1
|
Ighalo JO, Ohoro CR, Ojukwu VE, Oniye M, Shaikh WA, Biswas JK, Seth CS, Mohan GBM, Chandran SA, Rangabhashiyam S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025; 28:111524. [PMID: 39807171 PMCID: PMC11728978 DOI: 10.1016/j.isci.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process. The alkaline nature of biochar is attributed to surface functional groups and addresses soil acidity issues. The porous structure and oxygen-containing functional groups contribute to soil microbial adhesion, affecting soil health and nutrient availability, improving plant root morphology, photosynthetic pigments, enzyme activities, and growth even under salinity stress conditions. The review underscores the potential of biochar to address diverse agricultural challenges, emphasizing the need for further research and application-specific considerations.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem R. Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Victor E. Ojukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wasim Akram Shaikh
- Department of Basic Science, School of Science and Technology, The Neotia University, Sarisha, West Bengal 743368, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | | | - Ganesh Babu Malli Mohan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, USA
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Selvasembian Rangabhashiyam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
2
|
Ferreira OE, Silva HDM, Alves AB, de Aguilar MG, Pimenta LPS, Costa GHG, da Cruz MCP, da Silva Bezerra AC, Machado ART. Biochar enhances soil interactions and the initial development of sugarcane. Sci Rep 2024; 14:27610. [PMID: 39528628 PMCID: PMC11555256 DOI: 10.1038/s41598-024-78706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The present study evaluated the effects of biochar derived from sugarcane straw on the physicochemical and biological properties of soil and the initial development of sugarcane. Microcosm and pot experiments were conducted over 60 days to monitor variables such as pH, water retention capacity, microbial activity, initial growth, and the metabolomic profile of the plant leaves. The results indicated that biochar increased the soil water retention capacity without significantly affecting the pH. The biochar significantly promoted root length and mass and favored the growth of the soil microbiota, as reflected by an increase in the amount of microbial biomass carbon. Metabolomic analysis of sugarcane leaves revealed that soil conditioning with biochar at application rates of 3 and 5% w/w led to increased concentrations of the amino acids isoleucine and valine, accompanied by a reduction in galactose, maltose, and glucose levels. Furthermore, biochar treatment resulted in a decrease in aconitic acid and an increase in acetic and succinic acid concentrations. These findings suggest that biochar may be a promising strategy for enhancing the productivity and sustainability of sugarcane cultivation.
Collapse
Affiliation(s)
- Osania Emerenciano Ferreira
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Minas Gerais, Frutal, Minas Gerais, Brazil.
| | - Halax Duart Martins Silva
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Minas Gerais, Frutal, Minas Gerais, Brazil
| | - Adriana Barboza Alves
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Minas Gerais, Frutal, Minas Gerais, Brazil
| | | | | | | | - Mara Cristina Pessôa da Cruz
- Departamento de Ciência do Solo, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Augusto Cesar da Silva Bezerra
- Departamento de Engenharia de Transportes, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Rodrigues Teixeira Machado
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Minas Gerais, Frutal, Minas Gerais, Brazil.
- Departamento de Ciências Exatas, Universidade do Estado de Minas Gerais, João Monlevade, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Deshoux M, Sadet-Bourgeteau S, Gentil S, Prévost-Bouré NC. Effects of biochar on soil microbial communities: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166079. [PMID: 37553053 DOI: 10.1016/j.scitotenv.2023.166079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Changes in soil microbial communities may impact soil fertility and stability because microbial communities are key to soil functioning by supporting soil ecological quality and agricultural production. The effects of soil amendment with biochar on soil microbial communities are widely documented but studies highlighted a high degree of variability in their responses following biochar application. The multiple conditions under which they were conducted (experimental designs, application rates, soil types, biochar properties) make it difficult to identify general trends. This supports the need to better determine the conditions of biochar production and application that promote soil microbial communities. In this context, we performed the first ever meta-analysis of the biochar effects on soil microbial biomass and diversity (prokaryotes and fungi) based on high-throughput sequencing data. The majority of the 181 selected publications were conducted in China and evaluated the short-term impact (<3 months) of biochar. We demonstrated that a large panel of variables corresponding to biochar properties, soil characteristics, farming practices or experimental conditions, can affect the effects of biochar on soil microbial characteristics. Using a variance partitioning approach, we showed that responses of soil microbial biomass and prokaryotic diversity were highly dependent on biochar properties. They were influenced by pyrolysis temperature, biochar pH, application rate and feedstock type, as wood-derived biochars have particular physico-chemical properties (high C:N ratio, low nutrient content, large pores size) compared to non-wood-derived biochars. Fungal community data was more heterogenous and scarcer than prokaryote data (30 publications). Fungal diversity indices were rather dependent on soil properties: they were higher in medium-textured soils, with low pH but high soil organic carbon. Altogether, this meta-analysis illustrates the need for long-term field studies in European agricultural context for documenting responses of soil microbial communities to biochar application under diverse conditions combining biochar types, soil properties and conditions of use.
Collapse
Affiliation(s)
- Maëlle Deshoux
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France; Groupe Bordet, Froidvent, F-21290 Leuglay, France.
| | - Sophie Sadet-Bourgeteau
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | | |
Collapse
|
4
|
Mielke KC, Brochado MGDS, Laube AFS, Guimarães T, Medeiros BADP, Mendes KF. Pyrolysis Temperature vs. Application Rate of Biochar Amendments: Impacts on Soil Microbiota and Metribuzin Degradation. Int J Mol Sci 2023; 24:11154. [PMID: 37446332 DOI: 10.3390/ijms241311154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Biochar-amended soils influence the degradation of herbicides depending on the pyrolysis temperature, application rate, and feedstock used. The objective of this study was to evaluate the influence of sugarcane straw biochar (BC) produced at different pyrolysis temperatures (350 °C, 550 °C, and 750 °C) and application rates in soil (0, 0.1, 0.5, 1, 1.5, 5, and 10% w/w) on metribuzin degradation and soil microbiota. Detection analysis of metribuzin in the soil to find time for 50% and 90% metribuzin degradation (DT50 and DT90) was performed using high-performance liquid chromatography (HPLC). Soil microbiota was analyzed by respiration rate (C-CO2), microbial biomass carbon (MBC), and metabolic quotient (qCO2). BC350 °C-amended soil at 10% increased the DT50 of metribuzin from 7.35 days to 17.32 days compared to the unamended soil. Lower application rates (0.1% to 1.5%) of BC550 °C and BC750 °C decreased the DT50 of metribuzin to ~4.05 and ~5.41 days, respectively. BC350 °C-amended soil at high application rates (5% and 10%) provided high C-CO2, low MBC fixation, and high qCO2. The addition of low application rates (0.1% to 1.5%) of sugarcane straw biochar produced at high temperatures (BC550 °C and BC750 °C) resulted in increased metribuzin degradation and may influence the residual effect of the herbicide and weed control efficiency.
Collapse
Affiliation(s)
- Kamila Cabral Mielke
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | | - Tiago Guimarães
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | |
Collapse
|
5
|
Tran HT, Bolan NS, Lin C, Binh QA, Nguyen MK, Luu TA, Le VG, Pham CQ, Hoang HG, Vo DVN. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: A state of art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118191. [PMID: 37210821 DOI: 10.1016/j.jenvman.2023.118191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Quach An Binh
- Department of Academic Affair and Testing, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - The Anh Luu
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
6
|
Mukhopadhyay S, Masto RE, Singh AK, Singh PK. Impact of the Combined Application of Biochar and Compost on Mine Soil Quality and Growth of Lady's Finger (Abelmoschus esculentus). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:396-402. [PMID: 33025110 DOI: 10.1007/s00128-020-03011-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Amelioration of mine soil is challenging because of the lack of biologically active organic matter. The study was aimed to recycle yard waste into compost and biochar and to use them to reclaim mine soil. Biochar prepared at 350 °C showed the highest stable organic matter yield index and was used for the experiments. Lady's finger was grown on mine soil amended with biochar (1%-5%), compost (2%-10%), and biochar-compost mixtures (2%-10%). Mine soil pH increased in all treatments. Mine soil dehydrogenase activity (42%-224%), microbial biomass carbon (4%-257%), and hydrolase activity (3%-230%) increased by combined application of biochar and compost. Lady's finger plant height, biomass, and fruit yield were superior in biochar-compost mixtures compared to biochar and compost alone treatment. Thus the use of compost along with biochar could be recommended for reclamation of mine soil.
Collapse
Affiliation(s)
- Sangeeta Mukhopadhyay
- CSIR - Central Institute of Mining and Fuel Research, Digwadih Campus, FRI, Dhanbad, Jharkhand, 828108, India
| | - R Ebhin Masto
- CSIR - Central Institute of Mining and Fuel Research, Digwadih Campus, FRI, Dhanbad, Jharkhand, 828108, India.
| | - Ashok K Singh
- CSIR - Central Institute of Mining and Fuel Research, Digwadih Campus, FRI, Dhanbad, Jharkhand, 828108, India
| | - Pradeep K Singh
- CSIR - Central Institute of Mining and Fuel Research, Digwadih Campus, FRI, Dhanbad, Jharkhand, 828108, India
| |
Collapse
|
7
|
Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. SUSTAINABILITY 2021. [DOI: 10.3390/su131810362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biochar is considered as a potential substitute for soil organic matter (SOM). Considering the importance of biochar, the present review is based on the different benefits and potential risks of the application of biochar to the soil. Biochar addition to low organic carbon soils can act as a feasible solution to keep soil biologically active for the cycling of different nutrients. The application of biochar could improve soil fertility, increase crop yield, enhance plant growth and microbial abundance, and immobilize different contaminants in the soil. It could also be helpful in carbon sequestration and the return of carbon stock back to the soil in partially combusted form. Due to the large surface area of biochar, which generally depends upon the types of feedstock and pyrolysis conditions, it helps to reduce the leaching of fertilizers from the soil and supplies additional nutrients to growing crops. However, biochar may have some adverse effects due to emissions during the pyrolysis process, but it exerts a positive priming effect (a phenomenon in which subjection to one stimulus positively influences subsequent stimulus) on SOM decomposition, depletion of nutrients (macro- and micro-) via strong adsorption, and impact on soil physicochemical properties. In view of the above importance and limitations, all possible issues related to biochar application should be considered. The review presents extensive detailed information on the sustainable approach for the environmental use of biochar and its limitations.
Collapse
|
8
|
Deng F, Dou R, Sun J, Li J, Dang Z. Phenanthrene degradation in soil using biochar hybrid modified bio-microcapsules: Determining the mechanism of action via comparative metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145798. [PMID: 33611184 DOI: 10.1016/j.scitotenv.2021.145798] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
A strategy involving biochar (BC) hybrid modification was developed to promote the bioremediation effect of degrading bacteria immobilized in layer-by-layer assembly (LBL) microcapsules for the treatment of phenanthrene (PHE) polluted soil. A taxonomic and functional metagenomic approach was used to investigate changes in the microbial community structures and functional gene compositions in the PHE-polluted soil during the bioremediation process. Biofortification with an initial PHE concentration of 100 mg kg-1 dry soil in soils using the BC (3%) hybrid LBL bio-microcapsule (BC-LBL, 2.0 g kg-1 dry soil, 107 colony forming unite cell g-1 dry soil) was faster; further, a higher PHE degradation efficiency (80.5% after 25 d) was achieved when compared with that by the LBL agent (66.2% after 25 d) used. Sphingomonas, Streptomyces, Gemmatirosa, Ramlibacter, Flavisolibacter, Phycicoccus, Micromonospora, Acidobacter, Mycobacterium and Gemmatimonas were more abundant in BC-LBL treatment than those in LBL one. Functional gene annotation results showed that more gene number with BC-LBL treatment than those with LBL one. More abundant functions in the former were primarily related to the growth, reproduction, metabolism, and transportation of bacteria. BC hybridization promoting PHE degradation by microencapsulated bacteria may be due to the strong adsorption property of BC, which results in the enrichment of the nutrients that needed for bacterial growth and reproduction, as well as enhancing the mass transfer performance of PHE to BC-LBL; Meanwhile, BC could also stimulate and improve the metabolism and membrane transportation of the degrading bacteria, and finally improving the degradation function.
Collapse
Affiliation(s)
- Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Rongni Dou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jinghua Li
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
9
|
Siedt M, Schäffer A, Smith KEC, Nabel M, Roß-Nickoll M, van Dongen JT. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141607. [PMID: 32871314 DOI: 10.1016/j.scitotenv.2020.141607] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The emission of nutrients and pesticides from agricultural soils endangers natural habitats. Here, we review to which extent carbon-rich organic amendments help to retain nutrients and pesticides in agricultural soils and to reduce the contamination of surrounding areas and groundwater. We compare straw, compost, and biochar to see whether biochar outperforms the other two more traditional and cheaper materials. We present a list of criteria to evaluate the suitability of organic materials to be used as soil amendments and discuss differences in elemental compositions of straw, compost, and biochar to understand, how soil microorganisms utilize those materials. We review their effects on physical and chemical soil characteristics, soil microbial communities, as well as effects on the transformation and retention of nutrients and pesticides in detail. It becomes clear that for all three amendments their effects can vary greatly depending on numerous aspects, such as the type of soil, application rate, and production procedure of the organic material. Biochar is most effective in increasing the sorption capacity of soils but does not outperform straw and compost with regards to the other aspects investigated. Nevertheless, the possibility to design biochar properties makes it a very promising material. Finally, we provide critical comments about how to make studies about organic amendments more comparable (comprehensive provision of material properties), how to improve concepts of future work (meta-analysis, long-term field studies, use of deep-insight microbial DNA sequencing), and what needs to be further investigated (the link between structural and functional microbial parameters, the impact of biochar on pesticide efficiency).
Collapse
Affiliation(s)
- Martin Siedt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kilian E C Smith
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Moritz Nabel
- Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Joost T van Dongen
- Molecular Ecology of the Rhizosphere, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
Yu Z, Ling L, Singh BP, Luo Y, Xu J. Gain in carbon: Deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141057. [PMID: 32795757 DOI: 10.1016/j.scitotenv.2020.141057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/04/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The biochar-induced priming effects (PEs) were investigated by applying maize straw (C4) derived biochar to eight C3 soils, with a gradient of pH and a sub-gradient of soil organic carbon (SOC). To decipher the physicochemical and microbial mechanisms, we adopted C-isotopic analysis, high-throughput sequencing and multivariate statistical analyses such as random forest (RF) and structure equation modeling (SEM). Negative and neutral PEs were observed up to -48.5% of relative PEs during 28 days of incubation. All the acidic soils exhibited negative PEs, so as the neutral Alfisol and alkaline Aridisol, which had a suppression effect on SOC mineralization accounted for -29.4 and -32.0% of relative PEs. Among all abiotic factors, soil silt-clay fraction and the initial pH values play the most important roles in PEs determination through directly inhibiting PEs by protection SOC and indirectly shaping bacterial communities respectively. On the whole community level, biochar treatments defined much less microbiome (0.6% and 1.2% for variance of bacterial and fungal community) than soil types (93.5% and 83.3% respectively) across soils. Thus, the initial community (i.e., bacteria alpha-diversity and copiotrophic bacteria as revealed by SEM) of different soils might be more critical for PE prediction. Furthermore, co-occurrence network analysis indicated out-competition of fungi by bacteria with increase of mutual exclusion and decrease of fungal occupancy. This could exacerbate negative PEs in soils with lower bacterial alpha-diversity and dominance by copiotrophys due to less functional complementary for recalcitrant SOC decomposition.
Collapse
Affiliation(s)
- Zhuyun Yu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui 053000, China
| | - Lu Ling
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Bhupinder Pal Singh
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Azeem M, Hale L, Montgomery J, Crowley D, McGiffen ME. Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils. PLoS One 2020; 15:e0242209. [PMID: 33253199 PMCID: PMC7703933 DOI: 10.1371/journal.pone.0242209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.
Collapse
Affiliation(s)
- Muhammad Azeem
- Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
- Department of Environmental Sciences, University of California, Riverside, California, United States of America
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, California, United States of America
- * E-mail: (MEM); (LH)
| | - Jonathan Montgomery
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - David Crowley
- Department of Environmental Sciences, University of California, Riverside, California, United States of America
| | - Milton E. McGiffen
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- * E-mail: (MEM); (LH)
| |
Collapse
|
12
|
Gorovtsov AV, Minkina TM, Mandzhieva SS, Perelomov LV, Soja G, Zamulina IV, Rajput VD, Sushkova SN, Mohan D, Yao J. The mechanisms of biochar interactions with microorganisms in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2495-2518. [PMID: 31522311 DOI: 10.1007/s10653-019-00412-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Biochar, a carbonaceous material, is increasingly used in the remediation of the anthropogenically polluted soils and the restoration of their ecological functions. However, the interaction mechanisms among biochar, inorganic and organic soil properties and soil biota are still not very clear. The effect of biochar on soil microorganisms is very diverse. Several mechanisms of these interactions were suggested. However, a well acceptable mechanism of biochar effect on soil microorganisms is still missing. Therefore, efforts were made to examine and proposed a mechanism of the interactions between biochar and microorganisms, as well as existing problems of biochar impacts on main groups of soil enzymes, the composition of the microbiota and the detoxification (heavy metals) and degradation (polycyclic aromatic hydrocarbons) of soil pollutants. The data on the process of biochar colonization by microorganisms and the effect of volatile pyrolysis products released by biochar on the soil microbiota were analysed in detail. The effects of biochar on the physico-chemical properties of soils, the content of mineral nutrients and the response of microbial communities to these changes are also discussed. The information provided here may contribute to the solution of the feasibility, effectiveness and safety of the biochar questions to enhance the soil fertility and to detoxify pollutants in soils.
Collapse
Affiliation(s)
| | | | | | | | - Gerhard Soja
- AIT Austrian Institute of Technology, ERT, 3430, Tulln, Austria
- IVET, University for Natural Resources and Life Sciences, 1190, Vienna, Austria
| | | | | | | | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jun Yao
- China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
13
|
Lee T, Jung S, Hong J, Wang CH, Alessi DS, Lee SS, Park YK, Kwon EE. Using CO 2 as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6329-6343. [PMID: 32343132 DOI: 10.1021/acs.est.0c01862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As global warming and climate change become perceived as significant, the release of greenhouse gases (GHGs) stored in the earth's polar regions is considered a matter of concern. Here, we focused on exploiting GHGs to address potential global warming challenges in the north polar regions. In particular, we used CO2 as a soft oxidant to recover energy as syngas (CO and H2) and to produce biochars from pyrolysis of peat moss. CO2 expedited homogeneous reaction with volatile matters from peat moss pyrolysis, and the mechanistic CO2 role resulted in the conversion of CO2 and peat moss to CO at ≥530 °C. Steel slag waste was then used as an ex situ catalyst to increase reaction kinetics, addressing the issue of the role of CO2 being limited to ≥530 °C, with the result where substantial H2 and CO formation was achieved at a milder temperature. The porosity of biochars, a solid peat moss pyrolysis product, was modified in the presence of CO2, with a significant improvement in CO2 adsorption capacity compared to those achieved by N2 pyrolysis. Therefore, CO2 has the potential to serve as an initial feedstock in sustainable biomass-to-energy applications and biochar production, mitigating atmospheric carbon concentrations.
Collapse
Affiliation(s)
- Taewoo Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Sungyup Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jinkyu Hong
- Ecosystem-Atmosphere Process Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
14
|
Comparative Metagenomics Reveals Enhanced Nutrient Cycling Potential after 2 Years of Biochar Amendment in a Tropical Oxisol. Appl Environ Microbiol 2019; 85:AEM.02957-18. [PMID: 30952661 DOI: 10.1128/aem.02957-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
The complex structural and functional responses of agricultural soil microbial communities to the addition of carbonaceous compounds such as biochar remain poorly understood. This severely limits the predictive ability for both the potential enhancement of soil fertility and greenhouse gas mitigation. In this study, we utilized shotgun metagenomics in order to decipher changes in the microbial community in soil microcosms after 14 days of incubation at 23°C, which contained soils from biochar-amended and control plots cultivated with Napier grass. Our analyses revealed that biochar-amended soil microbiomes exhibited significant shifts in both community composition and predicted metabolism. Key metabolic pathways related to carbon turnover, such as the utilization of plant-derived carbohydrates as well as denitrification, were enriched under biochar amendment. These community shifts were in part associated with increased soil carbon, such as labile and aromatic carbon compounds, which was likely stimulated by the increased available nutrients associated with biochar amendment. These findings indicate that the soil microbiome response to the combination of biochar addition and to incubation conditions confers enhanced nutrient cycling and a small decrease in CO2 emissions and potentially mitigates nitrous oxide emissions.IMPORTANCE The incorporation of biochar into soil is a promising management strategy for sustainable agriculture owing to its potential to sequester carbon and improve soil fertility. Expanding the addition of biochar to large-scale agriculture hinges on its lasting beneficial effects on the microbial community. However, there exists a significant knowledge gap regarding the specific role that biochar plays in altering the key biological soil processes that influence plant growth and carbon storage in soil. Previous studies that examined the soil microbiome under biochar amendment principally characterized only how the composition alters in response to biochar amendment. In the present study, we shed light on the functional alterations of the microbial community response 2 years after biochar amendment. Our results show that biochar increased the abundance of genes involved in denitrification and carbon turnover and that biochar-amended soil microcosms had a reduction in cumulative CO2 production.
Collapse
|
15
|
Ali N, Khan S, Li Y, Zheng N, Yao H. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:551-560. [PMID: 30089277 DOI: 10.1016/j.scitotenv.2018.07.425] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 05/16/2023]
Abstract
Biochar can be used as a promising potential substance to reduce the availability of toxic elements and compounds in contaminated soils but its effects on the accessibility of pesticides and microbiological interactions still remain unclear. Here, 65 day incubation experiments were conducted to investigate the efficacy of biochars on the accessibility of 21 different organochlorine pesticides (OCPs), and also to evaluate their influence on soil microbial community. The tested soil was collected from an agricultural field, containing loamy sand texture, and historically contaminated with high concentrations of OCPs. The soil was amended with four different kinds of biochars: sewage sludge biochar (SSBC), peanut shells biochar (PNBC), rice straw biochar (RSBC), and soybean straw biochar (SBBC). The results indicated that biochar-amendments had strong effects upon OCP accessibility over time and can act as super sorbent. Despite greater persistence of OCPs in soil, the application of selected biochars significantly (p < 0.01) reduced the accessibility of ∑OCPs in the amended soil in the order of SSBC (8-69%), PNBC (11-75%), RSBC (6-67%), and SBBC (14-86%), as compared to the control soil during 0-65 d incubation period. Moreover, the findings from total phospholipid acid (PLFA) and Illumina next-generation sequencing revealed that the incorporation of biochar have altered the soil microbial community structure over time. Higher abundances of Proteobacteria, firmicutes, Gemmatimonadetes, and Actinobacteria were found in biochar amendments. However, the relative abundances of Acidobacteria and Chloroflexi decreased, following biochar addition. The findings of these experiments suggest that biochar addition to soil at the rate of 3% (w/w) could be advantageous for decreasing accessibility of OCPs, enhancing the soil microbial communities, and their subsequent risk to environment and food chain contamination.
Collapse
Affiliation(s)
- Neelum Ali
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Sardar Khan
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | - Yaying Li
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Ningguo Zheng
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Huaiying Yao
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
16
|
Phandanouvong-Lozano V, Sun W, Sanders JM, Hay AG. Biochar does not attenuate triclosan's impact on soil bacterial communities. CHEMOSPHERE 2018; 213:215-225. [PMID: 30223126 DOI: 10.1016/j.chemosphere.2018.08.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Triclosan, a broad-spectrum antimicrobial, has been widely used in pharmaceutical and personal care products. It undergoes limited degradation during wastewater treatment and is present in biosolids, most of which are land applied in the United States. This study assessed the impact of triclosan (0-100 mg kg-1) with and without biochar on soil bacterial communities. Very little 14C-triclosan was mineralized to 14CO2 (<7%) over the course of the study (42 days). While biochar (1%) significantly lowered mineralization of triclosan, analysis of 16S rRNA gene sequences revealed that biochar impacted very few OTUs and did not alter the overall structure of the community. Triclosan, on the other hand, significantly affected bacterial diversity and community structure (alpha diversity, ANOVA, p < 0.001; beta diversity, AMOVA, p < 0.01). Dirichlet multinomial mixtures (DMM) modeling and complete linkage clustering (CLC) revealed a dose-dependent impact of triclosan. Non-Parametric Metastats (NPM) analysis showed that 150 of 734 OTUs from seven main phyla were significantly impacted by triclosan (adjusted p < 0.05). Genera harboring opportunistic pathogens such as Flavobacterium were enriched in the presence of triclosan, as was Stenotrophomonas. The latter has previously been implicated in triclosan degradation via stable isotope probing. Surprisingly, Sphingomonads, which include well-characterized triclosan degraders were negatively impacted by even low doses of triclosan. Analyses of published genomes showed that triclosan resistance determinants were rare in Sphingomonads which may explain why they were negatively impacted by triclosan in our soil.
Collapse
Affiliation(s)
| | - Wen Sun
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie M Sanders
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Short-term impact of biochar amendments on eukaryotic communities in three different soils. Antonie van Leeuwenhoek 2018; 112:615-632. [DOI: 10.1007/s10482-018-1191-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
|
18
|
Biochar carrier application for nitrogen removal of domestic WWTPs in winter: challenges and opportunities. Appl Microbiol Biotechnol 2018; 102:9411-9418. [DOI: 10.1007/s00253-018-9317-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
|
19
|
He S, Ding L, Pan Y, Hu H, Ye L, Ren H. Nitrogen loading effects on nitrification and denitrification with functional gene quantity/transcription analysis in biochar packed reactors at 5 °C. Sci Rep 2018; 8:9844. [PMID: 29959416 PMCID: PMC6026168 DOI: 10.1038/s41598-018-28305-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022] Open
Abstract
This study investigated the nitrogen transformation rates of different nitrogen-loading (20, 30, and 50 mg TN/L) biochar packed reactors (C:N:P = 100:5:1) within 125 days at 5 °C. The results showed that high nitrogen loading resulted in an NH4+ (TN) removal efficiency decline from 98% (57%) to 83% (29%), with biochar yielding a higher NH4+, TN and DON removal rate than conventional activated sludge. Moreover, all biochar packed reactors realized a quick start-up by dropping in temperature stage by stage, and the effluent dissolved organic nitrogen (DON) concentrations of R20, R30, and R50 were 0.44 ± 0.18, 0.85 ± 0.35, and 0.66 ± 0.26 mg/L, respectively. The nirS/amoA, nxrA/amoA, and amoA/(narG + napA) were deemed to be the markers of ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR), respectively. Compared with functional gene quantity data, transcription data (mRNA) introduced into stepwise regression analyses agreed well with nitrogen transformation rates. High nitrogen loading also resulted in the cell viability decreased in R50. Nitrogen loadings and operation time both led to a significant variation in cell membrane composition, and unsaturated fatty acids (UFAs) significantly increased in R30 (46.49%) and R50 (36.34%). High-throughput sequencing revealed that nitrogen loadings increased the abundance of nitrifying bacteria (e.g., Nitrospira) and reduced the abundance of denitrifying bacteria (e.g., Nakamurella, Thermomonas, and Zoogloea) through linear discriminant analysis (LDA).
Collapse
Affiliation(s)
- Su He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
20
|
Wegner CE, Liesack W. Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags. Front Microbiol 2017; 8:1023. [PMID: 28642744 PMCID: PMC5462947 DOI: 10.3389/fmicb.2017.01023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Acid mine drainage (AMD) and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur), which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13]), Actinobacteria (TM214), Alphaproteobacteria (DA111), and Chloroflexi (JG37-AG-4), which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18) by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases). Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University JenaJena, Germany
| | - Werner Liesack
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| |
Collapse
|
21
|
Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment. mSphere 2017; 2:mSphere00085-17. [PMID: 28405627 PMCID: PMC5371693 DOI: 10.1128/msphere.00085-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 02/01/2023] Open
Abstract
Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature. Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature.
Collapse
|
22
|
Gao X, Cheng HY, Del Valle I, Liu S, Masiello C, Silberg JJ. Charcoal Disrupts Soil Microbial Communication through a Combination of Signal Sorption and Hydrolysis. ACS OMEGA 2016; 1:226-233. [PMID: 29938248 PMCID: PMC6010303 DOI: 10.1021/acsomega.6b00085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 05/21/2023]
Abstract
The presence of charcoal in soil triggers a range of biological effects that are not yet predictable, in part because it interferes with the functioning of chemical signals that microbes release into their environment to communicate. We do not fully understand the mechanisms by which charcoal alters the biologically available concentrations of these intercellular signals. Recently, charcoal has been shown to sorb the signaling molecules that microbes release, rendering them ineffective for intercellular communication. Here, we investigate a second, potentially more important mechanism of interference: signaling-molecule hydrolysis driven by charcoal-induced soil pH changes. We examined the effects of 10 charcoals on the bioavailable concentration of an acyl-homoserine lactone (AHL) used by many Gram-negative bacteria for cell-cell communication. We show that charcoals decrease the level of bioavailable AHL through sorption and pH-dependent hydrolysis of the lactone ring. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the chemical effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.
Collapse
Affiliation(s)
- Xiaodong Gao
- Department of Earth Science, Department of Bioengineering, Systems, Synthetic,
and Physical
Biology Graduate Program, and Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Hsiao-Ying Cheng
- Department of Earth Science, Department of Bioengineering, Systems, Synthetic,
and Physical
Biology Graduate Program, and Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Ilenne Del Valle
- Department of Earth Science, Department of Bioengineering, Systems, Synthetic,
and Physical
Biology Graduate Program, and Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Shirley Liu
- Department of Earth Science, Department of Bioengineering, Systems, Synthetic,
and Physical
Biology Graduate Program, and Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Caroline
A. Masiello
- Department of Earth Science, Department of Bioengineering, Systems, Synthetic,
and Physical
Biology Graduate Program, and Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of Earth Science, Department of Bioengineering, Systems, Synthetic,
and Physical
Biology Graduate Program, and Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- E-mail: . Phone: 713-348-3849
| |
Collapse
|
23
|
Gale NV, Sackett TE, Thomas SC. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds. PeerJ 2016; 4:e2385. [PMID: 27635349 PMCID: PMC5012324 DOI: 10.7717/peerj.2385] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/31/2016] [Indexed: 11/20/2022] Open
Abstract
Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant responses to biochar amendments in short-term experiments.
Collapse
Affiliation(s)
- Nigel V. Gale
- Faculty of Forestry, University of Toronto, Toronto, Ontario, Canada
| | - Tara E. Sackett
- Faculty of Forestry, University of Toronto, Toronto, Ontario, Canada
| | - Sean C. Thomas
- Faculty of Forestry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|