1
|
Liu Y, Ma H, Zhang Q, Zhu Y, Chen L, Wang B, Cheng C, Lu F, Jiang T. Caffeic acid borate functionalized linear polyglycidol for targeted siRNA delivery in the treatment of primary biliary cholangitis. Int J Biol Macromol 2025; 311:143673. [PMID: 40334881 DOI: 10.1016/j.ijbiomac.2025.143673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Interfering with protein arginine methyltransferase 5 (PRMT5) gene expression with siRNA targeting is a promising strategy for precision primary biliary cholangitis (PBC) therapy, yet achieving effective and specific delivery of therapeutic agents to the liver remains challenging. In this study, we develop a caffeic acid borate derived linear polyglycidol polymer micelle CAPG, which can efficiently deliver siRNA to liver. The degradation of borate and hydrazone bonds in the high-ROS and acidic environment of inflammatory cells triggers micelle disintegration, facilitating siRNA release. Comprehensive in vivo experiments demonstrate that siRNA1@CAPG can significantly reduce the concentration of liver inflammation-related biomarkers and pro-inflammatory factors and notably increase superoxide dismutase (SOD) levels in mice, outperforming free siRNA1 in suppressing PRMT5 expression. Therefore, our study offers valuable reference for the treatment of primary biliary cholangitis.
Collapse
Affiliation(s)
- Ying Liu
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Haixia Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiange Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuehong Zhu
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Liangyun Chen
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Bing Wang
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Cuie Cheng
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Fenying Lu
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China
| | - Tingwang Jiang
- Affiliated Changshu Hospital of Nantong University, No. 18 Taishan Road, Changshu City, Jiangsu Province, China.
| |
Collapse
|
2
|
Oehm AW, Esteves BIO, Hetzel U, Alves MP, Schnyder M. Establishment and validation of red fox (vulpes vulpes) airway epithelial cell cultures at the air-liquid-interface. Sci Rep 2025; 15:9883. [PMID: 40121325 PMCID: PMC11929873 DOI: 10.1038/s41598-025-94033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
The airway epithelium represents a central barrier against pathogens and toxins while playing a crucial role in modulating the immune response within the upper respiratory tract. Understanding these mechanisms is particularly relevant for red foxes (Vulpes vulpes), which serve as reservoirs for various zoonotic pathogens like rabies or the fox tapeworm (Echinococcus multilocularis). The study aimed to develop, establish, and validate an air-liquid interface (ALI) organoid model of the fox respiratory tract using primary airway epithelial cells isolated from the tracheas and main bronchi of hunted red foxes. The resulting ALI cultures exhibited a structurally differentiated, pseudostratified epithelium, characterised by ciliated cells, mucus secretion, and tight junctions, as confirmed through histological and immunohistochemical analysis. Functional assessments using a paracellular permeability assay and measurement of transepithelial electrical resistance, demonstrated a tight epithelial barrier. The potential of model's utility for studying innate immune responses to respiratory infections was validated by exposing the cultures to lipopolysaccharide, phorbol-12-myristate-13-acetate and ionomycin, and nematode somatic antigens. Quantitative PCR revealed notable changes in the expression of pro-inflammatory cytokines TNF and IL-33. This in vitro model represents a significant advancement in respiratory research for non-classical species that may act as important wildlife reservoirs for a range of zoonotic pathogens.
Collapse
Affiliation(s)
- Andreas W Oehm
- Institute of Parasitology, University of Zurich, Zurich, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland.
| | - Blandina I Oliveira Esteves
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Vetsuisse Faculty, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco P Alves
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Vetsuisse Faculty, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Manuela Schnyder
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Olsen SJ, Leader RE, Mortimer AL, Almeida B. Matrix stiffness and viscoelasticity influence human mesenchymal stem cell immunomodulation. MECHANOBIOLOGY IN MEDICINE 2025; 3:100111. [PMID: 40396128 PMCID: PMC12082313 DOI: 10.1016/j.mbm.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 05/22/2025]
Abstract
Human mesenchymal stem cells (hMSCs) have immense wound healing potential due to their immunomodulatory behavior. To control this behavior and reduce heterogeneity, researchers look to biomaterials, as matrix stiffness and viscoelasticity have been shown to control hMSC immunomodulation. However, the understanding of the effects of these biophysical cues on hMSC immunomodulation remains limited; a broad study investigating the potentially synergistic effects of matrix stiffness and viscoelasticity on hMSC immunomodulation is needed in order to support future work developing biomaterials for hMSC wound healing applications. We developed polyacrylamide (PAAm) gels with varying matrix stiffnesses with or without a viscoelastic element and explored the effects of these on hMSC-matrix interactions and immunomodulatory cytokine expression in both a normal growth media and an immunomodulatory growth media mimetic of a chronic, non-healing wound. Expression of IL-10, VEGF, and PGE2 were upregulated in immunomodulatory growth media over normal growth media, demonstrating the synergistic effects of biochemical signaling on hMSC immunomodulatory behavior. In addition, the addition of a viscoelastic element had both inhibitory and accentuating effects based on the cytokine and biochemical signaling in the cell culture media. Overall, this study provides a broad perspective on the immunomodulatory behavior of hMSCs due to stiffness and viscoelasticity.
Collapse
Affiliation(s)
- Sara J. Olsen
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Rose E. Leader
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Abigail L. Mortimer
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
4
|
Minev T, Balbuena S, Gill JM, Marincola FM, Kesari S, Lin F. Mesenchymal stem cells - the secret agents of cancer immunotherapy: Promises, challenges, and surprising twists. Oncotarget 2024; 15:793-805. [PMID: 39576660 PMCID: PMC11584032 DOI: 10.18632/oncotarget.28672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recognized for their immunomodulatory capabilities, tumor-homing abilities, and capacity to serve as carriers for therapeutic agents. This review delves into the role of adoptively transferred MSCs in tumor progression, their interactions with the tumor microenvironment, and their use in delivering anti-cancer drugs, oncolytic viruses, and genetic material. It also addresses the challenges and limitations associated with MSC therapy, such as variability in MSC preparations and potential tumorigenic effects emphasizing the need for advanced genetic engineering and personalized approaches to enhance therapeutic efficacy. The review concludes with an optimistic outlook on the future of MSC-based therapies, underscoring their promise to develop effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Theia Minev
- CureScience Institute, San Diego, CA 92121, USA
| | | | | | | | - Santosh Kesari
- Department of Translational Neurosciences, Pacific Neuroscience Institute and Providence Saint John's Health Center, Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | - Feng Lin
- CureScience Institute, San Diego, CA 92121, USA
| |
Collapse
|
5
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
6
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
7
|
Yu S, Lu J. The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants. Transpl Immunol 2023; 81:101939. [PMID: 37866668 DOI: 10.1016/j.trim.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Organ allograft transplantation is an effective treatment plan for patients with organ failure. Although the application of continuous immunosuppressants makes successful allograft survival possible, the patients' long-term survival rate and quality of life are not ideal. Therefore, it is necessary to find a new strategy to alleviate transplant rejection by developing therapies for permanent allograft acceptance. One promising approach is the application of tolerogenic mesenchymal stem cells (MSCs). Extensive research on MSCs has revealed that MSCs have potent differentiation potential and immunomodulatory properties. This review describes the molecular markers and functional properties of MSCs as well as the immunomodulatory mechanisms of MSCs in transplantation, focuses on the research progress in clinical trials of MSCs, and expounds on the future development prospects and possible limitations.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, Guangdong 510317, China.
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| |
Collapse
|
8
|
Wang L, Yi W, Ma L, Lecea E, Hazlehurst LA, Adjeroh DA, Hu G. Inflammatory Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma: Transcriptional Signature and In Vitro Modeling. Cancers (Basel) 2023; 15:5148. [PMID: 37958322 PMCID: PMC10650304 DOI: 10.3390/cancers15215148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM MSCs) play a tumor-supportive role in promoting drug resistance and disease relapse in multiple myeloma (MM). Recent studies have discovered a sub-population of MSCs, known as inflammatory MSCs (iMSCs), exclusive to the MM BM microenvironment and implicated in drug resistance. Through a sophisticated analysis of public expression data from unexpanded BM MSCs, we uncovered a positive association between iMSC signature expression and minimal residual disease. While in vitro expansion generally results in the loss of the iMSC signature, our meta-analysis of additional public expression data demonstrated that cytokine stimulation, including IL1-β and TNF-α, as well as immune cells such as neutrophils, macrophages, and MM cells, can reactivate the signature expression of iMSCs to varying extents. These findings underscore the importance and potential utility of cytokine stimulation in mimicking the gene expression signature of early passage of iMSCs for functional characterizations of their tumor-supportive roles in MM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Li Ma
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Emily Lecea
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
9
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
10
|
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol 2023; 14:1074863. [PMID: 36814921 PMCID: PMC9940754 DOI: 10.3389/fimmu.2023.1074863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with multidirectional differentiation potential and strong immunomodulatory capacity. MSCs have been widely used in the treatment of injured, inflammatory, and immune-related diseases. Resting MSCs lack differentiation and immunomodulatory ability. Instead, they rely on microenvironmental factors to: 1) stimulate and regulate their expression of specific cell growth factors, chemokines, immunomodulatory factors, or receptors; or 2) direct their differentiation into specific tissue cells, which ultimately perform tissue regeneration and repair and immunomodulatory functions. Tumor necrosis factor (TNF)-α is central to the creation of an inflammatory microenvironment. TNF-α regulates the fate and functional reprogramming of MSCs, either alone or in combination with a variety of other inflammatory factors. TNF-α can exert opposing effects on MSCs, from inducing MSC apoptosis to enhancing their anti-tumor capacity. In addition, the immunomodulation and osteogenic differentiation capacities of MSCs, as well as their exosome or microvesicle components vary significantly with TNF-α stimulating concentration, time of administration, or its use in combination with or without other factors. Therefore, this review discusses the impact of TNF-α on the fate and functional reprogramming of MSCs in the inflammatory microenvironment, to provide new directions for improving the immunomodulatory and tissue repair functions of MSCs and enhance their therapeutic potential.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Qianqian Liu
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Jinchao Shi
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Enforced mesenchymal stem cell tissue colonization counteracts immunopathology. NPJ Regen Med 2022; 7:61. [PMID: 36261464 PMCID: PMC9582223 DOI: 10.1038/s41536-022-00258-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are distributed within all tissues of the body. Though best known for generating connective tissue and bone, these cells also display immunoregulatory properties. A greater understanding of MSC cell biology is urgently needed because culture-expanded MSCs are increasingly being used in treatment of inflammatory conditions, especially life-threatening immune diseases. While studies in vitro provide abundant evidence of their immunomodulatory capacity, it is unknown whether tissue colonization of MSCs is critical to their ability to dampen/counteract evolving immunopathology in vivo. To address this question, we employed a murine model of fulminant immune-mediated inflammation, acute graft-versus-host disease (aGvHD), provoked by donor splenocyte-enriched full MHC-mismatched hematopoietic stem cell transplant. aGvHD induced the expression of E-selectin within lesional endothelial beds, and tissue-specific recruitment of systemically administered host-derived MSCs was achieved by enforced expression of HCELL, a CD44 glycoform that is a potent E-selectin ligand. Compared to mice receiving HCELL− MSCs, recipients of HCELL+ MSCs had increased MSC intercalation within aGvHD-affected site(s), decreased leukocyte infiltrates, lower systemic inflammatory cytokine levels, superior tissue preservation, and markedly improved survival. Mechanistic studies reveal that ligation of HCELL/CD44 on the MSC surface markedly potentiates MSC immunomodulatory activity by inducing MSC secretion of a variety of potent immunoregulatory molecules, including IL-10. These findings indicate that MSCs counteract immunopathology in situ, and highlight a role for CD44 engagement in unleashing MSC immunobiologic properties that maintain/establish tissue immunohomeostasis.
Collapse
|
12
|
A signature constructed with mitophagy-related genes to predict the prognosis and therapy response for breast cancer. Aging (Albany NY) 2022; 14:6169-6186. [PMID: 35939339 PMCID: PMC9417220 DOI: 10.18632/aging.204209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022]
Abstract
Over the past decades, the incidence and mortality rates of breast cancer (BC) have increased rapidly; however, molecular biomarkers that can reliably detect BC are yet to be discovered. Our study aimed to identify a novel signature that can predict the prognosis of patients with BC. Data from the TCGA-BRCA cohort were analyzed using univariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) analysis was performed to build a stable prognostic model. Subsequently, Kaplan–Meier (K–M) and receiver operating characteristic (ROC) analyses were performed to demonstrate the predictive power of our gene signature. Each patient was assigned to either a low- or high-risk group. Patients with high-risk BC had poorer survival than those with low-risk BC. Cox regression analysis suggested that our signature was an independent prognostic factor. Additionally, decision curve analysis and calibration accurately predicted the capacity of our nomogram. Thus, based on the differentially expressed genes (DEGs) of mitophagy-related tumor classification, we established a 13-gene signature and robust nomogram for predicting BC prognosis, which can be beneficial for the diagnosis and treatment of BC.
Collapse
|
13
|
Xie JL, Wang XR, Li MM, Tao ZH, Teng WW, Saijilafu. Mesenchymal Stromal Cell Therapy in Spinal Cord Injury: Mechanisms and Prospects. Front Cell Neurosci 2022; 16:862673. [PMID: 35722621 PMCID: PMC9204037 DOI: 10.3389/fncel.2022.862673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to severe motor, sensory, and autonomic dysfunction in patients and imposes a huge economic cost to individuals and society. Due to its complicated pathophysiological mechanism, there is not yet an optimal treatment available for SCI. Mesenchymal stromal cells (MSCs) are promising candidate transplant cells for use in SCI treatment. The multipotency of MSCs, as well as their rich trophic and immunomodulatory abilities through paracrine signaling, are expected to play an important role in neural repair. At the same time, the simplicity of MSCs isolation and culture and the bypassing of ethical barriers to stem cell transplantation make them more attractive. However, the MSCs concept has evolved in a specific research context to encompass different populations of cells with a variety of biological characteristics, and failure to understand this can undermine the quality of research in the field. Here, we review the development of the concept of MSCs in order to clarify misconceptions and discuss the controversy in MSCs neural differentiation. We also summarize a potential role of MSCs in SCI treatment, including their migration and trophic and immunomodulatory effects, and their ability to relieve neuropathic pain, and we also highlight directions for future research.
Collapse
Affiliation(s)
- Ji-Le Xie
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Xing-Ran Wang
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Mei-Mei Li
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Zi-Han Tao
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Wen-Wen Teng
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China,*Correspondence: Saijilafu,
| |
Collapse
|
14
|
He Y, Qu Y, Meng B, Huang W, Tang J, Wang R, Chen Z, Kou X, Shi S. Mesenchymal stem cells empower T cells in the lymph nodes via MCP-1/PD-L1 axis. Cell Death Dis 2022; 13:365. [PMID: 35436982 PMCID: PMC9016066 DOI: 10.1038/s41419-022-04822-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are a type of immunosuppressive stromal cell found in multiple tissues and organs. However, whether MSCs possess immunosupportive characteristics remains unclear. In this study, we showed that the lymph nodes contain immunosupportive MSCs. They produce and secrete a high level of MCP-1 to promote T-cell proliferation and differentiation, in contrast to bone marrow MSCs (BMMSCs), which repress T-cell activation. Unlike BMMSCs, lymph node MSCs (LNMSCs) fail to respond to activated T-cell-induced production of PD-L1 to induce T-cell apoptosis. Mechanistically, MCP-1 activates phospho-Erk to sustain T-cell proliferation and activation while it represses NF-κB/PD-L1 pathway to avoid induction of T-cell apoptosis. Interestingly, inflammatory lymph node-derived LNMSCs abolish their immunosupportive function due to reduction of MCP-1 expression. Finally, we show that systemic infusion of LNMSCs rescues immunosuppression in cytoxan (CTX)-treated mice. This study reveals a previously unrecognized mechanism underlying MSC-based immunoregulation using the MCP-1/PD-L1 axis to energize T cells and suggests a potential to use MSCs to treat immunosuppressive disorders.
Collapse
|
15
|
Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. iScience 2022; 25:103759. [PMID: 35141503 PMCID: PMC8814754 DOI: 10.1016/j.isci.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge. MSCs from different genetic backgrounds have distinct responses to bacteria Upregulating CD14 in MSCs enhances LPS-induced response and antibacterial traits CD14 upregulation homogenizes MSC transcriptional profiles across individual cells
Collapse
|
16
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
17
|
Munoz-Perez E, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics 2021; 13:pharmaceutics13111802. [PMID: 34834217 PMCID: PMC8617629 DOI: 10.3390/pharmaceutics13111802] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| |
Collapse
|
18
|
TNF-α and IFN-γ Participate in Improving the Immunoregulatory Capacity of Mesenchymal Stem/Stromal Cells: Importance of Cell-Cell Contact and Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179531. [PMID: 34502453 PMCID: PMC8431422 DOI: 10.3390/ijms22179531] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have an immunoregulatory capacity and have been used in different clinical protocols requiring control of the immune response. However, variable results have been obtained, mainly due to the effect of the microenvironment on the induction, increase, and maintenance of MSC immunoregulatory mechanisms. In addition, the importance of cell–cell contact for MSCs to efficiently modulate the immune response has recently been highlighted. Because these interactions would be difficult to achieve in the physiological context, the release of extracellular vesicles (EVs) and their participation as intermediaries of communication between MSCs and immune cells becomes relevant. Therefore, this article focuses on analyzing immunoregulatory mechanisms mediated by cell contact, highlighting the importance of intercellular adhesion molecule-1 (ICAM-1) and the participation of EVs. Moreover, the effects of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), the main cytokines involved in MSC activation, are examined. These cytokines, when used at the appropriate concentrations and times, would promote increases in the expression of immunoregulatory molecules in the cell and allow the acquisition of EVs enriched with these molecules. The establishment of certain in vitro activation guidelines will facilitate the design of conditioning protocols to obtain functional MSCs or EVs in different pathophysiological conditions.
Collapse
|
19
|
Mesenchymal Stromal Cells Regulate Sialylations of N-Glycans, Affecting Cell Migration and Survival. Int J Mol Sci 2021; 22:ijms22136868. [PMID: 34206740 PMCID: PMC8267656 DOI: 10.3390/ijms22136868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
N-Glycosylations are an important post-translational modification of proteins that can significantly impact cell function. Terminal sialic acid in hybrid or complex N-glycans has been shown to be relevant in various types of cancer, but its role in non-malignant cells remains poorly understood. We have previously shown that the motility of human bone marrow derived mesenchymal stromal cells (MSCs) can be modified by altering N-glycoforms. The goal of this study was to determine the role of sialylated N-glycans in MSCs. Here, we show that IFN-gamma or exposure to culture media low in fetal bovine serum (FBS) increases sialylated N-glycans, while PDGF-BB reduces them. These stimuli alter mRNA levels of sialyltransferases such as ST3Gal1, ST6Gal1, or ST3Gal4, suggesting that sialylation of N-glycans is regulated by transcriptional control of sialyltransferases. We next show that 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-Neu5Ac) effectively inhibits sialylations in MSCs. Supplementation with 3F-Neu5Ac increases adhesion and migration of MSCs, as assessed by both videomicroscopy and wound/scratch assays. Interestingly, pre-treatment with 3F-Neu5Ac also increases the survival of MSCs in an in vitro ischemia model. We also show that pre-treatment or continuous treatment with 3F-Neu5Ac inhibits both osteogenic and adipogenic differentiation of MSCs. Finally, secretion of key trophic factors by MSCs is variably affected upon exposure to 3F-Neu5Ac. Altogether, our experiments suggest that sialylation of N-glycans is tightly regulated in response to environmental cues and that glycoengineering MSCs to reduce sialylated N-glycans could be beneficial to increase both cell migration and survival, which may positively impact the therapeutic potential of the cells.
Collapse
|
20
|
Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021; 21:e21. [PMID: 34277111 PMCID: PMC8263212 DOI: 10.4110/in.2021.21.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.
Collapse
Affiliation(s)
- Yongtong Ge
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Qingzhi Jia
- Affiliated Hospital of Jining Medical College, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| |
Collapse
|
21
|
Lambour J, Naranjo-Gomez M, Boyer-Clavel M, Pelegrin M. Differential and sequential immunomodulatory role of neutrophils and Ly6C hi inflammatory monocytes during antiviral antibody therapy. Emerg Microbes Infect 2021; 10:964-981. [PMID: 33858301 PMCID: PMC8158214 DOI: 10.1080/22221751.2021.1913068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antiviral monoclonal antibodies (mAbs) can generate protective immunity through Fc-FcγRs interactions. We previously showed a role for immune complexes (ICs) in the enhancement of antiviral T-cell responses through FcγR-mediated activation of dendritic cells (DCs). Here we addressed how mAb therapy in retrovirus-infected mice affects the activation of neutrophils and inflammatory monocytes, two FcγR-expressing innate effector cells rapidly recruited to sites of infection. We found that both cell-types activated in vitro by viral ICs secreted chemokines able to recruit monocytes and neutrophils themselves. Moreover, inflammatory cytokines potentiated chemokines and cytokines release by IC-activated cells and induced FcγRIV upregulation. Similarly, infection and mAb-treatment upregulated FcγRIV on neutrophils and inflammatory monocytes and enhanced their cytokines/chemokines secretion. Notably, upon antibody therapy neutrophils and inflammatory monocytes displayed distinct functional activation states and sequentially modulated the antiviral immune response by secreting Th1-type polarizing cytokines and chemokines, which occurred in a FcγRIV-dependent manner. Consistently, FcγRIV- blocking in mAb-treated, infected mice led to reduced immune protection. Our work provides new findings on the immunomodulatory role of neutrophils and monocytes in the enhancement of immune responses upon antiviral mAb therapy.
Collapse
Affiliation(s)
| | - Mar Naranjo-Gomez
- IGMM, Univ Montpellier, CNRS, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Univ Montpellier, CNRS, Montpellier, France
| | - Mireia Pelegrin
- IGMM, Univ Montpellier, CNRS, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
22
|
Yu WD, Kim YJ, Cho MJ, Kim GJ, Kim SH, Kim MJ, Ko JJ, Lee JH. MIT-001 Restores Human Placenta-Derived Mesenchymal Stem Cells by Enhancing Mitochondrial Quiescence and Cytoskeletal Organization. Int J Mol Sci 2021; 22:ijms22105062. [PMID: 34064719 PMCID: PMC8151078 DOI: 10.3390/ijms22105062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a major cause of several chronic diseases and is reported to be recovered by the immuno-modulation of mesenchymal stem cells (MSCs). While most studies have focussed on the anti-inflammatory roles of MSCs in stem cell therapy, the impaired features of MSCs, such as the loss of homeostasis by systemic aging or pathologic conditions, remain incompletely understood. In this study, we investigated whether the altered phenotypes of human placenta-derived MSCs (hPD-MSCs) exposed to inflammatory cytokines, including TNF-α and IFN-γ, could be protected by MIT-001, a small anti-inflammatory and anti-necrotic molecule. MIT-001 promoted the spindle-like shape and cytoskeletal organization extending across the long cell axis, whereas hPD-MSCs exposed to TNF-α/IFN-γ exhibited increased morphological heterogeneity with an abnormal cell shape and cytoskeletal disorganization. Importantly, MIT-001 improved mitochondrial distribution across the cytoplasm. MIT-001 significantly reduced basal respiration, ATP production, and cellular ROS levels and augmented the spare respiratory capacity compared to TNF-α/IFN-γ-exposed hPD-MSCs, indicating enhanced mitochondrial quiescence and homeostasis. In conclusion, while TNF-α/IFN-γ-exposed MSCs lost homeostasis and mitochondrial quiescence by becoming over-activated in response to inflammatory cytokines, MIT-001 was able to rescue mitochondrial features and cellular phenotypes. Therefore, MIT-001 has therapeutic potential for clinical applications to treat mitochondrion-related inflammatory diseases.
Collapse
Affiliation(s)
- Won Dong Yu
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
| | - Yu Jin Kim
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea;
| | - Min Jeong Cho
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
| | - Soon Ha Kim
- Mitoimmune Therapeutics Inc., Gangnam-gu, Seoul 06253, Korea;
| | - Myung Joo Kim
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea;
- Correspondence: (M.J.K.); (J.J.K.); (J.H.L.); Tel.: +82-2-2002-0406 (J.H.L.)
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
- Correspondence: (M.J.K.); (J.J.K.); (J.H.L.); Tel.: +82-2-2002-0406 (J.H.L.)
| | - Jae Ho Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea;
- Correspondence: (M.J.K.); (J.J.K.); (J.H.L.); Tel.: +82-2-2002-0406 (J.H.L.)
| |
Collapse
|
23
|
McKenna DH, Stroncek DF. Cellular Engineering. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int J Mol Sci 2021; 22:4109. [PMID: 33921181 PMCID: PMC8071559 DOI: 10.3390/ijms22084109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Neo P. Mokgoro
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Nico Lourens
- Department of Urology, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kalevo Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland;
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Radiochemistry, South African Nuclear Energy Corporation SOC (Necsa), Pelindaba 0001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
25
|
Differential Immunomodulatory Effect of Carbon Dots Influenced by the Type of Surface Passivation Agent. Inflammation 2021; 43:777-783. [PMID: 31873835 DOI: 10.1007/s10753-019-01165-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanodots (CDs) are often synthesized from natural sources including honey, molasses, fruits, and foods, and plant extracts simply through caramelization. They have wide biological applications especially as drug delivery vehicles and bioimaging agent due to their small size and biocompatibility. This article details the synthesis of carbon dots from carob and its derivatives by surface passivation with polyethylene glycol (PEG), polyvinyl alcohol (PVA), and alginate (ALG). We investigated the immune response against CDs and evaluated the effect of surface passivation agents on their immunomodulatory functions. CDPVA had strong anti-inflammatory activities, whereas CDALG were pro-inflammatory. CDPEG had mild anti-inflammatory activities suggesting that these CDs can be used in the drug delivery studies as inert carriers. These results showed that depending on the type of activated groups dominated on the surface, CDs exerted differential effects on the inflammatory potential of the macrophages by changing the pro-inflammatory TNFα and IL6 production levels.
Collapse
|
26
|
Peltzer J, Lund K, Goriot ME, Grosbot M, Lataillade JJ, Mauduit P, Banzet S. Interferon-γ and Hypoxia Priming Have Limited Effect on the miRNA Landscape of Human Mesenchymal Stromal Cells-Derived Extracellular Vesicles. Front Cell Dev Biol 2020; 8:581436. [PMID: 33384991 PMCID: PMC7769832 DOI: 10.3389/fcell.2020.581436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy has received great interest in regenerative medicine. Priming the cells during the culture phase can improve their efficacy and/or survival after injection. The literature suggests that MSC extracellular vesicles (EV) can recapitulate a substantial part of the beneficial effects of the cells they originate from, and that micro-RNAs (miRNAs) are important players in EV biological action. Here, our aim was to determine if two classical priming methods of MSC, interferon-gamma (IFNγ) and hypoxia (HYP), could modify their EV miRNA content. Human bone marrow MSCs (BM-MSCs) from five healthy donors were cultured with IFNγ or in HYP or in control (CONT) conditions. The conditioned media were collected after 48 h in serum-free condition and EV were isolated by ultracentrifugation. Total RNA was isolated, pools of CONT, IFN, and HYP cDNA were prepared, and a miRNA profiling was performed using RT-qPCR. Then, miRNAs were selected based on their detectability and measured on each individual EV sample. Priming had no effect on EV amount or size distribution. A set of 81 miRNAs was detected in at least one of the pools of EVs. They were measured on each individual sample; 41 miRNAs were detected in all samples. The principal component analysis (PCA) failed to discriminate the groups. HYP induced a significant decrease in EV hsa-miR-34a-3p content and IFN induced a significant increase in five miRNAs (hsa-miR-25-3p, hsa-miR-106a-5p, hsa-miR-126-3p, hsa-miR-451a, and hsa-miR-665). Taken together, we found only limited alterations in the miRNA landscape of MSC EV with a high inter-individual variability.
Collapse
Affiliation(s)
- Juliette Peltzer
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Kyle Lund
- Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Marie-Emmanuelle Goriot
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Marion Grosbot
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Philippe Mauduit
- UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| |
Collapse
|
27
|
Gonzalez-Pujana A, de Lázaro I, Vining KH, Santos-Vizcaino E, Igartua M, Hernandez RM, Mooney DJ. 3D encapsulation and inflammatory licensing of mesenchymal stromal cells alter the expression of common reference genes used in real-time RT-qPCR. Biomater Sci 2020; 8:6741-6753. [PMID: 33136110 DOI: 10.1039/d0bm01562h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human mesenchymal stromal cells (hMSCs) hold great promise in the treatment of inflammatory and immune diseases, due to their immunomodulatory capacity. Their therapeutic activity is often assessed measuring levels of expression of immunomodulatory genes such as indoleamine 2,3-dioxygenase 1 (IDO1) and real-time RT-qPCR is most predominantly the method of choice due to its high sensitivity and relative simplicity. Currently, multiple strategies are explored to promote hMSC-mediated immunomodulation, overlooking the effects they pose in the expression of genes commonly used as internal calibrators in real-time RT-qPCR analyses. However, variations in their expression could introduce significant errors in the evaluation of the therapeutic potential of hMSCs. This work investigates, for the first time, how some of these strategies - 3D encapsulation, the mechanical properties of the 3D matrix and inflammatory licensing - influence the expression of common reference genes in hMSCs. Both 3D encapsulation and inflammatory licensing alter significantly the expression of β-actin (ACTB) and Ubiquitin C (UBC), respectively. Using them as normalization factors leads to an erroneous assessment of IDO1 mRNA levels, therefore resulting in over or underestimation of the therapeutic potential of hMSCs. In contrast, the range of mechanical properties of the matrix encapsulating the cells did not significantly affect the expression of any of the reference genes studied. Moreover, we identify RPS13 and RPL30 as reference genes of choice under these particular experimental conditions. These results demonstrate the vital importance of validating the expression of reference genes to correctly assess the therapeutic potential of hMSCs by real-time RT-qPCR.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Dagnino APA, Chagastelles PC, Medeiros RP, Estrázulas M, Kist LW, Bogo MR, Weber JBB, Campos MM, Silva JB. Neural Regenerative Potential of Stem Cells Derived from the Tooth Apical Papilla. Stem Cells Dev 2020; 29:1479-1496. [PMID: 32988295 DOI: 10.1089/scd.2020.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The regenerative effects of stem cells derived from dental tissues have been previously investigated. This study assessed the potential of human tooth stem cells from apical papilla (SCAP) on nerve regeneration. The SCAP collected from nine individuals were characterized and polarized by exposure to interferon-γ (IFN-γ). IFN-γ increased kynurenine and interleukin-6 (IL-6) production by SCAP, without affecting the cell viability. IFN-γ-primed SCAP exhibited a decrease of brain-derived neurotrophic factor (BDNF) mRNA levels, followed by an upregulation of glial cell-derived neurotrophic factor mRNA. Ex vivo, the co-culture of SCAP with neurons isolated from the rat dorsal root ganglion induced neurite outgrowth, accompanied by increased BDNF secretion, irrespective of IFN-γ priming. In vivo, the local application of SCAP reduced the mechanical and thermal hypersensitivity in Wistar rats that had been submitted to sciatic chronic constriction injury. The SCAP also reduced the pain scores, according to the evaluation of the Grimace scale, partially restoring the myelin damage and BDNF immunopositivity secondary to nerve lesion. Altogether, our results provide novel evidence about the regenerative effects of human SCAP, indicating their potential to handle nerve injury-related complications.
Collapse
Affiliation(s)
- Ana Paula Aquistapase Dagnino
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Cesar Chagastelles
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Renata Priscila Medeiros
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Marina Estrázulas
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Batista Blessmann Weber
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Martha Campos
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jefferson Braga Silva
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
29
|
Human Bone Marrow Mesenchymal Stem/Stromal Cells Exposed to an Inflammatory Environment Increase the Expression of ICAM-1 and Release Microvesicles Enriched in This Adhesive Molecule: Analysis of the Participation of TNF- α and IFN- γ. J Immunol Res 2020; 2020:8839625. [PMID: 33335929 PMCID: PMC7723491 DOI: 10.1155/2020/8839625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BM-MSCs) have immunoregulatory capacity; therefore, they have been used in different clinical protocols in which it is necessary to decrease the immune response. This capacity is mainly regulated by TNF-α and IFN-γ, and it has been observed that cell-cell contact, mainly mediated by ICAM-1, is important for MSCs to carry out efficient immunoregulation. Therefore, in the present work, we analyzed the effect of TNF-α alone or in combination with IFN-γ on the expression of ICAM-1. Besides, given the importance of cell contact in the immunoregulatory function of MSCs, we analyzed whether these cells release ICAM-1+ microvesicles (MVs). Our results show for the first time that TNF-α is capable of increasing the early expression of ICAM-1 in human BM-MSCs. Also, we observed that TNF-α and IFN-γ have a synergistic effect on the increase in the expression of ICAM-1. Furthermore, we found that BM-MSCs exposed to an inflammatory environment release MVs enriched in ICAM-1 (MVs-ICAM-1high). The knowledge generated in this study will contribute to the improvement of in vitro conditioning protocols that favor the therapeutic effect of these cells or their products.
Collapse
|
30
|
The influenza virus NS1A binding protein gene modulates macrophages response to cytokines and phagocytic potential in inflammation. Sci Rep 2020; 10:15302. [PMID: 32943673 PMCID: PMC7498593 DOI: 10.1038/s41598-020-72342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages show remarkable phenotypic plasticity in response to environmental signals. Although it is generally less considered, cytoskeletal changes in macrophages influence their phenotype, including phagocytosis and secretion of soluble cytokines. Influenza virus NS1A-binding protein (Ivns1abp) belongs to the Kelch family of proteins that play a central role in actin cytoskeleton dynamics by directly associating with F-actin and by protecting against actin derangement. Due to its role in cytoskeleton preservation, the Ivns1abp gene might be a critical regulator of the macrophage phenotype and function under inflammatory conditions. In this study, we determine that the modulation of the Ivns1abp gene in macrophages could modify resistance to macrophages against inflammation and maintain functional phagocytosis. Our results indicate that inflammatory insults inhibit the Ivns1abp gene, whereby phagocytosis is inhibited and the ability of macrophages to induce proliferation and repair of damaged cells is compromised. Furthermore, our results show that inflammatory insults alter the activity of the transcription factor c-myc, a factor which directly modulates the expression of the Ivns1abp gene. In conclusion, this study demonstrates a central role of lvns1abp in promoting and preserving a reparative macrophage phenotype and resistance to this inflammatory environment.
Collapse
|
31
|
Zayed M, Iohara K. Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019. Cell Transplant 2020; 29:963689720952089. [PMID: 32830527 PMCID: PMC7443577 DOI: 10.1177/0963689720952089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, originating from Wuhan, China, is known to cause severe acute respiratory symptoms. The occurrence of a cytokine storm in the lungs is a critical step in the disease pathogenesis, as it causes pathological lesions, pulmonary edema, and acute respiratory distress syndrome, potentially resulting in death. Currently, there is no effective treatment that targets the cytokine storm and helps regenerate the damaged tissue. Mesenchymal stem cells (MSCs) are known to act as anti-inflammatory/immunomodulatory candidates and activate endogenous regeneration. As a result, MSC therapy is a potential treatment approach for COVID-19. Intravenous injection of clinical-grade MSCs into COVID-19 patients can induce an immunomodulatory response along with improved lung function. Dental pulp stem cells (DPSCs) are considered a potential source of MSCs for immunomodulation, tissue regeneration, and clinical application. Although some current clinical trials have treated COVID-19 patients with DPSCs, this therapy has not been approved. Here, we review the potential use of DPSCs and their significance in the development of a therapy for COVID-19.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
- Mohammed Zayed, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi 474-8511, Japan.
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
| |
Collapse
|
32
|
Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020; 11:345. [PMID: 32771052 PMCID: PMC7414268 DOI: 10.1186/s13287-020-01855-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous non-hematopoietic fibroblast-like cells that can differentiate into cells of multiple lineages, such as chondrocytes, osteoblasts, adipocytes, myoblasts, and others. These multipotent MSCs can be found in nearly all tissues but mostly located in perivascular niches, playing a significant role in tissue repair and regeneration. Additionally, MSCs interact with immune cells both in innate and adaptive immune systems, modulating immune responses and enabling immunosuppression and tolerance induction. Understanding the biology of MSCs and their roles in clinical treatment is crucial for developing MSC-based cellular therapy for a variety of pathological conditions. Here, we review the progress in the study on the mechanisms underlying the immunomodulatory and regenerative effects of MSCs; update the medical translation of MSCs, focusing on the registration trials leading to regulatory approvals; and discuss how to improve therapeutic efficacy and safety of MSC applications for future.
Collapse
Affiliation(s)
- Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
- Department of Biomedicine, University of Basel, Klingelbergstr 70, CH-4056, Basel, Switzerland
| | - Ju Jiang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Mingdao Building, Dongan Road 131, Shanghai, 200032, China
| | - Jinyan Zhang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Yang Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China.
| |
Collapse
|
33
|
Gonzalez-Pujana A, Vining KH, Zhang DKY, Santos-Vizcaino E, Igartua M, Hernandez RM, Mooney DJ. Multifunctional biomimetic hydrogel systems to boost the immunomodulatory potential of mesenchymal stromal cells. Biomaterials 2020; 257:120266. [PMID: 32763614 DOI: 10.1016/j.biomaterials.2020.120266] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) hold great therapeutic potential, in part because of their immunomodulatory properties. However, these properties can be transient and depend on multiple factors. Here, we developed a multifunctional hydrogel system to synergistically enhance the immunomodulatory properties of MSCs, using a combination of sustained inflammatory licensing and three-dimensional (3D) encapsulation in hydrogels with tunable mechanical properties. The immunomodulatory extracellular matrix hydrogels (iECM) consist of an interpenetrating network of click functionalized-alginate and fibrillar collagen, in which interferon γ (IFN-γ) loaded heparin-coated beads are incorporated. The 3D microenvironment significantly enhanced the expression of a wide panel of pivotal immunomodulatory genes in bone marrow-derived primary human MSCs (hMSCs), compared to two-dimensional (2D) tissue culture. Moreover, the inclusion of IFN-γ loaded heparin-coated beads prolonged the expression of key regulatory genes upregulated upon licensing, including indoleamine 2,3-dioxygenase 1 (IDO1) and galectin-9 (GAL9). At a protein level, iECM hydrogels enhanced the secretion of the licensing responsive factor Gal-9 by hMSCs. Its presence in hydrogel conditioned media confirmed the correct release and diffusion of the factors secreted by hMSCs from the system. Furthermore, co-culture of iECM-encapsulated hMSCs and activated human T cells resulted in suppressed proliferation, demonstrating direct regulation on immune cells. These data highlight the potential of iECM hydrogels to enhance the immunomodulatory properties of hMSCs in cell therapies.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
| | - Kyle H Vining
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - David K Y Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Boyt DT, Boland LK, Burand AJ, Brown AJ, Ankrum JA. Dose and duration of interferon γ pre-licensing interact with donor characteristics to influence the expression and function of indoleamine-2,3-dioxygenase in mesenchymal stromal cells. J R Soc Interface 2020; 17:20190815. [PMID: 32546114 DOI: 10.1098/rsif.2019.0815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human mesenchymal stromal cells (MSCs) are a leading cell therapy candidate for the treatment of immune and inflammatory diseases due to their potent regulation of immune cells. MSC expression of indoleamine-2,3-dioxygenase (IDO) upon interferon γ (IFNγ) exposure has been proposed as both a sentinel marker and key mediator of MSC immunomodulatory potency. Rather than wait for in vivo exposure to cytokines, MSCs can be pre-licensed during manufacturing to enhance IDO expression. In this study, we systematically examine the relative role that the dose of IFNγ, the duration of pre-licensing and the donor of origin play in dictating MSC production of functional IDO. We find that across three human MSC donors, MSCs increase their expression of IDO in response to both increased dose of IFNγ and duration of pre-licensing. However, with extended pre-licensing, the expression of IDO no longer predicts MSCs ability to suppress activated peripheral blood mononuclear cells. In addition, pre-licensing dose and duration are revealed to be minor modifiers of MSCs inherent potency, and thus cannot be manipulated to boost poor donors to the levels of high-performing donors. Thus, the dose and duration of pre-licensing should be tailored to optimize performance of specific donors and an emphasis on donor selection is needed to realize significant benefits of pre-licensing.
Collapse
Affiliation(s)
- Devlin T Boyt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Anthony J Burand
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Alex J Brown
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Denver, CO, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
35
|
Lynch K, Treacy O, Chen X, Murphy N, Lohan P, Islam MN, Donohoe E, Griffin MD, Watson L, McLoughlin S, O'Malley G, Ryan AE, Ritter T. TGF-β1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection In Vivo. Mol Ther 2020; 28:2023-2043. [PMID: 32531237 PMCID: PMC7474271 DOI: 10.1016/j.ymthe.2020.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapeutic option for multiple immune diseases/disorders; however, efficacy of MSC treatments can vary significantly. We present a novel licensing strategy to improve the immunosuppressive capacity of MSCs. Licensing murine MSCs with transforming growth factor-β1 (TGF-β MSCs) significantly improved their ability to modulate both the phenotype and secretome of inflammatory bone marrow-derived macrophages and significantly increased the numbers of regulatory T lymphocytes following co-culture assays. These TGF-β MSC-expanded regulatory T lymphocytes also expressed significantly higher levels of PD-L1 and CD73, indicating enhanced suppressive potential. Detailed analysis of T lymphocyte co-cultures revealed modulation of secreted factors, most notably elevated prostaglandin E2 (PGE2). Furthermore, TGF-β MSCs could significantly prolong rejection-free survival (69.2% acceptance rate compared to 21.4% for unlicensed MSC-treated recipients) in a murine corneal allograft model. Mechanistic studies revealed that (1) therapeutic efficacy of TGF-β MSCs is Smad2/3-dependent, (2) the enhanced immunosuppressive capacity of TGF-β MSCs is contact-dependent, and (3) enhanced secretion of PGE2 (via prostaglandin EP4 [E-type prostanoid 4] receptor) by TGF-β MSCs is the predominant mediator of Treg expansion and T cell activation and is associated with corneal allograft survival. Collectively, we provide compelling evidence for the use of TGF-β1 licensing as an unconventional strategy for enhancing MSC immunosuppressive capacity.
Collapse
Affiliation(s)
- Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Luke Watson
- Orbsen Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Steven McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
36
|
Kim H, Khanna V, Kucaba TA, Zhang W, Sehgal D, Ferguson DM, Griffith TS, Panyam J. TLR7/8 Agonist-Loaded Nanoparticles Augment NK Cell-Mediated Antibody-Based Cancer Immunotherapy. Mol Pharm 2020; 17:2109-2124. [PMID: 32383885 DOI: 10.1021/acs.molpharmaceut.0c00271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activated natural killer (NK) cells can kill malignant tumor cells via granule exocytosis and secretion of IFN-γ, a key regulator of the TH1 response. Thus, mobilization of NK cells can augment cancer immunotherapy, particularly when mediated through antibody-dependent cellular cytotoxicity (ADCC). Stimulation of toll-like receptor (TLR)7/8 activity in dendritic cells promotes pro-inflammatory cytokine secretion and costimulatory molecule upregulation, both of which can potentiate NK cell activation. However, currently available TLR7/8 agonists exhibit unfavorable pharmacokinetics, limiting their in vivo efficacy. To enable efficient delivery to antigen-presenting cells, we encapsulated a novel imidazoquinoline-based TLR7/8 agonist in pH-responsive polymeric NPs. Enhanced costimulatory molecule expression on dendritic cells and a stronger pro-inflammatory cytokine response were observed with a NP-encapsulated agonist, compared to that with the soluble form. Treatment with NP-encapsulated agonists resulted in stronger in vivo cytotoxicity and prolonged activation of NK cells compared to that with a soluble agonist. In addition, TLR7/8 agonist-loaded NPs potentiated stronger NK cell degranulation, which resulted in enhanced in vitro and in vivo ADCC mediated by the epidermal growth factor receptor-targeting antibody cetuximab. TLR7/8 agonist-loaded NP treatment significantly enhanced the antitumor efficacy of cetuximab and an anti-HER2/neu antibody in mouse tumor models. Collectively, our data show that a pH-responsive NP-encapsulating TLR7/8 agonist could be used as a potent immunostimulatory adjuvant for antibody-based cancer immunotherapy by promoting NK cell activation.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vidhi Khanna
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Drishti Sehgal
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M Ferguson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Hyland M, Mennan C, Wilson E, Clayton A, Kehoe O. Pro-Inflammatory Priming of Umbilical Cord Mesenchymal Stromal Cells Alters the Protein Cargo of Their Extracellular Vesicles. Cells 2020; 9:cells9030726. [PMID: 32188006 PMCID: PMC7140705 DOI: 10.3390/cells9030726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Umbilical cord mesenchymal stromal cells (UCMSCs) have shown an ability to modulate the immune system through the secretion of paracrine mediators, such as extracellular vesicles (EVs). However, the culture conditions that UCMSCs are grown in can alter their secretome and thereby affect their immunomodulatory potential. UCMSCs are commonly cultured at 21% O2 in vitro, but recent research is exploring their growth at lower oxygen conditions to emulate circulating oxygen levels in vivo. Additionally, a pro-inflammatory culture environment is known to enhance UCMSC anti-inflammatory potential. Therefore, this paper examined EVs from UCMSCs grown in normal oxygen (21% O2), low oxygen (5% O2) and pro-inflammatory conditions to see the impact of culture conditions on the EV profile. EVs were isolated from UCMSC conditioned media and characterised based on size, morphology and surface marker expression. EV protein cargo was analysed using a proximity-based extension assay. Results showed that EVs had a similar size and morphology. Differences were found in EV protein cargo, with pro-inflammatory primed EVs showing an increase in proteins associated with chemotaxis and angiogenesis. This showed that the UCMSC culture environment could alter the EV protein profile and might have downstream implications for their functions in immunomodulation.
Collapse
Affiliation(s)
- Mairead Hyland
- School of Medicine, Keele University at the RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK;
| | - Claire Mennan
- School of Pharmacy and Bioengineering at the RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK;
| | - Emma Wilson
- Chester Medical School, University of Chester, Chester CH2 1BR, UK;
| | | | - Oksana Kehoe
- School of Medicine, Keele University at the RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK;
- Correspondence: ; Tel.: +44-(0)-1691404149
| |
Collapse
|
38
|
Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4:22. [PMID: 31815001 PMCID: PMC6889290 DOI: 10.1038/s41536-019-0083-6] [Citation(s) in RCA: 1206] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.
Collapse
|
39
|
Hu S, Yuan J, Xu J, Li X, Zhang G, Ma Q, Zhang B, Hu T, Song G. TNF-α and IFN-γ synergistically inhibit the repairing ability of mesenchymal stem cells on mice colitis and colon cancer. Am J Transl Res 2019; 11:6207-6220. [PMID: 31632588 PMCID: PMC6789221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) can be efficiently recruited to wound, inflammatory and tumor sites to repair and regenerate tissue. However, its role in colitis and colitis associated colon cancer is still controversial. This study was designed to evaluate the role and mechanisms of inflammatory cytokines-activated-MSCs in mice colitis and colon cancer. METHODS We selected two well-characterized pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), to expand the inflammatory microenvironment of MSCs. The severity of colitis and colon cancer was evaluated by measuring colon length, Myeloperoxidase (MPO) activity, Hematoxylin-eosin staining, Western Blot, Immunohistochemistry and Immunofluorescence. These techniques were also performed to analyze the mechanisms of inflammatory cytokines-activated-MSCs in mice colitis and colon cancer. Real-time PCR and Enzyme-linked Immunosorbent Assay (ELISA) were used to measure the secretion of pro-inflammatory factors. RESULTS We found that the incubation of MSCs with TNF-α and IFN-γ aggravates colitis, where high levels of pro-inflammatory factors, such as interleukin (IL)-17, IL-8, IL-12, IL-1β, transforming growth factor (TGF)-β, TNF-α and IFN-γ, were secreted. Furthermore, this phenomenon was associated with the activation of the nuclear factor-kappa-B (NF-κB)/Signal transducer and activator of transcription three (STAT3) pathway. In addition, our study demonstrated that TNF-α and IFN-γ pretreated MSCs synergistically exacerbated mice colon cancer, which was closely associated with angiogenesis. CONCLUSIONS Taken together, these results indicate that TNF-α and IFN-γ pretreatment effectively inhibited the repair ability of MSCs and accelerated inflammation and tumor progression involving NF-κB/STAT3 pathway and angiogenesis-related factors.
Collapse
Affiliation(s)
- Shaoping Hu
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
- Zhangzhou Health Vocational CollegeZhangzhou 363000, China
| | - Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Jiajia Xu
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Bing Zhang
- Department of Basic Medicine, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| |
Collapse
|
40
|
García JR, Quirós M, Han WM, O'Leary MN, Cox GN, Nusrat A, García AJ. IFN-γ-tethered hydrogels enhance mesenchymal stem cell-based immunomodulation and promote tissue repair. Biomaterials 2019; 220:119403. [PMID: 31401468 DOI: 10.1016/j.biomaterials.2019.119403] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Because of their immunomodulatory activities, human mesenchymal stem cells (hMSCs) are being explored to treat a variety of chronic conditions such as inflammatory bowel disorders and graft-vs-host disease. Treating hMSCs with IFN-γ prior to administration augments these immunomodulatory properties; however, this ex vivo treatment limits the broad applicability of this therapy due to technical and regulatory issues. In this study, we engineered an injectable synthetic hydrogel with tethered recombinant IFN-γ that activates encapsulated hMSCs to increase their immunomodulatory functions and avoids the need for ex vivo manipulation. Tethering IFN-γ to the hydrogel increases retention of IFN-γ within the biomaterial while preserving its biological activity. hMSCs encapsulated within hydrogels with tethered IFN-γ exhibited significant differences in cytokine secretion and showed a potent ability to halt activated T-cell proliferation and monocyte-derived dendritic cell differentiation compared to hMSCs that were pre-treated with IFN-γ and untreated hMSCs. Importantly, hMSCs encapsulated within hydrogels with tethered IFN-γ accelerated healing of colonic mucosal wounds in both immunocompromised and immunocompetent mice. This novel approach for licensing hMSCs with IFN-γ may enhance the clinical translation and efficacy of hMSC-based therapies.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Miguel Quirós
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
41
|
Yu Y, Yoo SM, Park HH, Baek SY, Kim YJ, Lee S, Kim YL, Seo KW, Kang KS. Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate sodium-induced colitis. J Tissue Eng Regen Med 2019; 13:1792-1804. [PMID: 31293088 DOI: 10.1002/term.2930] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Preconditioning with inflammatory cytokines has improved mesenchymal stem cells characteristics, including differentiation and immunomodulating functions. In this study, we developed a preconditioning combination strategy using interleukin-1beta (IL-1β) and interferon-gamma (IFN-γ) to enhance the immuneregulatory ability of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Our results showed that hUCB-MSCs preconditioned with IL-1β and IFN-γ (primed hUCB-MSCs) created a statistically significant decrease in peripheral blood mononuclear cell proliferation, indicating that their immunosuppressive ability was increased. The secretion of PGE2, cyclooxygenase 2 mRNA expression, and indoleamine 2,3-dioxygenase (IDO) mRNA expression in primed hUCB-MSCs was significantly higher than those in the untreated hUCB-MSCs or the IL-1β or IFN-γ only treated hUCB-MSCs. When inhibitors of IDO and PGE2 were treated, peripheral blood mononuclear cell proliferation, which is inhibited by primed hUCB-MSCs, was recovered. We found that Th1 T cell differentiation was also inhibited by PGE2 and IDO in the primed hUCB-MSCs, and Tregs differentiation was increased by PGE2 and IDO in the primed hUCB-MSCs. Furthermore, the primed hUCB-MSCs as well as supernatants increase CD4+ T cells migration. We demonstrated the therapeutic effects of primed hUCB-MSCs in dextran sulfate sodium-induced colitis model. In conclusion, we have demonstrated that primed hUCB-MSCs simultaneously enhance PGE2 and IDO and greatly improve the immunoregulatory capacity of MSCs, and we have developed an optimal condition for pretreatment of MSCs for the treatment of immune diseases. Our results raise the possibility that the combination of PGE2 and IDO could be therapeutic mediators for controlling immunosuppression of MSCs.
Collapse
Affiliation(s)
- Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Sae Mi Yoo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Hwan Hee Park
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Song Yi Baek
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Yoon-Jin Kim
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Yu Lee Kim
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kwang-Won Seo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev 2019; 47:32-42. [DOI: 10.1016/j.cytogfr.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
43
|
Jiang B, Yan L, Wang X, Li E, Murphy K, Vaccaro K, Li Y, Xu RH. Concise Review: Mesenchymal Stem Cells Derived from Human Pluripotent Cells, an Unlimited and Quality-Controllable Source for Therapeutic Applications. Stem Cells 2019; 37:572-581. [PMID: 30561809 DOI: 10.1002/stem.2964] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
Despite the long discrepancy over their definition, heterogeneity, and functions, mesenchymal stem cells (MSCs) have proved to be a key player in tissue repair and homeostasis. Generally, somatic tissue-derived MSCs (st-MSCs) are subject to quality variations related to donated samples and biosafety concern for transmission of potential pathogens from the donors. In contrast, human pluripotent stem cells (hPSCs) are unlimited in supply, clear in the biological background, and convenient for quality control, genetic modification, and scale-up production. We, and others, have shown that hPSCs can differentiate in two dimensions or three dimensions to MSCs (ps-MSCs) via embryonic (mesoderm and neural crest) or extraembryonic (trophoblast) cell types under serum-containing or xeno-free and defined conditions. Compared to st-MSCs, ps-MSCs appear less mature, proliferate faster, express lower levels of inflammatory cytokines, and respond less to traditional protocols for st-MSC differentiation to other cell types, especially adipocytes. Nevertheless, ps-MSCs are capable of immune modulation and treatment of an increasing number of animal disease models via mitochondria transfer, paracrine, exosomes, and direct differentiation, and can be potentially used as a universal and endless therapy for clinical application. This review summarizes the progress on ps-MSCs and discusses perspectives and challenges for their potential translation to the clinic. Stem Cells 2019;37:572-581.
Collapse
Affiliation(s)
- Bin Jiang
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, People's Republic of China
| | - Li Yan
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, People's Republic of China
| | - Xiaoyan Wang
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, People's Republic of China
| | - Enqin Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, People's Republic of China
| | - Kyle Murphy
- Department of Biology, College of Arts and Sciences, University of Hartford, West Hartford, Connecticut, USA
| | - Kyle Vaccaro
- Department of Biology, College of Arts and Sciences, University of Hartford, West Hartford, Connecticut, USA
| | - Yingcui Li
- Department of Biology, College of Arts and Sciences, University of Hartford, West Hartford, Connecticut, USA
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, People's Republic of China
| |
Collapse
|
44
|
Liu S, Stroncek DF, Zhao Y, Chen V, Shi R, Chen J, Ren J, Liu H, Bae HJ, Highfill SL, Jin P. Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture. J Transl Med 2019; 17:23. [PMID: 30635013 PMCID: PMC6330466 DOI: 10.1186/s12967-018-1766-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/31/2018] [Indexed: 01/27/2023] Open
Abstract
Background Bone marrow stromal cells (BMSCs) are a heterogeneous population that participates in wound healing, immune modulation and tissue regeneration. Next generation sequencing was used to analyze transcripts from single BMSCs in order to better characterize BMSC subpopulations. Methods Cryopreserved passage 2 BMSCs from one healthy subject were cultured through passage 10. The transcriptomes of bulk BMSCs from designated passages were analyzed with microarrays and RNA sequencing (RNA-Seq). For some passages, single BMSCs were separated using microfluidics and their transcriptomes were analyzed by RNA-Seq. Results Transcriptome analysis by microarray and RNA-Seq of unseparated BMSCs from passages 2, 4, 6, 8, 9 and 10 yielded similar results; both data sets grouped passages 4 and 6 and passages 9 and 10 together and genes differentially expressed among these early and late passage BMSCs were similar. 3D Diffusion map visualization of single BMSCs from passages 3, 4, 6, 8 and 9 clustered passages 3 and 9 into two distinct groups, but there was considerable overlap for passages 4, 6 and 8 cells. Markers for early passage, FGFR2, and late passage BMSCs, PLAT, were able to identify three subpopulations within passage 3 BMSCs; one that expressed high levels of FGFR2 and low levels of PLAT; one that expressed low levels of FGFR2 and high levels of PLAT and one that expressed intermediate levels of FGFR2 and low levels of PLAT. Conclusions Single BMSCs can be separated by microfluidics and their transcriptome analyzed by next generation sequencing. Single cell analysis of early passage BMSCs identified a subpopulation of cells expressing high levels of FGFR2 that might include skeletal stem cells. Electronic supplementary material The online version of this article (10.1186/s12967-018-1766-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shutong Liu
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA.
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Victoria Chen
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - Rongye Shi
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - Jinguo Chen
- Center for Human Immunology, Autoimmunity and Inflammation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jiaqiang Ren
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - Hui Liu
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - Hee Joon Bae
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - Steven L Highfill
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| | - Ping Jin
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA
| |
Collapse
|
45
|
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol 2018; 9:2837. [PMID: 30564236 PMCID: PMC6288292 DOI: 10.3389/fimmu.2018.02837] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
Collapse
Affiliation(s)
- Joana R Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Raquel M Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Vining KH, Stafford A, Mooney DJ. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials 2018; 188:187-197. [PMID: 30366219 DOI: 10.1016/j.biomaterials.2018.10.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/13/2023]
Abstract
Materials that can mimic the fibrillar architecture of native extracellular matrix (ECM) while allowing for independent regulation of viscoelastic properties may serve as ideal, artificial ECM (aECM) to regulate cell functions. Here we describe an interpenetrating network of click-functionalized alginate, crosslinked with a combination of ionic and covalent crosslinking, and fibrillar collagen type I. Varying the mode and magnitude of crosslinking enables tunable stiffness and viscoelasticity, while altering neither the hydrogel's microscale architecture nor diffusional transport of molecules with molecular weight relevant to typical nutrients. Further, appropriately timing sequential ionic and covalent crosslinking permits self-assembly of collagen into fibrillar structures within the network. Culture of human mesenchymal stem cells (MSCs) in this mechanically-tunable ECM system revealed that MSC expression of immunomodulatory markers is differentially impacted by the viscoelasticity and stiffness of the matrix. Together, these results describe and validate a novel material system for investigating how viscoelastic mechanical properties of ECM regulate cellular behavior.
Collapse
Affiliation(s)
- Kyle H Vining
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
48
|
Aanei CM, Catafal LC. Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated. Cytometry A 2018; 93:916-928. [PMID: 30211968 DOI: 10.1002/cyto.a.23506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
Myelodysplastic syndromes are a heterogeneous group of clonal hematopoietic disorders. However, the therapies used against the hematopoietic stem cells clones have limited efficacy; they slow the evolution toward acute myeloid leukemia rather than stop clonal evolution and eradicate the disease. The progress made in recent years regarding the role of the bone marrow microenvironment in disease evolution may contribute to progress in this area. This review presents the recent updates on the role of the bone marrow microenvironment in myelodysplastic syndromes pathogenesis and tries to find answers regarding how this information could improve myelodysplastic syndromes diagnosis and therapy.
Collapse
Affiliation(s)
- Carmen Mariana Aanei
- Laboratoire d'Hématologie, CHU de Saint-Etienne, 42055 Saint-Etienne Cedex 2, France
| | - Lydia Campos Catafal
- Laboratoire d'Hématologie, CHU de Saint-Etienne, 42055 Saint-Etienne Cedex 2, France
| |
Collapse
|
49
|
Tenogenic Properties of Mesenchymal Progenitor Cells Are Compromised in an Inflammatory Environment. Int J Mol Sci 2018; 19:ijms19092549. [PMID: 30154348 PMCID: PMC6163784 DOI: 10.3390/ijms19092549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/26/2023] Open
Abstract
Transplantation of multipotent mesenchymal progenitor cells is a valuable option for treating tendon disease. Tenogenic differentiation leading to cell replacement and subsequent matrix modulation may contribute to the regenerative effects of these cells, but it is unclear whether this occurs in the inflammatory environment of acute tendon disease. Equine adipose-derived stromal cells (ASC) were cultured as monolayers or on decellularized tendon scaffolds in static or dynamic conditions, the latter represented by cyclic stretching. The impact of different inflammatory conditions, as represented by supplementation with interleukin-1β and/or tumor necrosis factor-α or by co-culture with allogeneic peripheral blood leukocytes, on ASC functional properties was investigated. High cytokine concentrations increased ASC proliferation and osteogenic differentiation, but decreased chondrogenic differentiation and ASC viability in scaffold culture, as well as tendon scaffold repopulation, and strongly influenced musculoskeletal gene expression. Effects regarding the latter differed between the monolayer and scaffold cultures. Leukocytes rather decreased ASC proliferation, but had similar effects on viability and musculoskeletal gene expression. This included decreased expression of the tenogenic transcription factor scleraxis by an inflammatory environment throughout culture conditions. The data demonstrate that ASC tenogenic properties are compromised in an inflammatory environment, with relevance to their possible mechanisms of action in acute tendon disease.
Collapse
|
50
|
Jabeen S, Zucknick M, Nome M, Dannenfelser R, Fleischer T, Kumar S, Lüders T, von der Lippe Gythfeldt H, Troyanskaya O, Kyte JA, Børresen-Dale AL, Naume B, Tekpli X, Engebraaten O, Kristensen V. Serum cytokine levels in breast cancer patients during neoadjuvant treatment with bevacizumab. Oncoimmunology 2018; 7:e1457598. [PMID: 30377556 DOI: 10.1080/2162402x.2018.1457598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
A high concentration of circulating vascular endothelial growth factor (VEGF) in cancer patients is associated with an aggressive tumor phenotype. Here, serum levels of 27 cytokines and blood cell counts were assessed in breast cancer patients receiving neoadjuvant chemotherapy with or without bevacizumab (Bev) in a randomized cohort of 132 patients with non-metastatic HER2-negative tumors. Cytokine levels were determined prior to treatment and at various time-points. The cytotoxic chemotherapy regimen of fluorouracil, epirubicin, and cyclophosphamide (FEC) had a profound impact on both circulating white blood cells and circulating cytokine levels. At the end of FEC treatment, the global decrease in cytokine levels correlated with the drop in white blood cell counts and was significantly greater in the patients of the Bev arm for cytokines, such as VEGF-A, IL-12, IP-10 and IL-10. Among patients who received Bev, those with pathological complete response (pCR) exhibited significantly lower levels of VEGF-A, IFN-γ, TNF-α and IL-4 than patients without pCR. This effect was not observed in the chemotherapy-only arm. Certain circulating cytokine profiles were found to correlate with different immune cell types at the tumor site. For the Bev arm patients, the serum cytokine levels correlated with higher levels of cytotoxic T cells at the end of the therapy regimen, which was indicative of treatment response. The higher response rate for Bev-treated patients and stronger correlations between serum cytokine levels and infiltrating CD8T cells merits further investigation.
Collapse
Affiliation(s)
- Shakila Jabeen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marianne Nome
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ruth Dannenfelser
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Surendra Kumar
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Torben Lüders
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hedda von der Lippe Gythfeldt
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.,Simons Center for Data Analysis, Simons Foundation, New York, New York, United States of America
| | - Jon Amund Kyte
- Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Bjørn Naume
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Xavier Tekpli
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Olav Engebraaten
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| |
Collapse
|