1
|
Zhang M, Li L, Zhang W, Li M, Yan G, Tang C. TG2 participates in pulmonary vascular remodelling by regulating the senescence of pulmonary artery smooth muscle cells. Cell Signal 2024; 121:111296. [PMID: 39009200 DOI: 10.1016/j.cellsig.2024.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Pulmonary hypertension (PH) is a severe cardiovascular disease characterised by pulmonary vascular remodelling. The pivotal role of cellular senescence in vascular remodelling has been acknowledged. Transglutaminase type 2 (TG2), a calcium-dependent enzyme, is intricately linked to both cellular senescence and PH. However, the precise mechanisms underlying the involvement of TG2 in PH remain unclear. In this study, we explored the expression of TG2 and the cellular senescence marker p16INK4a in the pulmonary vasculature of mice with PH induced by hypoxia combined with SU5416. Our findings revealed upregulation of both TG2 and p16INK4a expression in the pulmonary vasculature of PH mice. Additionally, a notable increase in TG2 expression was observed in senescent pulmonary artery smooth muscle cells (PASMC). To delve deeper, we employed proteomic sequencing to reveal seven genes associated with cellular senescence, with a subsequent focus on MAPK14. Our investigation revealed that TG2 regulates senescence in PASMC by modulating the phosphorylation levels of MAPK14. Additionally, in the context of hypoxia combined with SU5416, our observations revealed a noteworthy reduction in both pulmonary vascular remodelling and senescent manifestations in smooth muscle-specific TG2 knockout mice compared with their wild-type counterparts. In summary, our findings indicate that TG2 deficiency lowers the senescence levels of PASMC by inhibiting the activity of MAPK14. This inhibition of senescence in the pulmonary vasculature of PH mice helps to decelerate the progression of pulmonary vascular remodelling and consequently hinders the onset and development of PH.
Collapse
Affiliation(s)
- Minhao Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Linqing Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wenkang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Mingkang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
Chen N, Zhou H, He B, Peng S, Ding F, Liu QH, Ma Z, Liu W, Xu B. Melatonin promotes cell cycle progression of neural stem cells subjected to manganese via Nurr1. ENVIRONMENTAL TOXICOLOGY 2024; 39:3883-3896. [PMID: 38563506 DOI: 10.1002/tox.24258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Excessive exposure to manganese (Mn) through drinking water and food during pregnancy significantly heightens the likelihood of neurodevelopmental damage in offspring. Multiple studies have indicated that melatonin (Mel) may help to relieve neurodevelopmental disorders caused by Mn, but potential mechanisms underlying this effect require further exploration. Here, we utilized primary neural stem cells (NSCs) as a model to elucidate the molecular mechanism underlying the protective function of Mel on Mn-induced cell proliferation dysfunction and cycle arrest. Our results showed that Mn disrupted the cell cycle in NSCs by suppressing positive regulatory proteins (CDK2, Cyclin A, Cyclin D1, and E2F1) and enhancing negative ones (p27KIP1 and p57KIP2), leading to cell proliferation dysfunction. Mel inhibited the Mn-dependent changes to these proteins and the cell cycle through nuclear receptor-related protein 1 (Nurr1), thus alleviating the proliferation dysfunction. Knockdown of Nurr1 using lentivirus-expressed shRNA in NSCs resulted in a diminished protective effect of Mel. We concluded that Mel mitigated Mn-induced proliferation dysfunction and cycle arrest in NSCs through Nurr1.
Collapse
Affiliation(s)
- Nan Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Han Zhou
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Bin He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Sen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Feng Ding
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Qi-Hao Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, PR China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, PR China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, PR China
| |
Collapse
|
3
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
4
|
Pegka F, Ben-Califa N, Neumann D, Jäkel H, Hengst L. EpoR Activation Stimulates Erythroid Precursor Proliferation by Inducing Phosphorylation of Tyrosine-88 of the CDK-Inhibitor p27 Kip1. Cells 2023; 12:1704. [PMID: 37443738 PMCID: PMC10340229 DOI: 10.3390/cells12131704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.
Collapse
Affiliation(s)
- Fragka Pegka
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Heidelinde Jäkel
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Swadling JB, Warnecke T, Morris KL, Barr AR. Conserved Cdk inhibitors show unique structural responses to tyrosine phosphorylation. Biophys J 2022; 121:2312-2329. [PMID: 35614852 PMCID: PMC9279356 DOI: 10.1016/j.bpj.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/01/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022] Open
Abstract
Balanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis, and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs) p21Cip1/Waf1, p27Kip1, and p57Kip2 bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signaling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular-dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.
Collapse
Affiliation(s)
- Jacob B Swadling
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom.
| | - Tobias Warnecke
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom
| | - Kyle L Morris
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Alexis R Barr
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom.
| |
Collapse
|
6
|
Inability to phosphorylate Y88 of p27 Kip1 enforces reduced p27 protein levels and accelerates leukemia progression. Leukemia 2022; 36:1916-1925. [PMID: 35597806 PMCID: PMC9252907 DOI: 10.1038/s41375-022-01598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 regulates cell proliferation. Phosphorylation of tyrosine residue 88 (Y88) converts the inhibitor into an assembly factor and activator of CDKs, since Y88-phosphorylation restores activity to cyclin E,A/CDK2 and enables assembly of active cyclin D/CDK4,6. To investigate the physiological significance of p27 tyrosine phosphorylation, we have generated a knock-in mouse model where Y88 was replaced by phenylalanine (p27-Y88F). Young p27-Y88F mice developed a moderately reduced body weight, indicative for robust CDK inhibition by p27-Y88F. When transformed with v-ABL or BCR::ABL1p190, primary p27-Y88F cells are refractory to initial transformation as evidenced by a diminished outgrowth of progenitor B-cell colonies. This indicates that p27-Y88 phosphorylation contributes to v-ABL and BCR::ABL1p190 induced transformation. Surprisingly, p27-Y88F mice succumbed to premature v-ABL induced leukemia/lymphoma compared to p27 wild type animals. This was accompanied by a robust reduction of p27-Y88F levels in v-ABL transformed cells. Reduced p27-Y88F levels seem to be required for efficient cell proliferation and may subsequently support accelerated leukemia progression. The potent downregulation p27-Y88F levels in all leukemia-derived cells could uncover a novel mechanism in human oncogenesis, where reduced p27 levels are frequently observed.
Collapse
|
7
|
p27 Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021; 10:cells10092254. [PMID: 34571903 PMCID: PMC8465030 DOI: 10.3390/cells10092254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) regulator p27Kip1 is a gatekeeper of G1/S transition. It also regulates G2/M progression and cytokinesis completion, via CDK-dependent or -independent mechanisms. Recently, other important p27Kip1 functions have been described, including the regulation of cell motility and migration, the control of cell differentiation program and the activation of apoptosis/autophagy. Several factors modulate p27Kip1 activities, including its level, cellular localization and post-translational modifications. As a matter of fact, the protein is phosphorylated, ubiquitinated, SUMOylated, O-linked N-acetylglicosylated and acetylated on different residues. p27Kip1 belongs to the family of the intrinsically unstructured proteins and thus it is endowed with a large flexibility and numerous interactors, only partially identified. In this review, we look at p27Kip1 properties and ascribe part of its heterogeneous functions to the ability to act as an anchor or scaffold capable to participate in the construction of different platforms for modulating cell response to extracellular signals and allowing adaptation to environmental changes.
Collapse
|
8
|
Protein Dynamics Enables Phosphorylation of Buried Residues in Cdk2/Cyclin-A-Bound p27. Biophys J 2020; 119:2010-2018. [PMID: 33147476 DOI: 10.1016/j.bpj.2020.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022] Open
Abstract
Proteins carry out a wide range of functions that are tightly regulated in space and time. Protein phosphorylation is the most common post-translation modification of proteins and plays a key role in the regulation of many biological processes. The finding that many phosphorylated residues are not solvent exposed in the unphosphorylated state opens several questions for understanding the mechanism that underlies phosphorylation and how phosphorylation may affect protein structures. First, because kinases need access to the phosphorylated residue, how do such buried residues become modified? Second, once phosphorylated, what are the structural effects of phosphorylation of buried residues, and do they lead to changed conformational dynamics? We have used the ternary complex between p27Kip1 (p27), Cdk2, and cyclin A to study these questions using enhanced sampling molecular dynamics simulations. In line with previous NMR and single-molecule fluorescence experiments, we observe transient exposure of Tyr88 in p27, even in its unphosphorylated state. Once Tyr88 is phosphorylated, we observe a coupling to a second site, thus making Tyr74 more easily exposed and thereby the target for a second phosphorylation step. Our observations provide atomic details on how protein dynamics plays a role in modulating multisite phosphorylation in p27, thus supplementing previous experimental observations. More generally, we discuss how the observed phenomenon of transient exposure of buried residues may play a more general role in regulating protein function.
Collapse
|
9
|
Zhuang W, Lian G, Huang B, Du A, Gong J, Xiao G, Xu C, Wang H, Xie L. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol Cell Biochem 2018; 455:169-183. [DOI: 10.1007/s11010-018-3480-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
|
10
|
Ma J, Zhang X, He G, Yang C. The relationship between cervical precancerous lesion galectin-3 and p27 protein expression and clinical prognosis. Oncol Lett 2018; 15:1533-1536. [PMID: 29434847 PMCID: PMC5774464 DOI: 10.3892/ol.2017.7503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022] Open
Abstract
The relationship between galectin-3 and p27kip1 protein expression levels in cervical precancerous lesions and clinical prognosis were studied. A total of 74 patients with cervical intraepithelial neoplasia [(CIN), 20 cases classified as stage I, 24 cases as stage II and 30 cases as stage III] were enrolled in this study. Tissue galectin-3, p27kip1, vascular endothelial growth factor (VEGF)-2 and cyclin D protein levels were detected via immunohistochemical staining and reverse transcription polymerase chain reaction (PCR). Follow-up median duration was 13.5 months and recurrence rate was determined. Galectin-3, VEGF-2, and cyclin D expression was elevated in patients with higher stage CIN, whereas p27kip1 showed the opposite trend (p<0.05). During follow-up, there were 3 cases (15.0%) of recurrence in the CIN-I group, 5 cases (20.8%) in the CIN-II group and 9 cases (30.0%) in CIN-III the group. No significant difference in recurrence rate was noted among the groups (p>0.05). The upregulation of galectin-3 and downregulation of p27kip1 in CIN tissues may be related to tumor progression. This phenomenon will require further verification.
Collapse
Affiliation(s)
- Jianting Ma
- Department of Obstetrics and Gynecology, Yuyao People's Hospital, Yuyao, Zhejiang 315400, P.R. China
| | - Xingguang Zhang
- Department of Obstetrics and Gynecology, Yuyao People's Hospital, Yuyao, Zhejiang 315400, P.R. China
| | - Gang He
- Department of Obstetrics and Gynecology, Yuyao People's Hospital, Yuyao, Zhejiang 315400, P.R. China
| | - Chunlin Yang
- Department of Obstetrics and Gynecology, Yuyao People's Hospital, Yuyao, Zhejiang 315400, P.R. China
| |
Collapse
|
11
|
He H, Xu J, Xie W, Guo QL, Jiang FL, Liu Y. Reduced state transition barrier of CDK6 from open to closed state induced by Thr177 phosphorylation and its implication in binding modes of inhibitors. Biochim Biophys Acta Gen Subj 2017; 1862:501-512. [PMID: 29108955 DOI: 10.1016/j.bbagen.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND CDK6 is considered as a highly validated anticancer drug target due to its essential role in regulating cell cycle progression at G1 restriction point. Activation of CDK6 requires the phosphorylation of Thr177 on A-loop, but the structural insights of the activation mechanism remain unclear. METHODS Herein, all-atoms molecular dynamics (MD) simulations were used to study the effects of Thr177 phosphorylation on the dynamic structure of CDK6-Vcyclin complex. RESULTS MD results indicated that the free energy barrier of the transition from open to closed state decreased ~47.2% after Thr177 phosphorylation. Key steps along the state transition process were obtained from a cluster analysis. Binding preference of ten different inhibitors to open or closed state were also investigated through molecular docking along with MD simulations methods. CONCLUSIONS Our results indicated that Thr177 phosphorylation increased the flexibility around the ATP-binding pocket. The transition of the ATP-binding pocket between open and closed states should be considered for understanding the binding of CDK6 inhibitors. GENERAL SIGNIFICANCE This work could deepen the understanding of CDKs activation mechanism, and provide useful information for the discovery of new CDKs inhibitors with high affinity and specificity.
Collapse
Affiliation(s)
- Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Juan Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wen Xie
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Qing-Lian Guo
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
12
|
Li J, Vervoorts J, Carloni P, Rossetti G, Lüscher B. Structural prediction of the interaction of the tumor suppressor p27 KIP1 with cyclin A/CDK2 identifies a novel catalytically relevant determinant. BMC Bioinformatics 2017; 18:15. [PMID: 28056778 PMCID: PMC5217639 DOI: 10.1186/s12859-016-1411-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase 2 (CDK2) together with its cyclin E and A partners is a central regulator of cell growth and division. Deregulation of CDK2 activity is associated with diseases such as cancer. The analysis of substrates identified S/T-P-X-R/K/H as the CDK2 consensus sequence. The crystal structure of cyclin A/CDK2 with a short model peptide supports this sequence and identifies key interactions. However, CDKs use additional determinants to recognize substrates, including the RXL motif that is read by the cyclin subunits. We were interested to determine whether additional amino acids beyond the minimal consensus sequence of the well-studied substrate and tumor suppressor p27KIP1 were relevant for catalysis. RESULTS To address whether additional amino acids, close to the minimal consensus sequence, play a role in binding, we investigate the interaction of cyclin A/CDK2 with an in vivo cellular partner and CDK inhibitor p27KIP1. This protein is an intrinsically unfolded protein and, in particular, the C-terminal half of the protein has not been accessible to structural analysis. This part harbors the CDK2 phosphorylation site. We used bioinformatics tools, including MODELLER, iTASSER and HADDOCK, along with partial structural information to build a model of the C-terminal region of p27KIP1 with cyclin A/CDK2. This revealed novel interactions beyond the consensus sequence with a proline and a basic amino acid at the P + 1 and the P + 3 sites, respectively. We suggest that the lysine at P + 2 might regulate the reversible association of the second counter ion in the active site of CDK2. The arginine at P + 7 interacts with both cyclin A and CDK2 and is important for the catalytic turnover rate. CONCLUSION Our modeling identifies additional amino acids in p27KIP1 beyond the consensus sequence that contribute to the efficiency of substrate phosphorylation.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China.,Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.,Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany. .,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.
| |
Collapse
|