1
|
Upadhyay V, Panja S, Lucas A, Patrick C, Mallela KMG. Biophysical evolution of the receptor-binding domains of SARS-CoVs. Biophys J 2023; 122:4489-4502. [PMID: 37897042 PMCID: PMC10719049 DOI: 10.1016/j.bpj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra Lucas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
2
|
Structural and functional asymmetry of RING trimerization controls priming and extension events in TRIM5α autoubiquitylation. Nat Commun 2022; 13:7104. [PMID: 36402777 PMCID: PMC9675739 DOI: 10.1038/s41467-022-34920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
TRIM5α is an E3 ubiquitin ligase of the TRIM family that binds to the capsids of primate immunodeficiency viruses and blocks viral replication after cell entry. Here we investigate how synthesis of K63-linked polyubiquitin is upregulated by transient proximity of three RING domains in honeycomb-like assemblies formed by TRIM5α on the surface of the retroviral capsid. Proximity of three RINGs creates an asymmetric arrangement, in which two RINGs form a catalytic dimer that activates E2-ubiquitin conjugates and the disordered N-terminus of the third RING acts as the substrate for N-terminal autoubiquitylation. RING dimerization is required for activation of the E2s that contribute to the antiviral function of TRIM5α, UBE2W and heterodimeric UBE2N/V2, whereas the proximity of the third RING enhances the rate of each of the two distinct steps in the autoubiquitylation process: the initial N-terminal monoubiquitylation (priming) of TRIM5α by UBE2W and the subsequent extension of the K63-linked polyubiquitin chain by UBE2N/V2. The mechanism we describe explains how recognition of infection-associated epitope patterns by TRIM proteins initiates polyubiquitin-mediated downstream events in innate immunity.
Collapse
|
3
|
Taka JRH, Sun Y, Goldstone DC. Mapping the interaction between Trim28 and the
KRAB
domain at the center of Trim28 silencing of endogenous retroviruses. Protein Sci 2022; 31:e4436. [PMID: 36173157 PMCID: PMC9601868 DOI: 10.1002/pro.4436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
Transcription of endogenous retroviral elements are tightly regulated during development by members of the KRAB‐containing zinc finger proteins (KRAB‐ZFPs) and the co‐repressor Trim28 (also known as Kap‐1 or Tif1β). KRAB‐ZFPs form the largest family of transcription regulators in mammals and initiate transcriptional silencing by tethering Trim28 to a target locus. Subsequently, Trim28 recruits chromatin modifying effectors resulting in the formation of heterochromatin. In the present study, we identify surface exposed residues on the central six turns of the Trim28 coiled‐coil region forming the binding interface for the KRAB domain. Using AlphaFold2 (AF2) we provide high confidence models of the interface between Trim28 and the KRAB domain and identified leucine 301 on each chain of the Trim28 monomer to act as a pin extending into a hydrophobic pocket on the KRAB domain surface. Site directed mutations in the Trim28‐KRAB binding interface abolished binding to the KRAB domain. Our work provides a detailed understanding of the specific interactions between the KRAB domain and the Trim28 coiled‐coil and how this interaction may be regulated during silencing events.
Collapse
Affiliation(s)
- Jamie R. H. Taka
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Yunyuan Sun
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - David C. Goldstone
- School of Biological Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery Auckland New Zealand
| |
Collapse
|
4
|
Does it take two to tango? RING domain self-association and activity in TRIM E3 ubiquitin ligases. Biochem Soc Trans 2021; 48:2615-2624. [PMID: 33170204 PMCID: PMC7752041 DOI: 10.1042/bst20200383] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
TRIM proteins form a protein family that is characterized by a conserved tripartite motif domain comprising a RING domain, one or two B-box domains and a coiled-coil region. Members of this large protein family are important regulators of numerous cellular functions including innate immune responses, transcriptional regulation and apoptosis. Key to their cellular role is their E3 ligase activity which is conferred by the RING domain. Self-association is an important characteristic of TRIM protein activity and is mediated by homodimerization via the coiled-coil region, and in some cases higher order association via additional domains of the tripartite motif. In many of the TRIM family proteins studied thus far, RING dimerization is an important prerequisite for E3 ligase enzymatic activity though the propensity of RING domains to dimerize differs significantly between different TRIMs and can be influenced by other regions of the protein.
Collapse
|
5
|
Désaulniers K, Ortiz L, Dufour C, Claudel A, Plourde MB, Merindol N, Berthoux L. Editing of the TRIM5 Gene Decreases the Permissiveness of Human T Lymphocytic Cells to HIV-1. Viruses 2020; 13:E24. [PMID: 33375604 PMCID: PMC7824555 DOI: 10.3390/v13010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Tripartite-motif-containing protein 5 isoform α (TRIM5α) is a cytoplasmic antiretroviral effector upregulated by type I interferons (IFN-I). We previously showed that two points mutations, R332G/R335G, in the retroviral capsid-binding region confer human TRIM5α the capacity to target and strongly restrict HIV-1 upon overexpression of the mutated protein. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (HDR) to introduce these two mutations in the endogenous human TRIM5 gene. We found 6 out of 47 isolated cell clones containing at least one HDR-edited allele. One clone (clone 6) had both alleles containing R332G, but only one of the two alleles containing R335G. Upon challenge with an HIV-1 vector, clone 6 was significantly less permissive compared to unmodified cells, whereas the cell clones with monoallelic modifications were only slightly less permissive. Following interferon (IFN)-β treatment, inhibition of HIV-1 infection in clone 6 was significantly enhanced (~40-fold inhibition). TRIM5α knockdown confirmed that HIV-1 was inhibited by the edited TRIM5 gene products. Quantification of HIV-1 reverse transcription products showed that inhibition occurred through the expected mechanism. In conclusion, we demonstrate the feasibility of potently inhibiting a viral infection through the editing of innate effector genes. Our results also emphasize the importance of biallelic modification in order to reach significant levels of inhibition by TRIM5α.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lionel Berthoux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; (K.D.); (L.O.); (C.D.); (A.C.); (M.B.P.); (N.M.)
| |
Collapse
|
6
|
Glazkova DV, Urusov FA, Bogoslovskaya EV, Shipulin GA. Retrovirus Restriction Factor TRIM5α: The Mechanism of Action and Prospects for Use in Gene Therapy of HIV Infection. Mol Biol 2020. [DOI: 10.1134/s0026893320050039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Keown JR, Yang J, Black MM, Goldstone DC. The RING domain of TRIM69 promotes higher-order assembly. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:954-961. [PMID: 33021497 DOI: 10.1107/s2059798320010499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022]
Abstract
Members of the TRIM protein family have been shown to inhibit a range of viral infections. Recently, TRIM69 was identified as a potent inhibitor of Vesicular stomatitis Indiana virus infection, with its inhibition being dependent upon multimerization. Using SEC-MALLS analysis, it is demonstrated that the assembly of TRIM69 is mediated through the RING domain and not the Bbox domain as has been shown for other TRIM proteins. Using X-ray crystallography, the structure of the TRIM69 RING domain has been determined to a resolution of 2.1 Å, the oligomerization interface has been identified and regions outside the four-helix bundle have been observed to form interactions that are likely to support assembly.
Collapse
Affiliation(s)
- Jeremy R Keown
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Joy Yang
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Moyra M Black
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
8
|
Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020; 6:889-906. [PMID: 32527650 DOI: 10.1016/j.trecan.2020.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
Targeted therapy has become increasingly important in cancer therapy. For example, targeting the promyelocytic leukemia PML protein in leukemia has proved to be an effective treatment. PML is the core component of super-assembled structures called PML nuclear bodies (NBs). Although this nuclear megaDalton complex was first observed in the 1960s, the mechanism of its assembly remains poorly understood. We review recent breakthroughs in the PML field ranging from a revised assembly mechanism to PML-driven genome organization and carcinogenesis. In addition, we highlight that oncogenic oligomerization might also represent a promising target in the treatment of leukemias and solid tumors.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Sundquist WI, Pornillos O. Retrovirus Restriction by TRIM5α: RINGside at a Cage Fight. Cell Host Microbe 2019; 24:751-753. [PMID: 30543772 DOI: 10.1016/j.chom.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The restriction factor TRIM5α recognizes incoming retroviral capsids and blocks virus replication. In this issue of Cell Host & Microbe, Fletcher et al. (2018) show how the TRIM5α RING domain mediates formation of various ubiquitin conjugates that differentially regulate TRIM5α turnover, inhibition of viral reverse transcription, and innate immune activation.
Collapse
Affiliation(s)
- Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Ganser-Pornillos BK, Pornillos O. Restriction of HIV-1 and other retroviruses by TRIM5. Nat Rev Microbiol 2019; 17:546-556. [PMID: 31312031 DOI: 10.1038/s41579-019-0225-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Mammalian cells express a variety of innate immune proteins - known as restriction factors - which defend against invading retroviruses such as HIV-1. Two members of the tripartite motif protein family - TRIM5α and TRIMCyp - were identified in 2004 as restriction factors that recognize and inactivate the capsid shell that surrounds and protects the incoming retroviral core. Research on these TRIM5 proteins has uncovered a novel mode of non-self recognition that protects against cross-species transmission of retroviruses. Our developing understanding of the mechanism of TRIM5 restriction underscores the concept that core uncoating and reverse transcription of the viral genome are coordinated processes rather than discrete steps of the post-entry pathway of retrovirus replication. In this Review, we provide an overview of the current state of knowledge of the molecular mechanism of TRIM5-mediated restriction, highlight recent advances and discuss implications for the development of capsid-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
A Dissection of Oligomerization by the TRIM28 Tripartite Motif and the Interaction with Members of the Krab-ZFP Family. J Mol Biol 2019; 431:2511-2527. [PMID: 31078555 DOI: 10.1016/j.jmb.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/15/2023]
Abstract
TRIM28 (also known as KAP1 or TIF1β) is the universal co-repressor of the Krüppel-associated box-containing zinc finger proteins (Krab-ZFPs), the largest family of transcription factors in mammals. During early embryogenesis, TRIM28 mediates the transcriptional silencing of many endogenous retroviral elements and genomic imprinted sites. Silencing is initiated by the recruitment of TRIM28 to a target locus by members of the Krab-ZFP. Subsequently, TRIM28 functions as a scaffold protein to recruit chromatin modifying effectors featuring SETDB1, HP1 and the NuRD complex. Although many protein partners involved in silencing have been identified, the molecular basis of the protein interactions that mediate silencing remains largely unclear. In the present study, we identified the first Bbox domain (T28_B1 135-203) as a molecular interface responsible for the formation of higher-order oligomers of TRIM28. The structure of this domain reveals a new interface on the surface of the Bbox domain. Mutants disrupting the interface disrupt the formation of oligomers but have no observed effect on transcriptional silencing defining a single TRIM28 dimer as the functional unit for silencing. Using assembly-deficient mutants, we employed small-angle X-ray scattering and biophysical techniques to characterize binding to member of the Krab-ZFP family. This allows us to narrow and define the binding interface to the center of the coiled-coil region (residues 294-321) of TRIM28 and define mutants that abolish binding to the Krab-ZFP proteins.
Collapse
|
12
|
Analysis of the Zn-Binding Domains of TRIM32, the E3 Ubiquitin Ligase Mutated in Limb Girdle Muscular Dystrophy 2H. Cells 2019; 8:cells8030254. [PMID: 30884854 PMCID: PMC6468550 DOI: 10.3390/cells8030254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/02/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the tripartite motif family of E3 ubiquitin ligases are characterized by the presence of a conserved N-terminal module composed of a RING domain followed by one or two B-box domains, a coiled-coil and a variable C-terminal region. The RING and B-box are both Zn-binding domains but, while the RING is found in a large number of proteins, the B-box is exclusive to the tripartite motif (TRIM) family members in metazoans. Whereas the RING has been extensively characterized and shown to possess intrinsic E3 ligase catalytic activity, much less is known about the role of the B-box domains. In this study, we adopted an in vitro approach using recombinant point- and deletion-mutants to characterize the contribution of the TRIM32 Zn-binding domains to the activity of this E3 ligase that is altered in a genetic form of muscular dystrophy. We found that the RING domain is crucial for E3 ligase activity and E2 specificity, whereas a complete B-box domain is involved in chain assembly rate modulation. Further, in vitro, the RING domain is necessary to modulate TRIM32 oligomerization, whereas, in cells, both the RING and B-box cooperate to specify TRIM32 subcellular localization, which if altered may impact the pathogenesis of diseases.
Collapse
|
13
|
Keown JR, Black MM, Ferron A, Yap M, Barnett MJ, Pearce FG, Stoye JP, Goldstone DC. A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8 proteins. J Biol Chem 2018; 293:18378-18386. [PMID: 30282803 PMCID: PMC6254359 DOI: 10.1074/jbc.ra118.004202] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/10/2018] [Indexed: 11/28/2022] Open
Abstract
The retroviral restriction factor tripartite motif–containing 5α (Trim5α) acts during the early postentry stages of the retroviral life cycle to block infection by a broad range of retroviruses, disrupting reverse transcription and integration. The mechanism of this restriction is poorly understood, but it has recently been suggested to involve recruitment of components of the autophagy machinery, including members of the mammalian autophagy-related 8 (ATG8) family involved in targeting proteins to the autophagosome. To better understand the molecular details of this interaction, here we utilized analytical ultracentrifugation to characterize the binding of six ATG8 isoforms and determined the crystal structure of the Trim5α Bbox coiled-coil region in complex with one member of the mammalian ATG8 proteins, autophagy-related protein LC3 B (LC3B). We found that Trim5α binds all mammalian ATG8s and that, unlike the typical LC3-interacting region (LIR) that binds to mammalian ATG8s through a β-strand motif comprising approximately six residues, LC3B binds to Trim5α via the α-helical coiled-coil region. The orientation of the structure demonstrated that LC3B could be accommodated within a Trim5α assembly that can bind the retroviral capsid. However, mutation of the binding interface does not affect retroviral restriction. Comparison of the typical linear β-strand LIR with our atypical helical LIR reveals a conservation of the presentation of residues that are required for the interaction with LC3B. This observation expands the range of LC3B-binding proteins to include helical binding motifs and demonstrates a link between Trim5α and components of the autophagosome.
Collapse
Affiliation(s)
- Jeremy R Keown
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Moyra M Black
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Aaron Ferron
- the Francis Crick Institute, London NW1 1ST, United Kingdom
| | - Melvyn Yap
- the Francis Crick Institute, London NW1 1ST, United Kingdom
| | - Michael J Barnett
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - F Grant Pearce
- the School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand, and
| | | | - David C Goldstone
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand,; the Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.
| |
Collapse
|
14
|
Wang P, Benhenda S, Wu H, Lallemand-Breitenbach V, Zhen T, Jollivet F, Peres L, Li Y, Chen SJ, Chen Z, de Thé H, Meng G. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun 2018; 9:1277. [PMID: 29599493 PMCID: PMC5876331 DOI: 10.1038/s41467-018-03498-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2018] [Indexed: 12/02/2022] Open
Abstract
ProMyelocyticLeukemia nuclear bodies (PML NBs) are stress-regulated domains directly implicated in acute promyelocytic leukemia eradication. Most TRIM family members bind ubiquitin E2s and many acquire ligase activity upon RING dimerization. In contrast, PML binds UBC9, the SUMO E2 enzyme. Here, using X-ray crystallography and SAXS characterization, we demonstrate that PML RING tetramerizes through highly conserved PML-specific sequences, which are required for NB assembly and PML sumoylation. Conserved residues implicated in RING dimerization of other TRIMs also contribute to PML tetramer stability. Wild-type PML rescues the ability of some RING mutants to form NBs as well as their sumoylation. Impaired RING tetramerization abolishes PML/RARA-driven leukemogenesis in vivo and arsenic-induced differentiation ex vivo. Our studies thus identify RING tetramerization as a key step in the NB macro-molecular scaffolding. They suggest that higher order RING interactions allow efficient UBC9 recruitment and thus change the biochemical nature of TRIM-facilitated post-translational modifications. Promyelocytic leukemia protein (PML) is a scaffolding protein that organizes PML nuclear bodies. Here the authors present the tetrameric crystal structure of the PML RING domain and show that RING tetramerization is functionally important for nuclear body formation and PML sumoylation.
Collapse
Affiliation(s)
- Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shirine Benhenda
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Valérie Lallemand-Breitenbach
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.,Collège de France, Paris Sciences Lettres research university, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Tao Zhen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Florence Jollivet
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Laurent Peres
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China. .,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China. .,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Hugues de Thé
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China. .,Collège de France, Paris Sciences Lettres research university, 11 place Marcelin Berthelot, 75005, Paris, France. .,Service de Biochimie, Hôpital St. Louis, Assistance Publique Hôpitaux de Paris, Paris, 75475, France.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.
| |
Collapse
|
15
|
General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins. J Virol 2018; 92:JVI.01563-17. [PMID: 29187540 DOI: 10.1128/jvi.01563-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity (KD of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity (KD of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition.IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.
Collapse
|
16
|
Na L, Tang YD, Wang C, Liu C, Wang X. Rhesus monkey TRIM5α protein SPRY domain contributes to AP-1 activation. J Biol Chem 2017; 293:2661-2674. [PMID: 29196608 DOI: 10.1074/jbc.ra117.000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/11/2017] [Indexed: 01/13/2023] Open
Abstract
TRIM5α is an important host restriction factor that could potently block retrovirus infection. The SPRY domain of TRIM5α mediates post-entry restriction by recognition of and binding to the retroviral capsid. Human TRIM5α also functions as an innate immune sensor to activate AP-1 and NF-κB signaling, which subsequently restrict virus replication. Previous studies have shown that the AP-1 and NF-κB signaling activation relies on the RING motif of TRIM5α. In this study, we have demonstrated that the SPRY domain is essential for rhesus macaque TRIM5α to activate AP-1 but not NF-κB signaling. The AP-1 activation mainly depends on all of the β-sheet barrel on SPRY structure of TRIM5α. Furthermore, the SPRY-mediated auto-ubiquitination of TRIM5α is required for AP-1 activation. This study reports that rhesus macaque TRIM5α mainly undergoes Lys27-linked and Met1-linked auto-polyubiquitination. Finally, we found that the TRIM5α signaling function was positively correlated with its retroviral restriction activity. This study discovered an important role of the SPRY domain in immune signaling and antiviral activity and further expanded our knowledge of the antiviral mechanism of TRIM5α.
Collapse
Affiliation(s)
- Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cuihui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
17
|
Roganowicz MD, Komurlu S, Mukherjee S, Plewka J, Alam SL, Skorupka KA, Wan Y, Dawidowski D, Cafiso DS, Ganser-Pornillos BK, Campbell EM, Pornillos O. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. PLoS Pathog 2017; 13:e1006686. [PMID: 29040325 PMCID: PMC5667893 DOI: 10.1371/journal.ppat.1006686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Restriction factors are important components of intrinsic cellular defense mechanisms against viral pathogens. TRIM5α is a restriction factor that intercepts the incoming capsid cores of retroviruses such as HIV and provides an effective species-specific barrier to retroviral infection. The TRIM5α SPRY domain directly binds the capsid with only very weak, millimolar-level affinity, and productive capsid recognition therefore requires both TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to promote avid binding. Here, we explore the important unresolved question of whether the SPRY domains are flexibly linked to the TRIM lattice or more precisely positioned to maximize avidity. Biochemical and biophysical experiments indicate that the linker segment connecting the SPRY domain to the coiled-coil domain adopts an α-helical fold, and that this helical portion mediates interactions between the two domains. Targeted mutations were generated to disrupt the putative packing interface without affecting dimerization or higher-order assembly, and we identified mutant proteins that were nevertheless deficient in capsid binding in vitro and restriction activity in cells. Our studies therefore support a model wherein substantial avidity gains during assembly-mediated capsid recognition by TRIM5α come in part from tailored spacing of tethered recognition domains.
Collapse
Affiliation(s)
- Marcin D. Roganowicz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Sevnur Komurlu
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Santanu Mukherjee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jacek Plewka
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Steven L. Alam
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Katarzyna A. Skorupka
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yueping Wan
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Damian Dawidowski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - David S. Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wallenhammar A, Anandapadamanaban M, Lemak A, Mirabello C, Lundström P, Wallner B, Sunnerhagen M. Solution NMR structure of the TRIM21 B-box2 and identification of residues involved in its interaction with the RING domain. PLoS One 2017; 12:e0181551. [PMID: 28753623 PMCID: PMC5533445 DOI: 10.1371/journal.pone.0181551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023] Open
Abstract
Tripartite motif-containing (TRIM) proteins are defined by the sequential arrangement of RING, B-box and coiled-coil domains (RBCC), where the B-box domain is a unique feature of the TRIM protein family. TRIM21 is an E3 ubiquitin-protein ligase implicated in innate immune signaling by acting as an autoantigen and by modifying interferon regulatory factors. Here we report the three-dimensional solution structure of the TRIM21 B-box2 domain by nuclear magnetic resonance (NMR) spectroscopy. The structure of the B-box2 domain, comprising TRIM21 residues 86-130, consists of a short α-helical segment with an N-terminal short β-strand and two anti-parallel β-strands jointly found the core, and adopts a RING-like fold. This ββαβ core largely defines the overall fold of the TRIM21 B-box2 and the coordination of one Zn2+ ion stabilizes the tertiary structure of the protein. Using NMR titration experiments, we have identified an exposed interaction surface, a novel interaction patch where the B-box2 is likely to bind the N-terminal RING domain. Our structure together with comparisons with other TRIM B-box domains jointly reveal how its different surfaces are employed for various modular interactions, and provides extended understanding of how this domain relates to flanking domains in TRIM proteins.
Collapse
Affiliation(s)
- Amélie Wallenhammar
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | - Alexander Lemak
- Princess Margaret Cancer Center and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Claudio Mirabello
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Maria Sunnerhagen
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Luo K, Li Y, Xia L, Hu W, Gao W, Guo L, Tian G, Qi Z, Yuan H, Xu Q. Analysis of the expression patterns of the novel large multigene TRIM gene family (finTRIM) in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2017; 66:224-230. [PMID: 28461211 DOI: 10.1016/j.fsi.2017.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Tripartite motif (TRIM) proteins are receiving increased research interest because of their roles in a wide range of cellular biological processes in innate immunity. In zebrafish (Danio rerio), the functions of the finTRIM (ftr) family are unclear. In the present study, we investigated the expression pattern of ftr12, ftr51, ftr67, ftr82, ftr83, and ftr84 in zebrafish for the first time. The results showed that ftr12, ftr67, and ftr84 are maternally expressed in the oocyte and highly expressed at the early stage (0-4 hpf) of embryo (P < 0.05), suggesting their involvement in the embryonic innate defense system. The ftr82 gene was highly expressed at 8 hpf (P < 0.05), which implied that the embryos could synthesize their own immunity-related mRNAs. However, ftr51 and ftr83 were highest at 8 hpf (2.33 and 51.53 relative to β-actin respectively) and might mediate embryonic development. The expression levels of ftr12, ftr51, and ftr67 were highest in the gill, intestines, and liver, respectively. Ftr82, ftr83, and ftr84 were predominantly expressed in the kidney, suggesting that these finTRIMs might play roles in both immunity and non-immunity-related tissue compartments. Zebrafish embryonic fibroblast (ZF4) cells were infected with Grass carp reovirus (GCRV) and Spring viremia of carp virus (SVCV). During GCRV infection, the expression of ftr12 was significantly upregulated from 12 h to 24 h; and ftr51 and ftr67 increased from 3 h to 12 h. The expressions of ftr82, ftr83, and ftr84 were only upregulated at 12 h, 12 h, and 24 h, respectively. All of these genes were significantly downregulated at 48 h (P < 0.05). Challenge with SVCV upregulated the expressions of ftr12 and ftr51 at 12 h and 48 h (P < 0.05), respectively, and ftr67 reached its highest expression level at 3 h. ftr82 showed only a slight upregulation at 6 h and 48 h, and ftr83 and ftr84 were consecutively increased, reaching their highest levels at 12 h (P < 0.05). Meanwhile, ftr67 and ftr83 were significantly downregulated at 48 h (P < 0.05). Our research demonstrated that ftr12, ftr51, ftr67, ftr82, ftr83, and ftr84 probably have important roles in innate immune responses and in non-immunity-related tissues.
Collapse
Affiliation(s)
- Kai Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Youshen Li
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Lihai Xia
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Wei Hu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Weihua Gao
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Guangming Tian
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Zhitao Qi
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Hanwen Yuan
- College of Marine and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi 530006, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, Guangxi 530006, China.
| | - Qiaoqing Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China.
| |
Collapse
|
20
|
Hatakeyama S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem Sci 2017; 42:297-311. [DOI: 10.1016/j.tibs.2017.01.002] [Citation(s) in RCA: 635] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 01/19/2023]
|
21
|
Structural determinants of TRIM protein function. Biochem Soc Trans 2017; 45:183-191. [DOI: 10.1042/bst20160325] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of Really Interesting New Gene (RING) E3 ubiquitin ligases and contribute to the regulation of numerous cellular activities, including innate immune responses. The conserved TRIM harbours a RING domain that imparts E3 ligase activity to TRIM family proteins, whilst a variable C-terminal region can mediate recognition of substrate proteins. The knowledge of the structure of these multidomain proteins and the functional interplay between their constituent domains is paramount to understanding their cellular roles. To date, available structural information on TRIM proteins is still largely restricted to subdomains of many TRIMs in isolation. Nevertheless, applying a combination of structural, biophysical and biochemical approaches has recently allowed important progress to be made towards providing a better understanding of the molecular features that underlie the function of TRIM family proteins and has uncovered an unexpected diversity in the link between self-association and catalytic activity.
Collapse
|
22
|
Crystal structure of the Trim5α Bbox2 domain from rhesus macaques describes a plastic oligomerisation interface. J Struct Biol 2016; 195:282-285. [PMID: 27402535 DOI: 10.1016/j.jsb.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/21/2022]
Abstract
Retroviral pathogens have been an evolutionary pressure for many primate species, driving the development of an intrinsic cellular response to retroviruses and antiretroviral proteins. One such antiretroviral protein is the restriction factor Trim5α, that blocks HIV-1 infection in rhesus macaques at an early post-entry stage in the retroviral lifecycle. Trim5α self-assembles into a large hexagonal array, complimentary to the retroviral capsid. Assembly is mediated by the conserved N-terminal architecture comprising a RING domain, a Bbox domain, and a coiled coil. Recently we have shown that the Bbox domain and elements of the coiled coil form a trimer in solution, and that the Bbox domain drives assembly. During crystallisation experiments using the trimer forming construct, we determined the structure of a dimeric Bbox domain to a resolution of 1.8Å. Interface analysis reveals that residues previously shown to be required for assembly and restriction, Glu120 and Arg121, are central to the interface. Comparison to a mutant Trim5α dimer interface shows a translation of the Bbox dimerisation interface removing interactions important in the wildtype protein.
Collapse
|
23
|
Abstract
Structural studies reveal how an antiviral factor forms a molecular net to restrict retroviruses including HIV-1.
Collapse
Affiliation(s)
- Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|