1
|
Youn J, Patel KD, Perriman AW, Sung JS, Patel M, Bouchard LS, Patel R. Tissue adhesives based on chitosan for biomedical applications. J Mater Chem B 2024; 12:10446-10465. [PMID: 39289924 DOI: 10.1039/d4tb01362j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chitosan bio-adhesives bond strongly with various biological tissues, such as skin, mucosa, and internal organs. Their adhesive ability arises from amino acid and hydroxyl groups in chitosan, facilitating interactions with tissue surfaces through chemical (ionic, covalent, and hydrogen) and physical (chain entanglement) bonding. As non-toxic, biodegradable, and biocompatible materials, chitosan bio-adhesives are a safe option for medical therapies. They are particularly suitable for drug delivery, wound healing, and tissue regeneration. In this review, we address chitosan-based bio-adhesives and the mechanisms associated with them. We also discuss different chitosan composite-based bio-adhesives and their biomedical applications in wound healing, drug delivery, hemostasis, and tissue regeneration. Finally, challenges and future perspectives for the clinical use of chitosan-based bio-adhesives are discussed.
Collapse
Affiliation(s)
- Jihyun Youn
- School of Medicine, CHA University, Pocheon-si, Gyeonggi-do, 11160, South Korea
- Department of Life Science and Biotechnology (LSBT), Underwood Division (UD), Underwood International College, Yonsei University, Seoul-si, 03722, South Korea
| | - Kapil D Patel
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Adam W Perriman
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, 03760, Seoul, Korea.
| | - Louis-S Bouchard
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East|Box 951569, Los Angeles, CA 90095-1569, USA.
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea.
| |
Collapse
|
2
|
Nash RJ, Li Y. On-demand auxeticity and co-existing pre-tension induced compression stage in a sandwich design with kinematically constrained 3D suture tiles. Nat Commun 2024; 15:6994. [PMID: 39143060 PMCID: PMC11324751 DOI: 10.1038/s41467-024-50664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
By incorporating concepts from auxeticity, kinematic constraints, pre-tension induced compression (PIC), and suture tessellations, tiled sandwich composites are designed, demonstrating behaviors attributed to the synergy between auxeticity and pre-tension induced contact and compression, simultaneously triggered by a threshold strain. The designs can theoretically achieve on-demand Poisson's ratio in the widest range (-∞, +∞), and once triggered, the Poisson's ratio is stable under large deformation. Also, once the overall strain goes beyond the threshold, the designs enter into a PIC stage, ensuring the middle soft layer takes the tensile load, while the tiles are under compression via contact and the 3D articulation of the tooth-channel pairs. In this PIC stage, the tooth-channel pairs provide kinematic constraints via the contact and relative sliding between teeth and channels. The deformation mechanisms and mechanical properties of them are systematically explored via an integrated analytical, numerical, and experimental approach. Mechanical experiments are performed on 3D printed specimens. It is found that the length aspect ratio and the obliqueness of the teeth significantly influence the constraint angle and therefore the auxeticity and strength of the designs.
Collapse
Affiliation(s)
- Richard J Nash
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02215, USA
| | - Yaning Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Tsai YY, Chiang Y, Buford JL, Tsai ML, Chen HC, Chang SW. Mechanical and Crack Propagating Behavior of Sierpiński Carpet Composites. ACS Biomater Sci Eng 2023; 9:3912-3922. [PMID: 33843186 DOI: 10.1021/acsbiomaterials.0c01595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fractals, mathematically defined as "self-similar subsets at different scales", are ubiquitous in nature despite their complexity in assembly and formulation. Fractal geometry formed by simple components has long been applied to many fields, from physics and chemistry to electronics and architecture. The Sierpiński carpet (SC), a fractal with a Hausdorff dimension of approximately 1.8933, has two-dimensional space-filling abilities and therefore provides many structural applications. However, few studies have investigated its mechanical properties and fracture behaviors. Here, utilizing the lattice spring model (LSM), we constructed SC composites with two base materials and simulated tensile tests to show how fractal iterations affect their mechanical properties and crack propagation. From observing the stress-strain responses, we find that, for either the soft-base or stiff-base SC composites, the second iteration has the optimal mechanical performance in the terms of stiffness, strength, and toughness compared to the composites with higher hierarchies. The reason behind this surprising result is that the largest stress intensities occur at the corners of the smallest squares in the middle zone, which consequently induces crack nucleation. We also find that the main crack tends to deflect locally in SC composites with a soft matrix, but in global main crack behavior, SC composites with a stiff matrix have a large equivalent crack deflection. Furthermore, considering the inherent anisotropy of SC composites, we rotated the samples by 45°. The results show that the tensile strength and toughness of rotated SC composites are inferior and the crack propagating behaviors are distinct from the standard SC composites. This finding infers advanced engineering for crack control and deflection by adjusting the orientation of SC composites. Overall, our study opens the door for future engineering applications in stretchable devices, seismic metamaterials, and structural materials with tunable properties and hierarchies.
Collapse
Affiliation(s)
- Ya-Yun Tsai
- Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yuan Chiang
- Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jacqueline L Buford
- Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Meng-Lin Tsai
- Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsien-Chun Chen
- Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, Buehler MJ, Coveney PV, Dayal K, El-Awady JA, Henderson LC, Kaplan DL, Keten S, Kotov NA, Schatz GC, Vignolini S, Vollrath F, Wang Y, Yakobson BI, Tsukruk VV, Heinz H. Hierarchically structured bioinspired nanocomposites. NATURE MATERIALS 2023; 22:18-35. [PMID: 36446962 DOI: 10.1038/s41563-022-01384-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.
Collapse
Affiliation(s)
- Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.
| | - Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katarina M Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - L Catherine Brinson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Peter V Coveney
- Department of Chemistry, University College London, London, UK
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jaafar A El-Awady
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Yusu Wang
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
5
|
Predicting stress, strain and deformation fields in materials and structures with graph neural networks. Sci Rep 2022; 12:21834. [PMID: 36528676 PMCID: PMC9759553 DOI: 10.1038/s41598-022-26424-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Developing accurate yet fast computational tools to simulate complex physical phenomena is a long-standing problem. Recent advances in machine learning have revolutionized the way simulations are approached, shifting from a purely physics- to AI-based paradigm. Although impressive achievements have been reached, efficiently predicting complex physical phenomena in materials and structures remains a challenge. Here, we present an AI-based general framework, implemented through graph neural networks, able to learn complex mechanical behavior of materials from a few hundreds data. Harnessing the natural mesh-to-graph mapping, our deep learning model predicts deformation, stress, and strain fields in various material systems, like fiber and stratified composites, and lattice metamaterials. The model can capture complex nonlinear phenomena, from plasticity to buckling instability, seemingly learning physical relationships between the predicted physical fields. Owing to its flexibility, this graph-based framework aims at connecting materials' microstructure, base materials' properties, and boundary conditions to a physical response, opening new avenues towards graph-AI-based surrogate modeling.
Collapse
|
6
|
Eigen L, Baum D, Dean MN, Werner D, Wölfer J, Nyakatura JA. Ontogeny of a tessellated surface: Carapace growth of the longhorn cowfish Lactoria cornuta. J Anat 2022; 241:565-580. [PMID: 35638264 PMCID: PMC9358767 DOI: 10.1111/joa.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high‐throughput fashion, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g., around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box‐like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e., where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric, and developmental constraints of this species but also perspectives into natural strategies for constructing mutable tiled architectures. The carapace of boxfish is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. To clarify whether or how this armor is maintained or altered with age, we quantify architectural aspects of the carapace of the longhorn cowfish Lactoria cornuta through ontogeny, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual.![]()
Collapse
Affiliation(s)
- Lennart Eigen
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany
| | - Daniel Baum
- Visual and Data-Centric Computing Department, Zuse Institute Berlin, Berlin, Germany
| | - Mason N Dean
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniel Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
7
|
Ubaid J, Wardle BL, Kumar S. Bioinspired Compliance Grading Motif of Mortar in Nacreous Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33256-33266. [PMID: 32559363 DOI: 10.1021/acsami.0c08181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impressive toughness and strength of natural nacre, attributed to its multi-scale and -material hierarchical architecture, has inspired biomimicry and bioinspired materials development, and here we show that material compliance gradients are a motif that can help explain their advantaged mechanical performance. We present experiments enabled via additive manufacturing that allow direct evaluation of a compliance grading motif of the mortar between the relatively stiff bricks of the nacreous material. Spatial grading of the mortar compliance redistributes stresses away from critical regions (at, and around, brick corners), resulting in overall increases of ∼60% in strength, ∼ 70% in toughness, and ∼30% in strain-to-break, while maintaining macroscopic stiffness. Mechanistically, failure initiation threshold is delayed due to enhanced strain-tolerance and strain-localization as revealed in prefailure experimental strain maps, and in agreement with numerical analyses. We further demonstrate that this modulus grading motif, beyond the stiffness mismatch between the brick and mortar periodic architecture, is a significant contributor to the performance of the much-studied nacreous systems and is suggested as a natural but overlooked mechanism in such systems.
Collapse
Affiliation(s)
- Jabir Ubaid
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Campus, Masdar City, P.O. Box 54224, Abu Dhabi UAE
| | - Brian L Wardle
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - S Kumar
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Campus, Masdar City, P.O. Box 54224, Abu Dhabi UAE
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
8
|
Ubaid J, Wardle BL, Kumar S. Strength and Performance Enhancement of Multilayers by Spatial Tailoring of Adherend Compliance and Morphology via Multimaterial Jetting Additive Manufacturing. Sci Rep 2018; 8:13592. [PMID: 30206331 PMCID: PMC6134147 DOI: 10.1038/s41598-018-31819-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Material tailoring of bondlayer compliance is a known effective route to enhance performance of multilayers, and here spatial material-tailoring of compliance and morphology of the adherends is examined. Multimaterial jetting additive manufacturing (AM) allows us to realize for the first time compliance- and morphology-tailored adherends, and evaluate directly the mechanical performance, including failure, of the tensile-loaded multilayers. Adherend compliance-tailoring, unlike bondlayer tailoring, requires additional consideration due to adherend bending stiffness and moment influences on bondlayer stresses. We introduce anisotropic as well as layered/sandwich adherend tailoring to address this dependence. Numerical models show that for both sub-critical and critical bondlengths (at which shear-dominated load transfer occurs through the bondlayer), adherend tailoring reduces peak stresses significantly, particularly peel stress (reductions of 47–80%) that typically controls failure in such systems. At sub-critical bondlengths, the AM-enabled layered/sandwich adherend tailoring shows significantly increased experimental performance over the baseline multilayer: strength is increased by 20%, toughness by 48%, and strain-to-break by 18%, while retaining multilayer stiffness. The adherend tailoring demonstrated here adds to the techniques available to increase the performance of bonded multilayers, suggesting that adherend tailoring is particularly well-suited to additively manufactured multilayers, but can also have application in other areas such as layered electronics and advanced structural composite laminates.
Collapse
Affiliation(s)
- Jabir Ubaid
- Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology, Masdar Institute, Abu Dhabi, 54224, UAE
| | - Brian L Wardle
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - S Kumar
- Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology, Masdar Institute, Abu Dhabi, 54224, UAE.
| |
Collapse
|
9
|
Strategies to Control Performance of 3D-Printed, Cable-Driven Soft Polymer Actuators: From Simple Architectures to Gripper Prototype. Polymers (Basel) 2018; 10:polym10080846. [PMID: 30960772 PMCID: PMC6403601 DOI: 10.3390/polym10080846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/02/2022] Open
Abstract
The following is a study of the performance of soft cable-driven polymer actuators produced by multimaterial 3D printing. We demonstrate that the mechanical response of the polymer actuator with an embedded cable can be flexibly tuned through the targeted selection of actuator architecture. Various strategies, such as the addition of discrete or periodic stiff inserts, the sectioning of the actuator, or the shifting of the cable channel are employed to demonstrate ways to achieve more controllable deformed shape during weight lifting or reduce the required actuation force. To illustrate these concepts, we design and manufacture a prototype of the soft polymer gripper, which is capable of manipulating small, delicate objects. The explored strategies can be utilized in other types of soft actuators, employing, for instance, actuation by means of electroactive polymers.
Collapse
|
10
|
Libonati F, Cipriano V, Vergani L, Buehler MJ. Computational Framework to Predict Failure and Performance of Bone-Inspired Materials. ACS Biomater Sci Eng 2017; 3:3236-3243. [DOI: 10.1021/acsbiomaterials.7b00606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Flavia Libonati
- Department
of Mechanical Engineering, Politecnico di Milano, via La Masa 1, 20156 Milano, Italy
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Department of Civil
and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vito Cipriano
- Department
of Mechanical Engineering, Politecnico di Milano, via La Masa 1, 20156 Milano, Italy
| | - Laura Vergani
- Department
of Mechanical Engineering, Politecnico di Milano, via La Masa 1, 20156 Milano, Italy
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Department of Civil
and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Djumas L, Simon GP, Estrin Y, Molotnikov A. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry. Sci Rep 2017; 7:11844. [PMID: 28928369 PMCID: PMC5605519 DOI: 10.1038/s41598-017-12147-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022] Open
Abstract
Structural hierarchy is known to enhance the performance of many of Nature's materials. In this work, we apply the idea of hierarchical structure to topologically interlocked assemblies, obtained from measurements under point loading, undertaken on identical discrete block ensembles with matching non-planar surfaces. It was demonstrated that imposing a hierarchical structure adds to the load bearing capacity of topological interlocking assemblies. The deformation mechanics of these structures was also examined numerically by finite element analysis. Multiple mechanisms of surface contact, such as slip and tilt of the building blocks, were hypothesised to control the mechanical response of topological interlocking assemblies studied. This was confirmed using as a model a newly designed interlocking block, where slip was suppressed, which produced a gain in peak loading. Our study highlights the possibility of tailoring the mechanical response of topological interlocking assemblies using geometrical features of both the element geometry and the contact surface profile.
Collapse
Affiliation(s)
- Lee Djumas
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Victoria, 3800, Australia.
| | - George P Simon
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Victoria, 3800, Australia
| | - Yuri Estrin
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Victoria, 3800, Australia
- Laboratory of Hybrid Nanostructured Materials, National University of Science and Technology "MISIS", Leninsky prospect 4, 119049, Moscow, Russia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Victoria, 3800, Australia.
| |
Collapse
|
12
|
Yadav R, Naebe M, Wang X, Kandasubramanian B. Review on 3D Prototyping of Damage Tolerant Interdigitating Brick Arrays of Nacre. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ramdayal Yadav
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Balasubramanian Kandasubramanian
- Rapid
Prototyping Lab, Department of Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
13
|
A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomater 2017; 55:360-372. [PMID: 28323175 DOI: 10.1016/j.actbio.2017.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
Abstract
Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention for their unique combinations of hardness, flexibility and light weight. The extreme contrast of stiffness between hard scales and surrounding soft tissues gives rise to unusual and attractive mechanisms, which now serve as models for the design of bio-inspired armors. Despite this growing interest, there is little guideline for the choice of materials, optimum thickness, size, shape and arrangement for the protective scales. In this work, we explore how the geometry and arrangement of hard scales can be tailored to promote scale-scale interactions. We use 3D printing to fabricate arrays of scales with increasingly complex geometries and arrangements, from simple squares with no overlap to complex ganoid-scales with overlaps and interlocking features. We performed puncture tests and flexural tests on each of the 3D printed materials, and we report the puncture resistance - compliance characteristics of each design on an Ashby chart. The interactions between the scales can significantly increase the resistance to puncture, and these interactions can be maximized by tuning the geometry and arrangement of the scales. Interestingly, the designs that offer the best combinations of puncture resistance and flexural compliance are similar to the geometry and arrangement of natural teleost and ganoid scales, which suggests that natural evolution has shaped these systems to maximize flexible protection. This study yields new insights into the mechanisms of natural dermal armor, and also suggests new designs for personal protective systems. STATEMENT OF SIGNIFICANCE Flexible natural armors from fishes, alligators or armadillos are attracting an increasing amount of attention for their unique and attractive combinations of hardness, flexibility and low weight. Despite a growing interest in bio-inspired flexible protection, there is still little guideline for the choice of materials, optimum thickness, size, shape and arrangement of the protective scales. In this work, we explore how the geometry and arrangement of hard scales affect puncture resistance and flexural compliance, using 3D printing and mechanical testing. Our main finding is that the performance of the scaled skin in terms of puncture resistance can be significantly improved by slight changes in their geometry and arrangement. Our results also suggest that natural evolution has shaped scaled skins to maximize flexible protection. This study yields new insights into the mechanics of natural dermal armors, and also suggests new designs for personal protective systems.
Collapse
|
14
|
Li XW, Ji HM, Yang W, Zhang GP, Chen DL. Mechanical properties of crossed-lamellar structures in biological shells: A review. J Mech Behav Biomed Mater 2017; 74:54-71. [PMID: 28550764 DOI: 10.1016/j.jmbbm.2017.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
The self-fabrication of materials in nature offers an alternate and powerful solution towards the grand challenge of designing advanced structural materials, where strength and toughness are always mutually exclusive. Crossed-lamellar structures are the most common microstructures in mollusks that are composed of aragonites and a small amount of organic materials. Such a distinctive composite structure has a fracture toughness being much higher than that of pure carbonate mineral. These structures exhibiting complex hierarchical microarchitectures that span several sub-level lamellae from microscale down to nanoscale, can be grouped into two types, i.e., platelet-like and fiber-like crossed-lamellar structures based on the shapes of basic building blocks. It has been demonstrated that these structures have a great potential to strengthen themselves during deformation. The observed underlying toughening mechanisms include microcracking, channel cracking, interlocking, uncracked-ligament bridging, aragonite fiber bridging, crack deflection and zig-zag, etc., which play vital roles in enhancing the fracture resistance of shells with the crossed-lamellar structures. The exploration and utilization of these important toughening mechanisms have attracted keen interests of materials scientists since they pave the way for the development of bio-inspired advanced composite materials for load-bearing structural applications. This article is aimed to review the characteristics of hierarchical structures and the mechanical properties of two kinds of crossed-lamellar structures, and further summarize the latest advances and biomimetic applications based on the unique crossed-lamellar structures.
Collapse
Affiliation(s)
- X W Li
- Department of Materials Physics and Chemistry and Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, PR China.
| | - H M Ji
- Department of Materials Physics and Chemistry and Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, PR China; Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | - W Yang
- Department of Materials Physics and Chemistry and Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, PR China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - G P Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - D L Chen
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| |
Collapse
|
15
|
Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure. Sci Rep 2017; 7:40043. [PMID: 28094256 PMCID: PMC5240333 DOI: 10.1038/srep40043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
Natural structural materials with intricate hierarchical architectures over several length scales exhibit excellent combinations of strength and toughness. Here we report the mechanical response of a crossed-lamellar structure in Cymbiola nobilis shell via stepwise compression tests, focusing on toughening mechanisms. At the lower loads microcracking is developed in the stacked direction, and channel cracking along with uncracked-ligament bridging and aragonite fiber bridging occurs in the tiled direction. At the higher loads the main mechanisms involve cracking deflection in the bridging lamellae in the tiled direction alongside step-like cracking in the stacked direction. A distinctive crack deflection in the form of “convex” paths occurs in alternative lamellae with respect to the channel cracks in the tiled direction. Furthermore, a barb-like interlocking mechanism along with the uneven interfaces in the 1st-order aragonite lamellae is also observed. The unique arrangement of the crossed-lamellar structure provides multiple interfaces which result in a complicated stress field ahead of the crack tip, hence increasing the toughness of shell.
Collapse
|