1
|
Lan M, Qin Q, Xie Y, Zhang C, Liu Z, Xu X, Zhang J, Xu S, Yang J, Zhang H, Alatan S, Wang Z, Liu Z. Construction of ceRNA networks of lncRNA and miRNA associated with intramuscular fat deposition in Ujumqin sheep. Front Vet Sci 2025; 12:1559727. [PMID: 40177664 PMCID: PMC11963774 DOI: 10.3389/fvets.2025.1559727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The molecular mechanisms underlying intramuscular fat (IMF) deposition are crucial for enhancing lamb meat quality. This process is regulated by a network of transcription factors. Exploring the role of non-coding RNAs, particularly lncRNAs and miRNAs, in IMF deposition can clarify its complex genetics and offer resources for breeding Inner Mongolian local breeds. Methods We evaluated carcass and lamb meat quality parameters using 60 six-month-old Ujumqin sheep with similar body weights. To investigate non-coding RNA's role in IMF deposition, we identified differentially expressed genes and pathways between the longissimus dorsi and femoral biceps. Additionally, we analyzed these genes and the lncRNA-miRNA-mRNA co-regulatory network in high- and low-IMF femoral biceps groups. Results We identified 11,529 mRNAs (747 differentially expressed), 9,874 lncRNAs (1,428 differentially expressed), and 761 miRNAs (12 differentially expressed). GO and KEGG enrichment analyses showed these genes are involved in lipid metabolism, fatty acid oxidation, and energy metabolism. We constructed a ceRNA network with 12 lncRNAs, 4 miRNAs, and 6 mRNAs. Notably, lncRNA MSTRG.13155.1 interacts with miR-1343-3p_R + 2, promoting IMF deposition by releasing HADHA gene expression. Dual-luciferase reporter assays confirmed MSTRG.13155.1 and HADHA as miR-1343-3p_R + 2 targets. RT-qPCR validated the expression trends of key mRNAs, miRNAs, and lncRNAs, consistent with sequencing results. Discussion Our comprehensive analysis of differentially expressed genes and pathways in Ujumqin sheep's longissimus dorsi and femoral biceps, along with high- and low-IMF groups, has revealed the complex genetics of IMF deposition. This offers valuable resources for Inner Mongolian local breed selection. The interaction between lncRNA MSTRG.13155.1 and miR-1343-3p_R + 2, and their regulation of HADHA expression, provides new insights into IMF deposition mechanisms. Future research can explore these mechanisms' universality and specificity across different breeds and environments.
Collapse
Affiliation(s)
- Mingxi Lan
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuchun Xie
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science and Technology, Hebei Science and Technology Normal University, Qinhuangdao, Hebei, China
| | - Chongyan Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhichen Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Songsong Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haijun Zhang
- Erdos Agricultural and Animal Husbandry Science Research Institute, Ordos, China
| | - Suhe Alatan
- East Ujumqin Banner Hishig Animal Husbandry Development Co., Ltd., East Ujumqin Banner, China
| | - Zhixin Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Lin YK, Pan YF, Jiang TY, Chen YB, Shang TY, Xu MY, Feng HB, Ma YH, Tan YX, Wang HY, Dong LW. Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice. J Biomed Sci 2025; 32:31. [PMID: 40016734 PMCID: PMC11869713 DOI: 10.1186/s12929-025-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Adipose tissue plays a pivotal role in systemic metabolism and maintaining bodily homeostasis. Exosomes from adipose tissues, known as AT-Exos, are recognized as important messengers in the communication between adipose tissue and other organs. Despite this, the alterations in exosome composition and the functional disparities among depot-specific AT-Exos in obesity remain elusive. METHODS In this work, we utilized lipidomics and microRNA (miRNA) sequencing to elucidate the lipid and miRNA profiles of AT-Exos in a diet-induced obesity model. We identified obesity-related miRNAs in AT-Exos and further explored their mechanisms using gain- and loss-of-function experiments. To evaluate the metabolic effects of AT-Exos on adipocytes, we conducted RNA-sequencing (RNA-seq) and confirmed our findings through Quantitative Real-time PCR (qPCR) and Western bolt analyses. Meanwhile, a mouse model with intraperitoneal injections was utilized to validate the role of exosomes derived from visceral white adipose tissue (vWAT-Exos) in obesity progression in vivo. Finally, we explored potential therapeutic intervention strategies targeting AT-Exos, particularly focusing on modulating the SIRPα-CD47 axis to enhance macrophage phagocytosis using Leptin-deficient (ob/ob) mice and SIRPα knock-out mice. RESULTS Our study revealed that obesity-related metabolism affects the biological processes of AT-Exos, with depot-specific secretion patterns. In obesity, the lipidome profile of AT-Exos was significantly altered, and diet can modify the miRNA content and function within these exosomes, influencing lipid metabolism and inflammatory pathways that contribute to metabolic dysregulation. Specifically, we identified that miR-200a-3p and miR-200b-3p promoted lipid accumulation in 3T3L1 cells partly through the PI3K/AKT/mTOR pathway. RNA-Seq analysis revealed that AT-Exos from different fat depots exerted distinct effects on adipocyte metabolism, with obese vWAT-Exos being notably potent in triggering inflammation and lipid accumulation in diet-induced obesity. Additionally, we found that inhibiting the SIRPα-CD47 axis can mitigate metabolic disorders induced by obese vWAT-Exos or ob/ob mice, partly due to the enhanced clearance of vWAT-Exos. Consistent with this, SIRPα-deficient mice exhibited a reduction in vWAT-Exos and displayed greater resistance to obesity. CONCLUSIONS This study elucidates that diet-induced obesity altered the lipid and miRNA profiles of AT-Exos, which involved in modulating adipocyte inflammation and metabolic balance. The SIRPα-CD47 axis emerges as a potential therapeutic target for obesity and its associated complications.
Collapse
Affiliation(s)
- Yun-Kai Lin
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yu-Fei Pan
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Tian-Yi Jiang
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yi-Bin Chen
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Tai-Yu Shang
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Meng-You Xu
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Hui-Bo Feng
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yun-Han Ma
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ye-Xiong Tan
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Hong-Yang Wang
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Li-Wei Dong
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
3
|
Atta H, Kassem DH, Kamal MM, Hamdy NM. Harnessing the ubiquitin proteasome system as a key player in stem cell biology. Biofactors 2025; 51:e2157. [PMID: 39843166 DOI: 10.1002/biof.2157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins. Proteasomes have a critical role in controlling protein homeostasis in all cell types, including stem cells. We will discuss the role of UPS enzymes as well as the 26S proteasome complex in stem cell biology from several angles. First, we shall overview common trends of proteasomal activity and gene expression of different proteasomal subunits and UPS enzymes upon passaging and differentiation of stem cells toward various cell lineages. Second, we shall explore the effect of modulating proteasomal activity in stem cells and navigate through the interrelation between proteasomes' activity and various proteasome-related transcription factors. Third, we will shed light on curated microRNAs and long non-coding RNAs using various bioinformatics tools that might have a possible role in regulating UPS in stem cells and possibly, upon manipulation, can enhance the differentiation process into different lineages and/or delay senescence upon cell passaging. This will help to decipher the role played by individual UPS enzymes and subunits as well as various interrelated molecular mediators in stem cells' maintenance and/or differentiation and open new avenues in stem cell research. This can ultimately provide a leap toward developing novel therapeutic interventions related to proteasome dysregulation.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
5
|
Albornoz N, Álvarez-Indo J, de la Peña A, Arias-Muñoz E, Coca A, Segovia-Miranda F, Kerr B, Budini M, Criollo A, García-Robles MA, Morselli E, Soza A, Burgos PV. Targeting the immunoproteasome in hypothalamic neurons as a novel therapeutic strategy for high-fat diet-induced obesity and metabolic dysregulation. J Neuroinflammation 2024; 21:191. [PMID: 39095788 PMCID: PMC11297766 DOI: 10.1186/s12974-024-03154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS The levels of the immunoproteasome β5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome β5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of β5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the β5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolás Albornoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alanis Coca
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Cell and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María A García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
6
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
7
|
Schaftenaar FH, van Dam AD, de Bruin G, Depuydt MA, de Mol J, Amersfoort J, Douna H, Meijer M, Kröner MJ, van Santbrink PJ, Bernabé Kleijn MN, van Puijvelde GH, Florea BI, Slütter B, Foks AC, Bot I, Rensen PC, Kuiper J. Immunoproteasomal Inhibition With ONX-0914 Attenuates Atherosclerosis and Reduces White Adipose Tissue Mass and Metabolic Syndrome in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1346-1364. [PMID: 38660806 PMCID: PMC11188635 DOI: 10.1161/atvbaha.123.319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Metabolic Syndrome/drug therapy
- Metabolic Syndrome/immunology
- Disease Models, Animal
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/pathology
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Proteasome Endopeptidase Complex/metabolism
- Mice, Inbred C57BL
- Male
- Proteasome Inhibitors/pharmacology
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Plaque, Atherosclerotic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice, Knockout, ApoE
- Mice
- Energy Metabolism/drug effects
- Oligopeptides
Collapse
Affiliation(s)
- Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Andrea D. van Dam
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Gerjan de Bruin
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Menno Meijer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mara J. Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Peter J. van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mireia N.A. Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Gijs H.M. van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Bogdan I. Florea
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| |
Collapse
|
8
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
9
|
Zhang J, Tao P, Deuitch NT, Yu X, Askentijevich I, Zhou Q. Proteasome-Associated Syndromes: Updates on Genetics, Clinical Manifestations, Pathogenesis, and Treatment. J Clin Immunol 2024; 44:88. [PMID: 38578475 DOI: 10.1007/s10875-024-01692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Panfeng Tao
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Natalie T Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaomin Yu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Ivona Askentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qing Zhou
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
11
|
Šilhavý J, Mlejnek P, Šimáková M, Liška F, Malínská H, Marková I, Hüttl M, Miklánková D, Mušálková D, Stránecký V, Kmoch S, Sticová E, Vrbacký M, Mráček T, Pravenec M. Spontaneous nonsense mutation in the tuftelin 1 gene is associated with abnormal hair appearance and amelioration of glucose and lipid metabolism in the rat. Physiol Genomics 2024; 56:65-73. [PMID: 37955133 DOI: 10.1152/physiolgenomics.00084.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Recently, we have identified a recessive mutation, an abnormal coat appearance in the BXH6 strain, a member of the HXB/BXH set of recombinant inbred (RI) strains. The RI strains were derived from the spontaneously hypertensive rat (SHR) and Brown Norway rat (BN-Lx) progenitors. Whole genome sequencing of the mutant rats identified the 195875980 G/A mutation in the tuftelin 1 (Tuft1) gene on chromosome 2, which resulted in a premature stop codon. Compared with wild-type BXH6 rats, BXH6-Tuft1 mutant rats exhibited lower body weight due to reduced visceral fat and ectopic fat accumulation in the liver and heart. Reduced adiposity was associated with decreased serum glucose and insulin and increased insulin-stimulated glycogenesis in skeletal muscle. In addition, mutant rats had lower serum monocyte chemoattractant protein-1 and leptin levels, indicative of reduced inflammation. Analysis of the liver proteome identified differentially expressed proteins from fatty acid metabolism and β-oxidation, peroxisomes, carbohydrate metabolism, inflammation, and proteasome pathways. These results provide evidence for the important role of the Tuft1 gene in the regulation of lipid and glucose metabolism and suggest underlying molecular mechanisms.NEW & NOTEWORTHY A new spontaneous mutation, abnormal hair appearance in the rat, has been identified as a nonfunctional tuftelin 1 (Tuft1) gene. The pleiotropic effects of this mutation regulate glucose and lipid metabolism. Analysis of the liver proteome revealed possible molecular mechanisms for the metabolic effects of the Tuft1 gene.
Collapse
Affiliation(s)
- Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Liška
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Denisa Miklánková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Mušálková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Sticová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Vrbacký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
12
|
Sasaki I, Kato T, Kanazawa N, Kaisho T. Autoinflammatory Diseases Due to Defects in Degradation or Transport of Intracellular Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:83-95. [PMID: 38467974 DOI: 10.1007/978-981-99-9781-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The number of human inborn errors of immunity has now gone beyond 430. The responsible gene variants themselves are apparently the cause for the disorders, but the underlying molecular or cellular mechanisms for the pathogenesis are often unclear. In order to clarify the pathogenesis, the mutant mice carrying the gene variants are apparently useful and important. Extensive analysis of those mice should contribute to the clarification of novel immunoregulatory mechanisms or development of novel therapeutic maneuvers critical not only for the rare monogenic diseases themselves but also for related common polygenic diseases. We have recently generated novel model mice in which complicated manifestations of human inborn errors of immunity affecting degradation or transport of intracellular proteins were recapitulated. Here, we review outline of these disorders, mainly based on the phenotype of the mutant mice we have generated.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
13
|
Protective effect of Anoectochilus burmannicus extracts and its active compound, kinsenoside on adipocyte differentiation induced by benzyl butyl phthalate and bisphenol A. Sci Rep 2023; 13:2939. [PMID: 36806746 PMCID: PMC9941494 DOI: 10.1038/s41598-023-30227-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Benzyl butyl phthalate (BBP) and bisphenol-A (BPA) are obesogens that have been reported to be associated with obesity. Inhibition of their adipogenic activity could decrease the risk of obesity-related metabolic disorders. This study hypothesized that Anoectochilus burmannicus ethanolic extract (ABE) which has been previously reported its anti-inflammation property and its known active compound, kinsenoside (Kin) abrogate BBP- and BPA-induced adipogenesis. ABE and Kin markedly suppress both BBP- and BPA-stimulated adipogenesis with different modulations on adipogenic-gene expression including C/EBPα, PPARγ, adiponectin, and leptin in 3T3-L1. BBP induced C/EBPα, adiponectin, and leptin mRNA expressions and slightly increased PPARγ mRNA level, whereas BPA markedly induced PPARγ and adiponectin mRNA levels. ABE significantly decreased the expression of C/EBPα and leptin, but not PPARγ and adiponectin in the BBP-treated cells. In the BPA-treated cells, ABE significantly decreased the mRNA expression of C/EBPα and PPARγ, but not adiponectin and leptin. Interestingly, Kin significantly overcame BBP- and BPA-induced C/EBPα, PPARγ, adiponectin, and leptin expressions. This study first provides evidence to support the health benefits of this plant, especially for people exposed to obesogens. Besides, this finding would encourage the conservation and culture of this orchid for development as an economic plant and healthy food.
Collapse
|
14
|
Chen G, Wang G, Xu W, Xiao Y, Peng Y. Transcriptome analysis of fat accumulation in 3T3-L1 adipocytes induced by chlorantraniliprole. Front Nutr 2022; 9:1091477. [PMID: 36590199 PMCID: PMC9797500 DOI: 10.3389/fnut.2022.1091477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Chlorantraniliprole is a diamide insecticide widely used in agriculture. Chlorantraniliprole has been previously found to increase the accumulation of triglycerides (fats) in adipocytes, however, the underlying molecular mechanism is unknown. The present study aimed to explore the molecular mechanisms of chlorantraniliprole-induced fat accumulation in 3T3-L1 adipocytes. Methods We measured the triglyceride content in chlorantraniliprole-treated 3T3-L1 adipocytes, and collected cell samples treated with chlorantraniliprole for 24 h and without any treatment for RNA sequencing. Results Compared with the control group, the content of triglyceride in the treatment group of chlorantraniliprole was significantly increased. The results of RNA sequencing (RNA-seq) showed that 284 differentially expressed genes (DEGs) were identified after treatment with chlorantraniliprole, involving 39 functional groups of gene ontology (GO) and 213 KEGG pathways. Moreover, these DEGs were significantly enriched in several key genes that regulate adipocyte differentiation and lipogenesis including Igf1, Rarres2, Nr1h3, and Psmb8. Discussion In general, these results suggest that chlorantraniliprole-induced lipogenesis is attributed to a whole-gene transcriptome response, which promotes further understanding of the potential mechanism of chlorantraniliprole-induced adipogenesis.
Collapse
Affiliation(s)
- Ge Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ge Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China,*Correspondence: Weidong Xu,
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China,Ye Peng,
| |
Collapse
|
15
|
Kaushik S, Juste YR, Lindenau K, Dong S, Macho-González A, Santiago-Fernández O, McCabe M, Singh R, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy regulates adipocyte differentiation. SCIENCE ADVANCES 2022; 8:eabq2733. [PMID: 36383673 PMCID: PMC9668314 DOI: 10.1126/sciadv.abq2733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Adipogenesis is a tightly orchestrated multistep process wherein preadipocytes differentiate into adipocytes. The most studied aspect of adipogenesis is its transcriptional regulation through timely expression and silencing of a vast number of genes. However, whether turnover of key regulatory proteins per se controls adipogenesis remains largely understudied. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal protein degradation that, in response to diverse cues, remodels the proteome for regulatory purposes. We report here the activation of CMA during adipocyte differentiation and show that CMA regulates adipogenesis at different steps through timely degradation of key regulatory signaling proteins and transcription factors that dictate proliferation, energetic adaptation, and signaling changes required for adipogenesis.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yves R. Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuxian Dong
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adrián Macho-González
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mericka McCabe
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Sreekumar S, Vijayan V, Singh F, Sudhakar M, Lakra R, Korrapati PS, Kiran MS. White to brown adipocyte transition mediated by Apigenin via VEGF-PRDM16 signaling. J Cell Biochem 2022; 123:1793-1807. [PMID: 35926149 DOI: 10.1002/jcb.30316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
The dysregulated energy metabolism in white adipose tissues results in derangement of biological signaling resulting in obesity. Lack of vascularization in these white adipose tissues is one of the major reasons for dysregulated energy metabolism. Not much work has been done in this direction to understand the role of angiogenesis in white adipose tissue metabolism. In the present study, we evaluated the effect of angiogenic modulator in the metabolism of white adipocyte (WAC). Bioactive Apigenin was selected and its angiogenic ability was studied. Apigenin was shown to be highly proangiogenic hence the effect of Apigenin on de novo and trans-differentiation of WAT was studied. Apigenin showed enhanced de novo differentiation and trans-differentiation of mouse WAC into brown-like phenotype. To understand the effect of Apigenin on adipose tissue vasculature, coculture studies were conducted. Cross talk between endothelial cell and adipocytes were observed in coculture studies. Gene expression studies of cocultured cells revealed that browning of WAC occurred by triggering the expression of Vascular endothelial growth factor A. The study provides a new insight for inducing metabolic shift in WACs by modulation of angiogenesis in WAC microenvironment by the upregulation of PRDM16 cascade to trigger browning for the treatment of obesity.
Collapse
Affiliation(s)
- Sreelekshmi Sreekumar
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinu Vijayan
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Fathe Singh
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manu Sudhakar
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rachita Lakra
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Khine HEE, Sungthong R, Sritularak B, Prompetchara E, Chaotham C. Untapped Pharmaceutical Potential of 4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl for Regulating Obesity: A Cell-Based Study with a Focus on Terminal Differentiation in Adipogenesis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1591-1602. [PMID: 35679136 DOI: 10.1021/acs.jnatprod.2c00213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Obesity and its global prevalence has become a threat to human health, while its pharmacotherapy via the application of natural products is still underdeveloped. Here, we probed how 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB) derived from an orchid (Dendrobium ellipsophyllum) could exert its roles on the differentiation and function of murine (3T3-L1) and human (PCS-210-010) pre-adipocytes and offer some implications to modulate obesity. Cytotoxic effects of TDB on adipocytes were 2-fold lower than those detected with pre-adipocytes, and no significant difference was detected in cytotoxic profiles between both cell lineages. TDB in a dose-dependent manner decreased cellular lipid accumulation and enhanced lipolysis of both cell lines assessed at early differentiation and during maturation. Underlining molecular mechanisms proved that TBD paused the cell cycle progression by regulating inducers and inhibitors in mitotic clonal expansion, leading to growth arrest of pre-adipocytes at the G0/G1 phase. The compound also governed adipocyte differentiation by repressing expressions of crucial adipogenic regulators and effectors through deactivating the AKT/GSK-3β signaling pathway and activating the AMPK-ACC pathway. To this end, TDB has shown its pharmaceutical potential for modulating adipocyte development and function, and it would be a promising candidate for further assessments as a therapeutic agent to defeat obesity.
Collapse
Affiliation(s)
- Hnin Ei Ei Khine
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Sasaki Y, Arimochi H, Otsuka K, Kondo H, Tsukumo SI, Yasutomo K. Blockade of the CXCR3/CXCL10 axis ameliorates inflammation caused by immunoproteasome dysfunction. JCI Insight 2022; 7:152681. [PMID: 35393946 PMCID: PMC9057626 DOI: 10.1172/jci.insight.152681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Immunoproteasomes regulate the degradation of ubiquitin-coupled proteins and generate peptides that are preferentially presented by MHC class I. Mutations in immunoproteasome subunits lead to immunoproteasome dysfunction, which causes proteasome-associated autoinflammatory syndromes (PRAAS) characterized by nodular erythema and partial lipodystrophy. It remains unclear, however, how immunoproteasome dysfunction leads to inflammatory symptoms. Here, we established mice harboring a mutation in Psmb8 (Psmb8-KI mice) and addressed this question. Psmb8-KI mice showed higher susceptibility to imiquimod-induced skin inflammation (IMS). Blockade of IL-6 or TNF-α partially suppressed IMS in both control and Psmb8-KI mice, but there was still more residual inflammation in the Psmb8-KI mice than in the control mice. DNA microarray analysis showed that treatment of J774 cells with proteasome inhibitors increased the expression of the Cxcl9 and Cxcl10 genes. Deficiency in Cxcr3, the gene encoding the receptor of CXCL9 and CXCL10, in control mice did not change IMS susceptibility, while deficiency in Cxcr3 in Psmb8-KI mice ameliorated IMS. Taken together, these findings demonstrate that this mutation in Psmb8 leads to hyperactivation of the CXCR3 pathway, which is responsible for the increased susceptibility of Psmb8-KI mice to IMS. These data suggest the CXCR3/CXCL10 axis as a new molecular target for treating PRAAS.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and
| | - Hiroyuki Kondo
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
19
|
Zarkasi KA, Abdul Murad NA, Ahmad N, Jamal R, Abdullah N. Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:647. [PMID: 35055468 PMCID: PMC8775550 DOI: 10.3390/ijerph19020647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Asians are more susceptible to type 2 diabetes mellitus (T2D) and its coronary heart disease (CHD) complications than the Western populations, possibly due to genetic factors, higher degrees of obesity, insulin resistance, and endothelial dysfunction that could occur even in healthy individuals. The genetic factors and their mechanisms, along with gene-gene and gene-environment interactions associated with CHD in T2D Asians, are yet to be explored. Therefore, the objectives of this paper were to review the current evidence of genetic factors for CHD, summarize the proposed mechanisms of these genes and how they may associate with CHD risk, and review the gene-gene and gene-environment interactions in T2D Asians with CHD. The genetic factors can be grouped according to their involvement in the energy and lipoprotein metabolism, vascular and endothelial pathology, antioxidation, cell cycle regulation, DNA damage repair, hormonal regulation of glucose metabolism, as well as cytoskeletal function and intracellular transport. Meanwhile, interactions between single nucleotide polymorphisms (SNPs) from different genes, SNPs within a single gene, and genetic interaction with environmental factors including obesity, smoking habit, and hyperlipidemia could modify the gene's effect on the disease risk. Collectively, these factors illustrate the complexities of CHD in T2D, specifically among Asians.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
- Biochemistry Unit, Preclinical Department, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia;
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| |
Collapse
|
20
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
21
|
Shi L, Li Y, Liu Q, Zhang L, Wang L, Liu X, Gao H, Hou X, Zhao F, Yan H, Wang L. Identification of SNPs and Candidate Genes for Milk Production Ability in Yorkshire Pigs. Front Genet 2021; 12:724533. [PMID: 34675963 PMCID: PMC8523896 DOI: 10.3389/fgene.2021.724533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Sow milk production ability is an important limiting factor impacting suboptimal growth and the survival of piglets. Through pig genetic improvement, litter sizes have been increased. Larger litters need more suckling mammary glands, which results in increased milk from the lactating sow. Hence, there is much significance to exploring sow lactation performance. For milk production ability, it is not practical to directly measure the milk yield, we used litter weight gain (LWG) throughout sow lactation as an indicator. In this study, we estimated the heritability of LWG, namely, 0.18 ± 0.07. We then performed a GWAS, and detected seven significant SNPs, namely, Sus scrofa Chromosome (SSC) 2: ASGA0010040 (p = 7.73E-11); SSC2:MARC0029355 (p = 1.30E-08), SSC6: WU_10.2_6_65751151 (p = 1.32E-10), SSC7: MARC0058875 (p = 4.99E-09), SSC10: WU_10.2_10_49571394 (p = 6.79E-08), SSC11: M1GA0014659 (p = 1.19E-07), and SSC15: MARC0042106 (p = 1.16E-07). We performed the distribution of phenotypes corresponding to the genotypes of seven significant SNPs and showed that ASGA0010040, MARC0029355, MARC0058875, WU_10.2_10_49571394, M1GA0014659, and MARC0042106 had extreme phenotypic values that corresponded to the homozygous genotypes, while the intermediate values corresponded to the heterozygous genotypes. We screened for flanking regions ± 200 kb nearby the seven significant SNPs, and identified 38 genes in total. Among them, 28 of the candidates were involved in lactose metabolism, colostrum immunity, milk protein, and milk fat by functional enrichment analysis. Through the combined analysis between 28 candidate genes and transcriptome data of the sow mammary gland, we found nine commons (ANO3, MUC15, DISP3, FBXO6, CLCN6, HLA-DRA, SLA-DRB1, SLA-DQB1, and SLA-DQA1). Furthermore, by comparing the chromosome positions of the candidate genes with the quantitative trait locus (QTLs) as previously reported, a total of 17 genes were found to be within 0.86–94.02 Mb of the reported QTLs for sow milk production ability, in which, NAV2 was found to be located with 0.86 Mb of the QTL region ssc2: 40936355. In conclusion, we identified seven significant SNPs located on SSC2, 6, 7, 10, 11, and 15, and propose 28 candidate genes for the ability to produce milk in Yorkshire pigs, 10 of which were key candidates.
Collapse
Affiliation(s)
- Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Xie Y, Liu G, Zang X, Hu Q, Zhou C, Li Y, Liu D, Hong L. Differential Expression Pattern of Goat Uterine Fluids Extracellular Vesicles miRNAs during Peri-Implantation. Cells 2021; 10:cells10092308. [PMID: 34571957 PMCID: PMC8470123 DOI: 10.3390/cells10092308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Early pregnancy failure occurs when a mature embryo attaches to an unreceptive endometrium. During the formation of a receptive endometrium, extracellular vesicles (EVs) of the uterine fluids (UFs) deliver regulatory molecules such as small RNAs to mediate intrauterine communication between the embryo and the endometrium. However, profiling of small RNAs in goat UFs’ EVs during pregnancy recognition (day 16) has not been carried out. In this study, EVs were isolated from UFs on day 16 of the estrous cycle or gestation. They were isolated by Optiprep™ Density G radient (ODG) and verified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Immunostaining demonstrated that CD63 was present both in the endometrial epithelium and glandular epithelium, and stain intensity was greater in the pregnant endometrium compared to the non-pregnant endometrium. Small RNA sequencing revealed that UFs’ EVs contained numerous sRNA families and a total of 106 differentially expressed miRNAs (DEMs). Additionally, 1867 target genes of the DEMs were obtained, and miRNA–mRNA interaction networks were constructed. GO and KEGG analysis showed that miRNAs were significantly associated with the formation of a receptive endometrium and embryo implantation. In addition, the fluorescence in situ hybridization assay (FISH) showed that chi-miR-451-5p was mainly expressed in stromal cells of the endometrium and a higher level was detected in the endometrial luminal epithelium in pregnant states. Moreover, the dual-luciferase reporter assay showed that chi-miR-451-5p directly binds to PSMB8 and may play an important role in the formation of a receptive endometrium and embryo implantation. In conclusion, these results reveal that UFs’ EVs contain various small RNAs that may be vital in the formation of a receptive endometrium and embryo implantation.
Collapse
Affiliation(s)
- Yanshe Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Qun Hu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (D.L.); (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (D.L.); (L.H.)
| |
Collapse
|
23
|
Kim CW, Go RE, Lee HK, Kang BT, Cho WJ, Choi KC. Anti-obesity effects of Celastrus orbiculatus extract containing celastrol on canine adipocytes. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:177-185. [PMID: 34248261 PMCID: PMC8243799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 06/13/2023]
Abstract
From 50 to 60% of companion animals in the United States are overweight or obese and this obesity rate is rising. As obesity is associated with a number of health problems, an agent that can help weight loss in pets and assist in clinically managing obesity through veterinary prescription foods and medication would be beneficial. Many studies have shown that celastrol, a phytochemical compound found in Celastrus orbiculatus extract (COE), has anti-obesity and anti-inflammatory effects, although these effects have not yet been determined in canine or canine-derived cells. The objective of this study was to investigate the effects of celastrol on the adipogenic differentiation and lipolysis of canine adipocytes. Primary preadipocytes were isolated from the gluteal region of a beagle dog and the primary adipocytes were differentiated into mature adipocytes by adipocyte differentiation media containing isobutylmethylxanthine, dexamethasone, and insulin. In a water-soluble tetrazolium (WST) assay, the cell viability of mature adipocytes was decreased after treatment with COE (0, 0.93, 2.32, and 4.64 nM celastrol) in a concentration-dependent manner, although preadipocytes were not affected. Oil Red O (ORO) staining revealed that COE inhibited the differentiation into mature adipocytes and lipid accumulation in adipocytes. In addition, treatment with COE significantly reduced triglyceride content and increased lipolytic activities by 1.5-fold in canine adipocytes. Overall, it was concluded that COE may enhance anti-obesity activity in canine adipocytes by inhibiting lipid accumulation and increasing lipolytic activity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Byeong-Teck Kang
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Woo Jae Cho
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology (Kim, Go, Lee, Choi) and Laboratory of Veterinary Dermatology and Neurology (Kang), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Veterinary Nutrition Laboratory, JEIL Feed Co. Ltd., Daejeon, Chungnam, Republic of Korea (Cho)
| |
Collapse
|
24
|
Takahashi S, Ferdousi F, Zheng YW, Oda T, Isoda H. Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3- O-Glucoside on Cell Differentiation. Int J Mol Sci 2021; 22:3768. [PMID: 33916494 PMCID: PMC8038597 DOI: 10.3390/ijms22073768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanidin, a kind of anthocyanin, has been reported to have chemotherapeutic activities in humans. Human amniotic epithelial cells (hAECs) are considered a potential source of pluripotent stem cells. hAECs have been used as a novel tool in regenerative cellular therapy and cell differentiation studies. In this study, to explore the effects of cyanidin-3-O-glucoside (Cy3G) on hAECs and their mechanisms, we investigated the transcriptomic changes in the Cy3G-treated cells using microarray analysis. Among the differentially expressed genes (Fold change > 1.1; p-value < 0.05), 109 genes were upregulated and 232 were downregulated. Ratios of upregulated and downregulated genes were 0.22% and 0.47% of the total expressed genes, respectively. Next, we explored the enriched gene ontology, i.e., the biological process, molecular function, and cellular component of the 37 upregulated (>1.3-fold change) and 124 downregulated (<1.3-fold change) genes. Significantly enriched biological processes by the upregulated genes included "response to muscle activity," and the genes involved in this gene ontology (GO) were Metrnl and SRD5A1, which function in the adipocyte. On the other hand, the cell cycle biological process was significantly enriched by the downregulated genes, including some from the SMC gene family. An adipogenesis-associated gene DDX6 was also included in the cell cycle biological process. Thus, our findings suggest the prospects of Cy3G in modulating adipocyte differentiation in hAECs.
Collapse
Affiliation(s)
- Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (S.T.); (F.F.)
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
| | - Farhana Ferdousi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (S.T.); (F.F.)
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
| | - Yun-Wen Zheng
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tatsuya Oda
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (S.T.); (F.F.)
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST-University of Tsukuba, Tsukuba 305-8565, Japan; (Y.-W.Z.); (T.O.)
| |
Collapse
|
25
|
Al-Sayegh MA, Mahmood SR, Khair SBA, Xie X, El Gindi M, Kim T, Almansoori A, Percipalle P. β-actin contributes to open chromatin for activation of the adipogenic pioneer factor CEBPA during transcriptional reprograming. Mol Biol Cell 2020; 31:2511-2521. [PMID: 32877276 PMCID: PMC7851876 DOI: 10.1091/mbc.e19-11-0628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipogenesis is regulated by a cascade of signals that drive transcriptional reprogramming in adipocytes. Here, we report that nuclear actin regulates the chromatin states that establish tissue- specific expression during adipogenesis. To study the role of β-actin in adipocyte differentiation, we conducted RNA sequencing on wild-type and β-actin knockout mouse embryonic fibroblasts (MEFs) after reprograming to adipocytes. We found that β-actin depletion affects induction of several adipogenic genes during transcriptional reprograming. This impaired regulation of adipogenic genes is linked to reduced expression of the pioneer factor Cebpa and is rescued by reintroducing NLS-tagged β-actin. ATAC-Seq in knockout MEFs revealed that actin-dependent reduction of Cebpa expression correlates with decreased chromatin accessibility and loss of chromatin association of the ATPase Brg1. This, in turn, impairs CEBPB's association with its Cebpa promoter-proximal binding site during adipogenesis. We propose a role for the nuclear β-actin pool in maintaining open chromatin for transcriptional reprogramming during adipogenic differentiation.
Collapse
Affiliation(s)
- M A Al-Sayegh
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - S R Mahmood
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Biology, New York University, New York, NY 10003
| | - S B Abul Khair
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - X Xie
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - M El Gindi
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - T Kim
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - A Almansoori
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - P Percipalle
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Miladinovic D, Cusick T, Mahon KL, Haynes AM, Cortie CH, Meyer BJ, Stricker PD, Wittert GA, Butler LM, Horvath LG, Hoy AJ. Assessment of Periprostatic and Subcutaneous Adipose Tissue Lipolysis and Adipocyte Size from Men with Localized Prostate Cancer. Cancers (Basel) 2020; 12:cancers12061385. [PMID: 32481537 PMCID: PMC7352157 DOI: 10.3390/cancers12061385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The prostate is surrounded by periprostatic adipose tissue (PPAT), the thickness of which has been associated with more aggressive prostate cancer (PCa). There are limited data regarding the functional characteristics of PPAT, how it compares to subcutaneous adipose tissue (SAT), and whether in a setting of localized PCa, these traits are altered by obesity or disease aggressiveness. PPAT and SAT were collected from 60 men (age: 42–78 years, BMI: 21.3–35.6 kg/m2) undergoing total prostatectomy for PCa. Compared to SAT, adipocytes in PPAT were smaller, had the same basal rates of fatty acid release (lipolysis) yet released less polyunsaturated fatty acid species, and were more sensitive to isoproterenol-stimulated lipolysis. Basal lipolysis of PPAT was increased in men diagnosed with less aggressive PCa (Gleason score (GS) ≤ 3 + 4) compared to men with more aggressive PCa (GS ≥ 4 + 3) but no other measured adipocyte parameters related to PCa aggressiveness. Likewise, there was no difference in PPAT lipid biology between lean and obese men. In conclusion, lipid biological features of PPAT do differ from SAT; however, we did not observe any meaningful difference in ex vivo PPAT biology that is associated with PCa aggressiveness or obesity. As such, our findings do not support a relationship between altered PCa behavior in obese men and the metabolic reprogramming of PPAT.
Collapse
Affiliation(s)
- Dushan Miladinovic
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia;
| | - Thomas Cusick
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
| | - Kate L. Mahon
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
- Discipline of Medicine, Central Clinical School, The University of Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, New South Wales 2050, Australia
- Royal Prince Alfred Hospital, New South Wales 2050, Australia
| | - Anne-Maree Haynes
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
| | - Colin H. Cortie
- School of Medicine, Lipid Research Centre, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; (C.H.C.); (B.J.M.)
- Illawarra Medical Research Institute, University of Wollongong, New South Wales 2522, Australia
| | - Barbara J. Meyer
- School of Medicine, Lipid Research Centre, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; (C.H.C.); (B.J.M.)
- Illawarra Medical Research Institute, University of Wollongong, New South Wales 2522, Australia
| | - Phillip D. Stricker
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
- St. Vincent’s Clinical School, The University of New South Wales, New South Wales 2010, Australia
- St. Vincent’s Prostate Cancer Centre, St. Vincent’s Clinic, New South Wales 2010, Australia
| | - Gary A. Wittert
- South Australian Health and Medical Research Institute, South Australia 5000, Australia; (G.A.W.); (L.M.B.)
- School of Medicine and Freemasons Foundation Centre for Men’s Health, University of Adelaide, South Australia 5000, Australia
| | - Lisa M. Butler
- South Australian Health and Medical Research Institute, South Australia 5000, Australia; (G.A.W.); (L.M.B.)
- School of Medicine and Freemasons Foundation Centre for Men’s Health, University of Adelaide, South Australia 5000, Australia
| | - Lisa G. Horvath
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
- Discipline of Medicine, Central Clinical School, The University of Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, New South Wales 2050, Australia
- Royal Prince Alfred Hospital, New South Wales 2050, Australia
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia;
- Correspondence:
| |
Collapse
|
27
|
Kanazawa N. Designation of Autoinflammatory Skin Manifestations With Specific Genetic Backgrounds. Front Immunol 2020; 11:475. [PMID: 32256502 PMCID: PMC7093487 DOI: 10.3389/fimmu.2020.00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
“Autoinflammatory disease (AiD)” has first been introduced in 1999 when the responsible gene for the familial Hibernean fever or autosomal dominant-type familial Mediterranean fever-like periodic fever syndrome was reportedly identified as tumor necrosis factor receptor superfamily 1. Linked with the rapid research progress in the field of innate immunity, “autoinflammation” has been designated for dysregulated innate immunity in contrast to “autoimmunity” with dysregulated acquired immunity. As hereditary periodic fever syndromes represent the prototype of AiD, monogenic systemic diseases are the main members of AiD. However, skin manifestations provide important clinical information and there are even some AiDs originating from skin diseases. Recently, AiD showing psoriasis and related keratinization diseases have specifically been designated as “autoinflammatory keratinization diseases (AiKD)” and CARD14-associated psoriasis and deficiency of interleukin-36 receptor antagonist previously called as generalized pustular psoriasis are included. Similarly, a number of autoinflammatory skin diseases can be proposed; autoinflamatory urticarial dermatosis (AiUD) such as cryopyrin-associated periodic syndrome; autoinflammatory neutrophilic dermatosis (AiND) such as pyogenic sterile arthritis, pyoderma gangrenosm, and acne syndrome; autoinflammatory granulomatosis (AiG) such as Blau syndrome; autoinflammatory chilblain lupus (AiCL) such as Aicardi-Goutieres syndrome; autoinflammatory lipoatrophy (AiL) such as Nakajo-Nishimura syndrome; autoinflammatory angioedema (AiAE) such as hereditary angioedema; and probable autoinflammatory bullous disease (AiBD) such as granular C3 dermatosis. With these designations, skin manifestations in AiD can easily be recognized and, even more importantly, autoinflammatory pathogenesis of common skin diseases are expected to be more comprehensive.
Collapse
Affiliation(s)
- Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
28
|
Zhang Y, Ecelbarger CM, Lesniewski LA, Müller CE, Kishore BK. P2Y 2 Receptor Promotes High-Fat Diet-Induced Obesity. Front Endocrinol (Lausanne) 2020; 11:341. [PMID: 32582029 PMCID: PMC7283874 DOI: 10.3389/fendo.2020.00341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
P2Y2, a G protein-coupled receptor (R), is expressed in all organs involved in the development of obesity and insulin resistance. To explore the role of it in diet-induced obesity, we fed male P2Y2-R whole body knockout (KO) and wild type (WT) mice (B6D2 genetic background) with regular diet (CNT; 10% calories as fat) or high-fat diet (HFD; 60% calories as fat) with free access to food and water for 16 weeks, and euthanized them. Adjusted for body weights (BW), KO mice consumed modestly, but significantly more HFD vs. WT mice, and excreted well-formed feces with no taint of fat or oil. Starting from the 2nd week, HFD-WT mice displayed significantly higher BW with terminal mean difference of 22% vs. HFD-KO mice. Terminal weights of white adipose tissue (WAT) were significantly lower in the HFD-KO vs. HFD-WT mice. The expression of P2Y2-R mRNA in WAT was increased by 2-fold in HFD-fed WT mice. Serum insulin, leptin and adiponectin levels were significantly elevated in the HFD-WT mice, but not in the HFD-KO mice. When induced in vitro, preadipocytes derived from KO mice fed regular diet did not differentiate and mature as robustly as those from the WT mice, as assessed by cellular expansion and accumulation of lipid droplets. Blockade of P2Y2-R by AR-C118925 in preadipocytes derived from WT mice prevented differentiation and maturation. Under basal conditions, KO mice had significantly higher serum triglycerides and showed slightly impaired lipid tolerance as compared to the WT mice. HFD-fed KO mice had significantly better glucose tolerance (GTT) as compared to HFD-fed WT mice. Whole body insulin sensitivity and mRNA expression of insulin receptor, IRS-1 and GLUT4 in WAT was significantly higher in HFD-fed KO mice vs. HFD-fed WT mice. On the contrary, the expression of pro-inflammatory molecules MCP-1, CCR2, CD68, and F4/80 were significantly higher in the WAT of HFD-fed WT vs. HFD-fed KO mice. These data suggest that P2Y2-R plays a significant role in the development of diet-induced obesity by promoting adipogenesis and inflammation, and altering the production of adipokines and lipids and their metabolism in adipose tissue, and thereby facilitates HFD-induced insulin resistance.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Veterans Affairs Salt Lake City Health Care System, Nephrology Research, Salt Lake City, UT, United States
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Carolyn M. Ecelbarger
- Division of Endocrinology and Metabolism, Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, DC, United States
| | - Lisa A. Lesniewski
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Department of Veterans Affairs Salt Lake City Health Care System, Geriatric Research, Education and Clinical Center, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Bellamkonda K. Kishore
- Department of Veterans Affairs Salt Lake City Health Care System, Nephrology Research, Salt Lake City, UT, United States
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- *Correspondence: Bellamkonda K. Kishore
| |
Collapse
|
29
|
Kanazawa N, Honda-Ozaki F, Saito MK. Induced pluripotent stem cells representing Nakajo-Nishimura syndrome. Inflamm Regen 2019; 39:11. [PMID: 31143302 PMCID: PMC6532143 DOI: 10.1186/s41232-019-0099-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Nakajo-Nishimura syndrome is a proteasome-associated autoinflammatory syndrome with a distinct homozygous mutation in the PSMB8 gene encoding an inducible β5i subunit of the immunoproteasome. Although it is considered that immunoproteasome dysfunction causes cellular stress and contributes to the production of inflammatory cytokines and chemokines, its detailed mechanism is still unknown. On the other hand, hereditary autoinflammatory diseases are considered as a good target for the analyses using induced pluripotent stem cells, whose differentiation systems to the innate immune cells such as neutrophils and monocytes have been established. Therefore, to elucidate the pathogenesis of Nakajo-Nishimura syndrome, we attempted in vitro disease modeling using patient-derived induced pluripotent stem cells. For analyses, isogenic control cells in which the responsible mutation was repaired and another pair of healthy embryonic stem cells and isogenic mutant cells in which the same mutation was introduced had also been prepared with genetic engineering. By comparing a pair of isogenic cells with the wild-type and the mutant PSMB8 gene after differentiation into monocytes and immortalization to synchronize their differentiation stages, the reduction of immunoproteasome enzyme activity and increased cytokine and chemokine production in the mutant cells without stimulation or with interferon-γ plus tumor necrosis factor-α stimulation were observed, and therefore, the autoinflammatory phenotype was successfully reproduced. Decreased cytokine production was observed by the addition of antioxidants as well as inhibitors for Janus kinase and p38-mitogen-activated protein kinase. At the same time, the increased production of reactive oxygen species and phosphorylation of both signal transducers and activator of transcription 1 and p38-mitogen-activated protein kinase were detected without stimulation. Notably, an antioxidant specifically decreased the constitutive phosphorylation of signal transducers and activator of transcription 1. These results indicate the usefulness of a disease modeling using pluripotent stem cell-derived cells in clarification of the pathomechanism and discovery of new therapeutic drugs for Nakajo-Nishimura syndrome and related proteasome-associated autoinflammatory syndromes.
Collapse
Affiliation(s)
- Nobuo Kanazawa
- 1Department of Dermatology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012 Japan
| | - Fumiko Honda-Ozaki
- 2Department of Clinical Application, Center for iPS cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Megumu K Saito
- 2Department of Clinical Application, Center for iPS cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
30
|
Menneteau T, Fabre B, Garrigues L, Stella A, Zivkovic D, Roux-Dalvai F, Mouton-Barbosa E, Beau M, Renoud ML, Amalric F, Sensébé L, Gonzalez-de-Peredo A, Ader I, Burlet-Schiltz O, Bousquet MP. Mass Spectrometry-based Absolute Quantification of 20S Proteasome Status for Controlled Ex-vivo Expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells. Mol Cell Proteomics 2019; 18:744-759. [PMID: 30700495 PMCID: PMC6442357 DOI: 10.1074/mcp.ra118.000958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/21/2019] [Indexed: 01/18/2023] Open
Abstract
The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.
Collapse
Affiliation(s)
- Thomas Menneteau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;; §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Bertrand Fabre
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Garrigues
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Alexandre Stella
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Dusan Zivkovic
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Mathilde Beau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Laure Renoud
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - François Amalric
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Sensébé
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Anne Gonzalez-de-Peredo
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Isabelle Ader
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| | - Marie-Pierre Bousquet
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| |
Collapse
|
31
|
Strieder-Barboza C, Thompson E, Thelen K, Contreras GA. Technical note: Bovine adipocyte and preadipocyte co-culture as an efficient adipogenic model. J Dairy Sci 2019; 102:3622-3629. [PMID: 30772027 DOI: 10.3168/jds.2018-15626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
Reductionist studies of adipose tissue biology require reliable in vitro adipocyte culturing models. Current protocols for adipogenesis induction in stromal vascular fraction-derived preadipocytes require extended culturing periods and have low adipogenic rates. We compared the adipogenic efficiency of a 7-d co-culture model of visceral (VIS) and subcutaneous (SC) stromal vascular fraction-derived preadipocytes with mature adipocytes with a 14-d standard adipocyte differentiation protocol. We obtained preadipocytes and mature adipocytes from SC and VIS adipose tissue of nonlactating, nongestating Holstein cows (n = 6). Adipogenesis induction was performed using a standard protocol for 7 (SD7; control) or 14 d (SD14), and a co-culture model for 7 d (CC7). Culture conditions, including medium composition, were the same for all treatments. For CC7, 900 primary adipocytes/cm2 were placed in 0.4-μm transwell inserts and co-cultured with preadipocytes for adipogenesis induction. Both CC7 and SD14 similarly stimulated gene expression of adipogenic genes such as ADIPOQ, CEBPA, and CEBPB in VIS and SC. The CC7 increased triacylglycerol accumulation compared with SD14 and SD7. CC7 augmented triacylglycerol accumulation by 40- and 16-fold in SC and VIS compared with 22- and 4-fold increment in SD14, respectively. Lipolytic responses to 2-h β-adrenergic stimulation with 1 µM isoproterenol were higher in CC7 and SD14 than SD7 in SC; CC7 increased glycerol release compared with SD7 in VIS but SD7 and SD14 had similar responses. Overall, CC7 was more efficient in inducing adipogenesis in preadipocytes from VIS and SC than SD14. Furthermore, CC7 stimulated similar lipolysis and lipogenic responses than SD14 but in a shorter time. The adipogenic approach of co-culturing preadipocytes with mature adipocytes will improve the use of reductionist models to study adipocyte physiology in dairy cows and the assessment of pharmacological or nutritional interventions for enhancing dairy cow health and production.
Collapse
Affiliation(s)
| | - Eileen Thompson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| |
Collapse
|
32
|
Pena RN, Noguera JL, García-Santana MJ, González E, Tejeda JF, Ros-Freixedes R, Ibáñez-Escriche N. Five genomic regions have a major impact on fat composition in Iberian pigs. Sci Rep 2019; 9:2031. [PMID: 30765794 PMCID: PMC6375979 DOI: 10.1038/s41598-019-38622-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
The adipogenic nature of the Iberian pig defines many quality attributes of its fresh meat and dry-cured products. The distinct varieties of Iberian pig exhibit great variability in the genetic parameters for fat deposition and composition in muscle. The aim of this work is to identify common and distinct genomic regions related to fatty acid composition in Retinto, Torbiscal, and Entrepelado Iberian varieties and their reciprocal crosses through a diallelic experiment. In this study, we performed GWAS using a high density SNP array on 382 pigs with the multimarker regression Bayes B method implemented in GenSel. A number of genomic regions showed strong associations with the percentage of saturated and unsaturated fatty acid in intramuscular fat. In particular, five regions with Bayes Factor >100 (SSC2 and SSC7) or >50 (SSC2 and SSC12) explained an important fraction of the genetic variance for miristic, palmitoleic, monounsaturated (>14%), oleic (>10%) and polyunsaturated (>5%) fatty acids. Six genes (RXRB, PSMB8, CHGA, ACACA, PLIN4, PLIN5) located in these regions have been investigated in relation to intramuscular composition variability in Iberian pigs, with two SNPs at the RXRB gene giving the most consistent results on oleic and monounsaturated fatty acid content.
Collapse
Affiliation(s)
- R N Pena
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - J L Noguera
- IRTA, Genètica i Millora Animal, 25198, Lleida, Spain
| | | | - E González
- Tecnología de los alimentos, Universidad de Extremadura, 06006, Badajoz, Spain
| | - J F Tejeda
- Tecnología de los alimentos, Universidad de Extremadura, 06006, Badajoz, Spain
| | - R Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain.,The Roslin Institute, Edinburgh University, Easter Bush, EH25 9RG, UK
| | - N Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
33
|
Abstract
Adipogenesis is a complex process whereby the multipotent adipose-derived stem cell is converted to a preadipocyte before terminal differentiation into the mature adipocyte. Preadipocytes are present throughout adult life, exhibit adipose fat depot specificity, and differentiate and proliferate from distinct progenitor cells. The mechanisms that promote preadipocyte commitment and maturation involve numerous protein factor regulators, epigenetic factors, and miRNAs. Detailed characterization of this process is currently an area of intense research and understanding the roles of preadipocytes in tissue plasticity may provide insight into novel approaches for tissue engineering, regenerative medicine and treating a host of obesity-related conditions. In the current study, we analyzed the current literature and present a review of the characteristics of transitioning adipocytes and detail how local microenvironments influence their progression towards terminal differentiation and maturation. Specifically, we detail the characterization of preadipocyte via surface markers, examine the signaling cascades and regulation behind adipogenesis and cell maturation, and survey their role in tissue plasticity and health and disease.
Collapse
|
34
|
Multiple antidiabetic effects of three α-glucosidase inhibitory peptides, PFP, YPL and YPG: Dipeptidyl peptidase-IV inhibition, suppression of lipid accumulation in differentiated 3T3-L1 adipocytes and scavenging activity on methylglyoxal. Int J Biol Macromol 2018; 122:104-114. [PMID: 30365987 DOI: 10.1016/j.ijbiomac.2018.10.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
Antidiabetic agents with multiple targets have the greatest pharmaceutical potential. In this study, three α-glucosidase inhibitory peptides, PFP, YPL and YPG, were investigated for additional antidiabetic targets viz.; dipeptidyl peptidase-IV inhibition (DPP-IV), lipid accumulation and the differentiation of 3T3-L1 adipocytes, and scavenging of methylglyoxal (MGO), reactive oxygen species (ROS) and nitric oxide (NO). The peptides were subjected to molecular docking on human DPP-IV where the binding free energies were PFP < YPG < YPL < diprotin A while hydrogen bond interactions were critical in the binding of YPL and YPG. Moreover, YPG demonstrated significantly higher (p < 0.05) in vitro DPP-IV inhibition than PFP and YPL. Kinetic analysis revealed that all three peptides are uncompetitive inhibitors of DPP-IV while YPG had the lowest inhibition binding constant. PFP and YPG prevented lipid accumulation in 3T3-L1 differentiated adipocytes but may be due to cytotoxicity for PFP. The peptides scavenged MGO, ROS and NO but only the ROS and NO scavenging activities of YPG were comparable to glutathione. In conclusion, PFP, YPL and YPG exhibited DPP-IV inhibitory activity, reduced adipocyte differentiation and lipid accumulation as well as scavenged MGO, ROS and NO. However, YPG had the best potential as a possible multifunctional antidiabetic agent.
Collapse
|
35
|
Yasutomo K. Dysregulation of immunoproteasomes in autoinflammatory syndromes. Int Immunol 2018; 31:631-637. [DOI: 10.1093/intimm/dxy059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Immunoproteasomes degrade ubiquitin-coupled proteins and play a role in creating peptides for presentation by MHC class I proteins. Studies of gene-deficient mice, in which each immunoproteasomal subunit was affected, have demonstrated that dysfunction of immunoproteasomes leads to immunodeficiency, i.e. reduced expression of MHC class I and attenuation of CD8 T-cell responses. Recent studies, however, have uncovered a new type of autoinflammatory syndrome characterized by fever, nodular erythema and progressive partial lipodystrophy that is caused by genetic mutations in immunoproteasome subunits. These mutations disturbed the assembly of immunoproteasomes, which led to reduced proteasomal activity and thus accumulation of ubiquitin-coupled proteins. Those findings suggest that immunoproteasomes function as anti-inflammatory machinery in humans. The discovery of a new type of autoinflammatory syndrome caused by dysregulated immunoproteasomes provides novel insights into the important roles of immunoproteasomes in inflammation as well as the spectrum of autoinflammatory diseases.
Collapse
Affiliation(s)
- Koji Yasutomo
- Department of Immunology & Parasitology, Graduate School of Medicine, Tokushima University, Kuramoto, Tokushima, Japan
| |
Collapse
|
36
|
Webster CM, Pino EC, Carr CE, Wu L, Zhou B, Cedillo L, Kacergis MC, Curran SP, Soukas AA. Genome-wide RNAi Screen for Fat Regulatory Genes in C. elegans Identifies a Proteostasis-AMPK Axis Critical for Starvation Survival. Cell Rep 2018; 20:627-640. [PMID: 28723566 DOI: 10.1016/j.celrep.2017.06.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/11/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
Organisms must execute metabolic defenses to survive nutrient deprivation. We performed a genome-wide RNAi screen in Caenorhabditis elegans to identify fat regulatory genes indispensable for starvation resistance. Here, we show that opposing proteostasis pathways are principal determinants of starvation survival. Reduced function of cytoplasmic aminoacyl tRNA synthetases (ARS genes) increases fat mass and extends starvation survival, whereas reduced proteasomal function reduces fat and starvation survival. These opposing pathways converge on AMP-activated protein kinase (AMPK) as the critical effector of starvation defenses. Extended starvation survival in ARS deficiency is dependent upon increased proteasome-mediated activation of AMPK. When the proteasome is inhibited, neither starvation nor ARS deficiency can fully activate AMPK, leading to greatly diminished starvation survival. Thus, activity of the proteasome and AMPK are mechanistically linked and highly correlated with starvation resistance. Conversely, aberrant activation of the proteostasis-AMPK axis during nutritional excess may have implications for obesity and cardiometabolic diseases.
Collapse
Affiliation(s)
- Christopher M Webster
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth C Pino
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher E Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lianfeng Wu
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Ben Zhou
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lucydalila Cedillo
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Graduate Program in Biomedical and Biological Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Kacergis
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexander A Soukas
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
37
|
Kummer KK, Kalpachidou T, Kress M, Langeslag M. Signatures of Altered Gene Expression in Dorsal Root Ganglia of a Fabry Disease Mouse Model. Front Mol Neurosci 2018; 10:449. [PMID: 29422837 PMCID: PMC5788883 DOI: 10.3389/fnmol.2017.00449] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder with involvement of the nervous system. Accumulation of glycosphingolipids within peripheral nerves and/or dorsal root ganglia results in pain due to small-fiber neuropathy, which affects the majority of patients already in early childhood. The α-galactosidase A deficient mouse proved to be an adequate model for Fabry disease, as it shares many symptoms including altered temperature sensitivity and pain perception. To characterize the signatures of gene expression that might underlie Fabry disease-associated sensory deficits and pain, we performed one-color based hybridization microarray expression profiling of DRG explants from adult α-galactosidase A deficient mice and age-matched wildtype controls. Protein-protein interaction (PPI) and pathway analyses were performed for differentially regulated mRNAs. We found 812 differentially expressed genes between adult α-galactosidase A deficient mice and age-matched wildtype controls, 506 of them being upregulated, and 306 being downregulated. Among the enriched pathways and processes, the disease-specific pathways “lysosome” and “ceramide metabolic process” were identified, enhancing reliability of the current analysis. Novel pathways that we identified include “G-protein coupled receptor signaling” and “retrograde transport” for the upregulated genes. From the analysis of downregulated genes, immune-related pathways, autoimmune, and infection pathways emerged. The current analysis is the first to present a differential gene expression profile of DRGs from α-galactosidase A deficient mice, thereby providing knowledge on possible mechanisms underlying neuropathic pain related symptoms in Fabry patients. Therefore, the presented data provide new insights into the development of the pain phenotype and might lead to new treatment strategies.
Collapse
Affiliation(s)
- Kai K Kummer
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
38
|
Basler M, Maurits E, de Bruin G, Koerner J, Overkleeft HS, Groettrup M. Amelioration of autoimmunity with an inhibitor selectively targeting all active centres of the immunoproteasome. Br J Pharmacol 2017; 175:38-52. [PMID: 29034459 DOI: 10.1111/bph.14069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Multicatalytic endopeptidase complex-like-1 (β2i), low molecular mass polypeptide (LMP) 2 (β1i) and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome, a special type of proteasome mainly expressed in haematopoietic cells. Targeting LMP7 has been shown to be therapeutically effective in preclinical models of autoimmune diseases. In this study, we investigated the selectivity and biological activity of LU-005i, a recently described inhibitor of the immunoproteasome. EXPERIMENTAL APPROACH The specificity of LU-005i and other immunoproteasome-selective inhibitors was characterized using fluorogenic peptide substrates. The effect of proteasome inhibition on cytokine release was investigated in endotoxin-stimulated mouse splenocytes or human peripheral blood mononuclear cells (PBMCs). The effect of proteasome inhibition on inflammatory bowel disease in the dextran sulfate sodium (DSS)-induced colitis model was assessed by measuring weight loss and colon length. KEY RESULTS LU-005i is the first human and mouse immunoproteasome-selective inhibitor that targets all three proteolytically active immunoproteasome subunits. LU-005i inhibited cytokine secretion from endotoxin-stimulated mouse splenocytes or human PBMCs. Furthermore, differentiation of naïve T helper cells to T helper 17 cells was impaired in the presence of LU-005i. Additionally, LU-005i ameliorated DSS-induced colitis. CONCLUSION AND IMPLICATIONS This study with a novel pan-immunoproteasome inhibitor substantiates that the immunoproteasome is a promising drug target for the treatment of inflammatory diseases and that exclusive inhibition of LMP7 is not necessary for therapeutic effectiveness. Our results will promote the design of new generations of immunoproteasome inhibitors with optimal therapeutic efficacy for clinical use in the treatment of autoimmunity and cancer.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, 8280, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, Konstanz, 78457, Germany
| | - Elmer Maurits
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Gerjan de Bruin
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Julia Koerner
- Department of Biology, Division of Immunology, University of Konstanz, Konstanz, 78457, Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Marcus Groettrup
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, 8280, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
39
|
The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin. J Dermatol Sci 2017; 88:10-19. [PMID: 28728908 DOI: 10.1016/j.jdermsci.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/08/2017] [Accepted: 04/25/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND The ubiquitin proteasome pathway is involved in the pathogenesis of psoriasis and proteasome subunits are increased in lesional psoriatic skin. Recent works have highlighted that proteasome levels can be regulated through modulation of proteasome assembly notably by the proteasome maturation protein POMP. OBJECTIVES To investigate whether proteasome assembly and POMP expression are modified in psoriatic skin. METHODS Proteasome assembly as well as expression of proteasome regulators were assessed in non-lesional and lesional psoriatic skin using native gel electrophoresis and western blots respectively. The protein and mRNA expression levels of POMP were compared by western blots, immunohistochemistry and quantitative polymerase chain reaction. The role of POMP in keratinocyte proliferation and differentiation was assessed by silencing POMP gene expression by RNA interference in human immortalized keratinocyte HaCaT cells. RESULTS Both 20S and 26S proteasomes (and their respective proteolytic activities) as well as the main proteasome regulators are increased in lesional psoriatic skin. POMP binds to 20S precursor complexes and is overexpressed in lesional epidermal psoriatic skin, supporting that POMP-mediated proteasome assembly is increased in psoriatic skin. POMP silencing inhibited HaCaT cell proliferation and induced apoptosis through the inhibition of the proteasome assembly. Moreover POMP partial depletion decreased the expression of the differentiation markers keratin 10 and involucrin during the [Ca2+]-induced HaCaT cells differentiation. CONCLUSION Altogether these results establish a potential role for POMP and proteasome assembly in psoriasis pathogenesis.
Collapse
|