higley
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Tanaka M, Ogaeri T, Samsonov M, Sokabe M. Nestorone exerts long-term neuroprotective effects against transient focal cerebral ischemia in adult male rats. Brain Res 2019; 1719:288-296. [DOI: 10.1016/j.brainres.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022]
|
28
|
Velíšek L. "Are We There Yet?" Quest for Treatment of Refractory Epilepsy. Epilepsy Curr 2019; 19:57-58. [PMID: 30838919 PMCID: PMC6610376 DOI: 10.1177/1535759718822843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochemical Autoregulatory Gene Therapy for Focal Epilepsy Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, Kullmann DM. Nat Med. 2018;24:1324-1329. Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory, or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation.
Collapse
|
29
|
Sengupta S, Le TT, Adam A, Tadić V, Stubendorff B, Keiner S, Kloss L, Prell T, Witte OW, Grosskreutz J. Interferon-γ Receptor 1 and GluR1 upregulated in motor neurons of symptomatic hSOD1G93A mice. Eur J Neurosci 2019; 49:62-78. [PMID: 30457201 DOI: 10.1111/ejn.14276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023]
Abstract
Motor neurons are markedly vulnerable to excitotoxicity mostly by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) stimulation and are principal targets in the neurodegenerative disease Amyotrophic Lateral Sclerosis. Interferon-gamma (IFN-γ), a pro-inflammatory cytokine, can independently cause neuronal dysfunction by triggering calcium influx through a calcium-permeable complex of IFN-γ receptor 1(IFNGR1) subunit and AMPAR subunit GluR1. This receptor complex is formed via a non-canonical neuron-specific IFN-γ pathway that involves Jak1/Stat1 and Protein Kinase A. In this study, we explore the expression of the pathway's participants for the first time in the hSOD1G93A Amyotrophic Lateral Sclerosis mouse model. Elevated IFNGR1 and GluR1 are detected in motor neurons of hSOD1G93A symptomatic mice ex vivo, unlike the downstream targets - Jak1, Stat1, and Protein Kinase A. We, also, determine effects of IFN-γ alone or in the presence of an excitotoxic agent, kainate, on motor neuron survival in vitro. IFN-γ induces neuronal damage, but does not influence kainate-mediated excitotoxicity. Increased IFNGR1 can most likely sensitize motor neurons to excitotoxic insults involving GluR1 and/or pathways mediated by IFN-γ, thus, serving as a potential direct link between neurodegeneration and inflammation in Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Saikata Sengupta
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thanh Tu Le
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Adam Adam
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Linda Kloss
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
30
|
Zheng S, Zhang F, Liu Q, Jian R, Yang M. Exercise training increases spatial memory via reducing contralateral hippocampal NMDAR subunits expression in intracerebral hemorrhage rats. Neuropsychiatr Dis Treat 2019; 15:1921-1928. [PMID: 31371965 PMCID: PMC6628604 DOI: 10.2147/ndt.s207564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE The aim of this study was to explore the effect of exercise training on spatial memory in rats with intracerebral hemorrhage (ICH) and to analyze its related neurobiological mechanisms. METHODS A total of 26 Sprague-Dawley rats were randomly divided into 3 groups: exercise (EX) group undergoing exercise training after ICH, model (MD) group and sham-operated (SM) group. The ICH rats model were induced by infusion of type I collagenase into caudate nucleus of rats. Morris water maze (MWM) test was performed at the same time in three groups to evaluate spatial memory in rats. All rats were sacrificed for evaluation of expression of N-methyl-d-aspartate receptor 1 (NR1) and N-methyl-d-aspartate receptor 2B (NR2B) in the CA3 region of the hippocampus by Western blot. RESULTS MWM test results showed that the spatial memory of MD group was significantly decreased compared to that of SM operation group (P<0.05), while exercise training significantly improved the spatial memory of rats with cerebral hemorrhage (P<0.05). Western blot analysis showed that exercise training significantly decreased the expression of NR1 and NR2B in CA3 region of the contralateral hippocampus (P<0.05), but there was no significant difference between MD and SM groups (P>0.05). CONCLUSION Exercise training improves the spatial memory in the rats with ICH via down-regulating NR1 and NR2B expression in CA3 region of the contralateral hippocampus.
Collapse
Affiliation(s)
- Shulin Zheng
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Feixue Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Qiusheng Liu
- Department of Cardiovascular Medicine, Luzhou Traditional Chinese Medicine Hospital, Luzhou, Sichuan 646000, People's Republic of China
| | - Rui Jian
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Min Yang
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
31
|
Lie ME, Gowing EK, Johansen NB, Dalby NO, Thiesen L, Wellendorph P, Clarkson AN. GAT3 selective substrate l-isoserine upregulates GAT3 expression and increases functional recovery after a focal ischemic stroke in mice. J Cereb Blood Flow Metab 2019; 39:74-88. [PMID: 29160736 PMCID: PMC6311676 DOI: 10.1177/0271678x17744123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic stroke triggers an elevation in tonic GABA inhibition that impairs the ability of the brain to form new structural and functional cortical circuits required for recovery. This stroke-induced increase in tonic inhibition is caused by impaired GABA uptake via the glial GABA transporter GAT3, highlighting GAT3 as a novel target in stroke recovery. Using a photothrombotic stroke mouse model, we show that GAT3 protein levels are decreased in peri-infarct tissue from 6 h to 42 days post-stroke. Prior studies have shown that GAT substrates can increase GAT surface expression. Therefore, we aimed to assess whether the GAT3 substrate, L-isoserine, could increase post-stroke functional recovery. L-Isoserine (38 µM or 380 µM) administered directly into the infarct from day 5 to 32 post-stroke, significantly increased motor performance in the grid-walking and cylinder tasks in a concentration-dependent manner, without affecting infarct volumes. Additionally, L-isoserine induced a lasting increase in GAT3 expression in peri-infarct regions accompanied by a small decrease in GFAP expression. This study is the first to show that a GAT3 substrate can increase GAT3 expression and functional recovery after focal ischemic stroke following a delayed long-term treatment. We propose that enhancing GAT3-mediated uptake dampens tonic inhibition and promotes functional recovery after stroke.
Collapse
Affiliation(s)
- Maria Ek Lie
- 1 Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,2 Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Emma K Gowing
- 2 Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Nina B Johansen
- 1 Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nils Ole Dalby
- 1 Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Thiesen
- 1 Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- 1 Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew N Clarkson
- 2 Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,3 Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Hsu YT, Chang YG, Chern Y. Insights into GABA Aergic system alteration in Huntington's disease. Open Biol 2018; 8:rsob.180165. [PMID: 30518638 PMCID: PMC6303784 DOI: 10.1098/rsob.180165] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disease that is characterized by a triad of motor, psychiatric and cognitive impairments. There is still no effective therapy to delay or halt the disease progress. The striatum and cortex are two particularly affected brain regions that exhibit dense reciprocal excitatory glutamate and inhibitory gamma-amino butyric acid (GABA) connections. Imbalance between excitatory and inhibitory signalling is known to greatly affect motor and cognitive processes. Emerging evidence supports the hypothesis that disrupted GABAergic circuits underlie HD pathogenesis. In the present review, we focused on the multiple defects recently found in the GABAergic inhibitory system, including altered GABA level and synthesis, abnormal subunit composition and distribution of GABAA receptors and aberrant GABAA receptor-mediated signalling. In particular, the important role of cation–chloride cotransporters (i.e. NKCC1 and KCC2) is discussed. Recent studies also suggest that neuroinflammation contributes significantly to the abnormal GABAergic inhibition in HD. Thus, GABAA receptors and cation–chloride cotransporters are potential therapeutic targets for HD. Given the limited availability of therapeutic treatments for HD, a better understanding of GABAergic dysfunction in HD could provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yijuang Chern
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
33
|
Tadić V, Adam A, Goldhammer N, Lautenschlaeger J, Oberstadt M, Malci A, Le TT, Sengupta S, Stubendorff B, Keiner S, Witte OW, Grosskreutz J. Investigation of mitochondrial calcium uniporter role in embryonic and adult motor neurons from G93A hSOD1 mice. Neurobiol Aging 2018; 75:209-222. [PMID: 30597405 DOI: 10.1016/j.neurobiolaging.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis is characterized by progressive death of motor neurons (MNs) with glutamate excitotoxicity and mitochondrial Ca2+ overload as critical mechanisms in disease pathophysiology. We used MNs from G93AhSOD1 and nontransgenic embryonic cultures and adult mice to analyze the expression of the main mitochondrial calcium uniporter (MCU). MCU was overexpressed in cultured embryonic G93AhSOD1 MNs compared to nontransgenic MNs but downregulated in MNs from adult G93AhSOD1 mice. Furthermore, cultured embryonic G93AhSOD1 were rescued from kainate-induced excitotoxicity by the Ca2+/calmodulin-dependent protein kinase type II inhibitor; KN-62, which reduced MCU expression in G93AhSOD1 MNs. MCU activation via kaempferol neither altered MCU expression nor influenced MN survival. However, its acute application served as a fine tool to study spontaneous Ca2+ activity in cultured neurons which was significantly altered by the mutated hSOD1. Pharmacological manipulation of MCU expression might open new possibilities to fight excitotoxic damage in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Adam Adam
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nadine Goldhammer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Janin Lautenschlaeger
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Moritz Oberstadt
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Ayse Malci
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thanh Tu Le
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Saikata Sengupta
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
34
|
Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, Kullmann DM. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med 2018; 24:1324-1329. [PMID: 29988123 PMCID: PMC6152911 DOI: 10.1038/s41591-018-0103-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/17/2018] [Indexed: 11/14/2022]
Abstract
Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy1. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci2. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation.
Collapse
Affiliation(s)
- Andreas Lieb
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Christine L Dixon
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
35
|
le Feber J, Dummer A, Hassink GC, van Putten MJAM, Hofmeijer J. Evolution of Excitation-Inhibition Ratio in Cortical Cultures Exposed to Hypoxia. Front Cell Neurosci 2018; 12:183. [PMID: 30018536 PMCID: PMC6037832 DOI: 10.3389/fncel.2018.00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022] Open
Abstract
In the core of a brain infarct, neuronal death occurs within minutes after loss of perfusion. In the penumbra, a surrounding area with some residual perfusion, neurons initially remain structurally intact, but hypoxia-induced synaptic failure impedes neuronal activity. Penumbral activity may recover or further deteriorate, reflecting cell death. Mechanisms leading to either outcome remain ill-understood, but may involve changes in the excitation to inhibition (E/I) ratio. The E/I ratio is determined by structural (relative densities of excitatory and inhibitory synapses) and functional factors (synaptic strengths). Clinical studies demonstrated excitability alterations in regions surrounding the infarct core. These may be related to structural E/I changes, but the effects of hypoxia /ischemia on structural connectivity have not yet been investigated, and the role of structural connectivity changes in excitability alterations remains unclear. We investigated the evolution of the structural E/I ratio and associated network excitability in cortical cultures exposed to severe hypoxia of varying duration. 6–12 h of hypoxia reduced the total synaptic density. In particular, the inhibitory synaptic density dropped significantly, resulting in an elevated E/I ratio. Initially, this does not lead to increased excitability due to hypoxia-induced synaptic failure. Increased excitability becomes apparent upon reoxygenation after 6 or 12 h, but not after 24 h. After 24 h of hypoxia, structural patterns of vesicular glutamate stainings change. This possibly reflects disassembly of excitatory synapses, and may account for the irreversible reduction of activity and stimulus responses seen after 24 h.
Collapse
Affiliation(s)
- Joost le Feber
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Anneloes Dummer
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Gerco C Hassink
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands.,Biomedical Signals and Systems, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Michel J A M van Putten
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| |
Collapse
|
36
|
CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun 2018; 9:2250. [PMID: 29884780 PMCID: PMC5993731 DOI: 10.1038/s41467-018-04445-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/27/2018] [Indexed: 11/25/2022] Open
Abstract
Treatments that stimulate neuronal excitability enhance motor performance after stroke. cAMP-response-element binding protein (CREB) is a transcription factor that plays a key role in neuronal excitability. Increasing the levels of CREB with a viral vector in a small pool of motor neurons enhances motor recovery after stroke, while blocking CREB signaling prevents stroke recovery. Silencing CREB-transfected neurons in the peri-infarct region with the hM4Di-DREADD blocks motor recovery. Reversing this inhibition allows recovery to continue, demonstrating that by manipulating the activity of CREB-transfected neurons it is possible to turn off and on stroke recovery. CREB transfection enhances remapping of injured somatosensory and motor circuits, and induces the formation of new connections within these circuits. CREB is a central molecular node in the circuit responses after stroke that lead to recovery from motor deficits. Increasing excitability in the peri-infarct area enhances motor recovery after stroke. Here the authors show that expressing CREB, a transcription factor known for its role in synaptic plasticity, or increasing activity of CREB-expressing cells near the stroke site improves recovery in an effect that is strong enough that it can be used to turn on and off motor recovery after stroke.
Collapse
|
37
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
38
|
Recovery of the 20 Hz Rebound to Tactile and Proprioceptive Stimulation after Stroke. Neural Plast 2018; 2018:7395798. [PMID: 29681928 PMCID: PMC5851173 DOI: 10.1155/2018/7395798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023] Open
Abstract
Sensorimotor integration is closely linked to changes in motor-cortical excitability, observable in the modulation of the 20 Hz rhythm. After somatosensory stimulation, the rhythm transiently increases as a rebound that reflects motor-cortex inhibition. Stroke-induced alterations in afferent input likely affect motor-cortex excitability and motor recovery. To study the role of somatosensory afferents in motor-cortex excitability after stroke, we employed magnetoencephalographic recordings (MEG) at 1–7 days, one month, and 12 months in 23 patients with stroke in the middle cerebral artery territory and 22 healthy controls. The modulation of the 20 Hz motor-cortical rhythm was evaluated to two different somatosensory stimuli, tactile stimulation, and passive movement of the index fingers. The rebound strengths to both stimuli were diminished in the acute phase compared to the controls and increased significantly during the first month after stroke. However, only the rebound amplitudes to tactile stimuli fully recovered within the follow-up period. The rebound strengths in the affected hemisphere to both stimuli correlated strongly with the clinical scores across the follow-up. The results show that changes in the 20 Hz rebound to both stimuli behave similarly and occur predominantly during the first month. The 20 Hz rebound is a potential marker for predicting motor recovery after stroke.
Collapse
|
39
|
Tadić V, Malci A, Goldhammer N, Stubendorff B, Sengupta S, Prell T, Keiner S, Liu J, Guenther M, Frahm C, Witte OW, Grosskreutz J. Sigma 1 receptor activation modifies intracellular calcium exchange in the G93A hSOD1 ALS model. Neuroscience 2017; 359:105-118. [PMID: 28723387 DOI: 10.1016/j.neuroscience.2017.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
Aberrations in intracellular calcium (Ca2+) have been well established within amyotrophic lateral sclerosis (ALS), a severe motor neuron disease. Intracellular Ca2+ concentration is controlled in part through the endoplasmic reticulum (ER) mitochondria Ca2+ cycle (ERMCC). The ER supplies Ca2+ to the mitochondria at close contacts between the two organelles, i.e. the mitochondria-associated ER membranes (MAMs). The Sigma 1 receptor (Sig1R) is enriched at MAMs, where it acts as an inter-organelle signaling modulator. However, its impact on intracellular Ca2+ at the cellular level remains to be thoroughly investigated. Here, we used cultured embryonic mice spinal neurons to investigate the influence of Sig1R activation on intracellular Ca2+ homeostasis in the presence of G93AhSOD1 (G93A), an established ALS-causing mutation. Sig1R expression was increased in G93A motor neurons relative to non-transgenic (nontg) controls. Furthermore, we demonstrated significantly reduced bradykinin-sensitive intracellular Ca2+ stores in G93A spinal neurons, which were normalized by the Sig1R agonist SA4503. Moreover, SA4503 accelerated cytosolic Ca2+ clearance following a) AMPAR activation by kainate and b) IP3R-mediated ER Ca2+ release following bradykinin stimulation in both genotypes. PRE-084 (another Sig1R agonist) did not exert any significant effects on cytosolic Ca2+. Both Sig1R expression and functionality were altered by the G93A mutation, indicating the centrality of Sig1R in ALS pathology. Here, we showed that intracellular Ca2+ shuttling can be manipulated by Sig1R activation, thus demonstrating the value of using the pharmacological manipulation of Sig1R to understand Ca2+ homeostasis.
Collapse
Affiliation(s)
- Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Ayse Malci
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Nadine Goldhammer
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Beatrice Stubendorff
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Saikata Sengupta
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Jingyu Liu
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
40
|
Hsu YT, Chang YG, Chang CP, Siew JJ, Chen HM, Tsai CH, Chern Y. Altered behavioral responses to gamma-aminobutyric acid pharmacological agents in a mouse model of Huntington's disease. Mov Disord 2017; 32:1600-1609. [PMID: 28782830 DOI: 10.1002/mds.27107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Disruptions in gamma-aminobutyric (GABA) acid signaling are believed to be involved in Huntington's disease pathogenesis, but the regulation of GABAergic signaling remains elusive. Here we evaluated GABAergic signaling by examining the function of GABAergic drugs in Huntington's disease and the expression of GABAergic molecules using mouse models and human brain tissues from Huntington's disease. METHODS We treated wild-type and R6/2 mice (a transgenic Huntington's disease mouse model) acutely with vehicle, diazepam, or gaboxadol (drugs that selectively target synaptic or extrasynaptic GABAA receptors) and monitored their locomotor activity. The expression levels of GABAA receptors and a major neuron-specific chloride extruder (potassium-chloride cotransporter-2) were analyzed by real-time quantitative polymerase chain reaction, Western blot, and immunocytochemistry. RESULTS The R6/2 mice were less sensitive to the sedative effects of both drugs, suggesting reduced function of GABAA receptors. Consistently, the expression levels of α1/α2 and δ subunits were lower in the cortex and striatum of R6/2 mice. Similar results were also found in 2 other mouse models of Huntington's disease and in Huntington's disease patients. Moreover, the interaction and expression levels of potassium-chloride cotransporter-2 and its activator (brain-type creatine kinase) were decreased in Huntington's disease neurons. These findings collectively suggest impaired chloride homeostasis, which further dampens GABAA receptor-mediated inhibitory signaling in Huntington's disease brains. CONCLUSIONS The dysregulated GABAergic responses and altered expression levels of GABAA receptors and potassium-chloride cotransporter-2 in Huntington's disease mice appear to be authentic and may contribute to the clinical manifestations of Huntington's disease patients. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chon-Haw Tsai
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Yijuang Chern
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
41
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
42
|
Chen L, Wan L, Wu Z, Ren W, Huang Y, Qian B, Wang Y. KCC2 downregulation facilitates epileptic seizures. Sci Rep 2017; 7:156. [PMID: 28279020 PMCID: PMC5427808 DOI: 10.1038/s41598-017-00196-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 11/18/2022] Open
Abstract
GABAA receptor-mediated inhibition depends on the maintenance of low level intracellular [Cl-] concentration, which in adult depends on neuron specific K+-Cl- cotransporter-2 (KCC2). Previous studies have shown that KCC2 was downregulated in both epileptic patients and various epileptic animal models. However, the temporal relationship between KCC2 downregulation and seizure induction is unclear yet. In this study, we explored the temporal relationship and the influence of KCC2 downregulation on seizure induction. Significant downregulation of plasma membrane KCC2 was directly associated with severe (Racine Score III and above) behavioral seizures in vivo, and occurred before epileptiform bursting activities in vitro induced by convulsant. Overexpression of KCC2 using KCC2 plasmid effectively enhanced resistance to convulsant-induced epileptiform bursting activities in vitro. Furthermore, suppression of membrane KCC2 expression, using shRNAKCC2 plasmid in vitro and shRNAKCC2 containing lentivirus in vivo, induced spontaneous epileptiform bursting activities in vitro and Racine III seizure behaviors accompanied by epileptic EEG in vivo. Our findings novelly demonstrated that altered expression of KCC2 is not the consequence of seizure occurrence but likely is the contributing factor.
Collapse
Affiliation(s)
- Lulan Chen
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Wan
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zheng Wu
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wanting Ren
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yian Huang
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Binbin Qian
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun Wang
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Parkkonen E, Laaksonen K, Piitulainen H, Pekkola J, Parkkonen L, Tatlisumak T, Forss N. Strength of ~20-Hz Rebound and Motor Recovery After Stroke. Neurorehabil Neural Repair 2017; 31:475-486. [PMID: 28164736 DOI: 10.1177/1545968316688795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stroke is a major cause of disability worldwide, and effective rehabilitation is crucial to regain skills for independent living. Recently, novel therapeutic approaches manipulating the excitatory-inhibitory balance of the motor cortex have been introduced to boost recovery after stroke. However, stroke-induced neurophysiological changes of the motor cortex may vary despite of similar clinical symptoms. Therefore, better understanding of excitability changes after stroke is essential when developing and targeting novel therapeutic approaches. OBJECTIVE AND METHODS We identified recovery-related alterations in motor cortex excitability after stroke using magnetoencephalography. Dynamics (suppression and rebound) of the ~20-Hz motor cortex rhythm were monitored during passive movement of the index finger in 23 stroke patients with upper limb paresis at acute phase, 1 month, and 1 year after stroke. RESULTS After stroke, the strength of the ~20-Hz rebound to stimulation of both impaired and healthy hand was decreased with respect to the controls in the affected (AH) and unaffected (UH) hemispheres, and increased during recovery. Importantly, the rebound strength was lower than that of the controls in the AH and UH also to healthy-hand stimulation despite of intact afferent input. In the AH, the rebound strength to impaired-hand stimulation correlated with hand motor recovery. CONCLUSIONS Motor cortex excitability is increased bilaterally after stroke and decreases concomitantly with recovery. Motor cortex excitability changes are related to both alterations in local excitatory-inhibitory circuits and changes in afferent input. Fluent sensorimotor integration, which is closely coupled with excitability changes, seems to be a key factor for motor recovery.
Collapse
Affiliation(s)
- Eeva Parkkonen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Kristina Laaksonen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Harri Piitulainen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Johanna Pekkola
- 4 HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Lauri Parkkonen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Turgut Tatlisumak
- 2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland.,5 Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.,6 Department of Clinical Neurosciences, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nina Forss
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
45
|
Witte OW, Kossut M. Impairment of Brain Plasticity by Brain Inflammation. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1027/2151-2604/a000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The ability to learn and the ability to reshape brain circuits are regarded as some of the most remarkable and important features of the brain. This ability declines with age due to largely unknown reasons, and it also is altered following stroke. Brain aging is associated with a progressive increase of the levels of inflammatory cytokine in the brain. Likewise, stroke causes pronounced increases of inflammatory cytokines in the brain. Following stroke, plasticity of the cortical representation following sensory deprivation and visualized with [14C]-2-deoxyglucose autoradiography is impaired for several weeks. Likewise, plasticity of visual acuity induced by occlusion of the ipsilateral eye is impaired. Both forms of plasticity may be rescued by treatment with anti-inflammatory drugs. In contrast to this, ocular dominance plasticity which is also induced by visual occlusion is not rescued by this intervention, neither following stroke nor in aged brains. Antiinflammatory interventions may therefore be a useful tool to enhance brain plasticity following stroke, but need to be supplemented by additional strategies to enhance brain plasticity.
Collapse
Affiliation(s)
- Otto W. Witte
- Hans Berger Department of Neurology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Malgorzata Kossut
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| |
Collapse
|