1
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
2
|
Gopalakrishnan S, Dhaware M, Sudharma AA, Mullapudi SV, Siginam SR, Gogulothu R, Mir IA, Ismail A. Chemopreventive Effect of Cinnamon and Its Bioactive Compounds in a Rat Model of Premalignant Prostate Carcinogenesis. Cancer Prev Res (Phila) 2023; 16:139-151. [PMID: 36517462 DOI: 10.1158/1940-6207.capr-22-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cinnamon and its bioactive compounds inhibit prostate cancer cell proliferation in vitro. The aim of the current study was to assess the chemopreventive efficacy of cinnamon (CN) and its bioactive compounds in vivo using N-methyl-N-nitrosourea (MNU) and testosterone (T) to induce prostate carcinogenesis in male Wistar/National Institute of Nutrition rats. Cancer-induced (CI) rats (n = 10) developed prostatic hyperplasia and prostatic intraepithelial neoplasia. These histopathologic changes were diminished in CI rats fed for 4 months with diets supplemented with either CN (n = 20) or its bioactive compounds (cinnamaldehyde, n = 10 and procyanidin B2, n = 10). Androgen receptor (AR) expression was lower in the prostates of CI rats than in control, but the AR target gene, probasin, was robustly upregulated. Treatment of CI rats with CN or its bioactive compounds upregulated AR expression but inhibited the expression of the 5-alpha reductase genes (Srd5a1 and Srd5a2) and did not further increase probasin expression, suggesting blunted transcriptional activity of AR due to the limited availability of dihydrotestosterone. MNU+T induced an altered oxidant status in rat prostate, which was reflected by an increase in lipid peroxidation and DNA oxidation. These changes were completely or partially corrected by treatment with CN or the bioactive compounds. CN and its active components increased the activity of the apoptotic enzymes caspase-8 and caspase-3 in the prostates of CI rats. In conclusion, our data demonstrate that CN and its bioactive compounds have inhibitory effects on premalignant prostate lesions induced by MNU + T and, therefore, may be considered for the chemoprevention of prostate cancer. PREVENTION RELEVANCE The research work presented in this article demonstrates the chemopreventive efficacy of CN and its bioactive compounds in a rat model of premalignant prostate cancer.
Collapse
Affiliation(s)
- Srividya Gopalakrishnan
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Mahamaya Dhaware
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | | | | | - Ramesh Gogulothu
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Irfan Ahmad Mir
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, Telangana, India
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Zhou C, Li H, Han X, Pang H, Wu M, Tang Y, Luo X. Prognostic Value and Molecular Mechanisms of Proteasome 26S Subunit, Non-ATPase Family Genes for Pancreatic Ductal Adenocarcinoma Patients after Pancreaticoduodenectomy. J INVEST SURG 2021; 35:330-346. [PMID: 33525943 DOI: 10.1080/08941939.2020.1863527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Pancreatic cancer (PC) is an extremely malignant tumor with similar morbidity and mortality and lack of an effective treatment. This study explored the prognostic value and molecular mechanisms of proteasome 26S subunit, non-ATPase (PSMD) family genes in pancreatic ductal adenocarcinoma (PDAC).Methods: Survival analyses were performed to elucidate the relationship between prognosis and the level of PSMD expression. ROC curves and nomograms were constructed to predict the prognosis. A bioinformatics analysis was used to explore the co-expression and complex interaction networks of PSMDs. The potential mechanisms were further explored via gene set enrichment analysis (GSEA).Results: We find high levels of PSMD6, PSMD9, PSMD11, and PSMD14 expression were significantly associated with a poorer OS. High PSMD6 and PSMD11 expression was associated with a poorer relapse-free survival (RFS). A risk score model was constructed based on prognosis-related genes. The area under ROC curves (AUC) was 53.3%, 59.3%, and 62.9% for 1-, 2-, 3 years, respectively.Conclusion: GSEA revealed that PSMD6 and PSMD11 play a role in PDAC through various biological processes and signaling pathways, including TP53, CDKN2A, MYC pathway, DNA repair, KRAS, cell cycle checkpoint, NIK, NF-κB signaling pathway, and proteasomes. This study demonstrated that PSMD6 and PSMD11 could serve as a potential prognostic and diagnostic biomarkers for patients with early-stage PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Caifu Zhou
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixia Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao Han
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hongbing Pang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Manya Wu
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yanping Tang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoling Luo
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
4
|
Arpalahti L, Haglund C, Holmberg CI. Proteostasis Dysregulation in Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:101-115. [PMID: 32274754 DOI: 10.1007/978-3-030-38266-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.
Collapse
Affiliation(s)
- Leena Arpalahti
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina I Holmberg
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Wang D, Li JR, Zhang YH, Chen L, Huang T, Cai YD. Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms. Genes (Basel) 2018. [PMID: 29534550 PMCID: PMC5867876 DOI: 10.3390/genes9030155] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.
Collapse
Affiliation(s)
- Deling Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Jia-Rui Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Langdon CG, Platt JT, Means RE, Iyidogan P, Mamillapalli R, Klein M, Held MA, Lee JW, Koo JS, Hatzis C, Hochster HS, Stern DF. Combinatorial Screening of Pancreatic Adenocarcinoma Reveals Sensitivity to Drug Combinations Including Bromodomain Inhibitor Plus Neddylation Inhibitor. Mol Cancer Ther 2017; 16:1041-1053. [PMID: 28292938 PMCID: PMC5457712 DOI: 10.1158/1535-7163.mct-16-0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death in the United States. PDAC is difficult to manage effectively, with a five-year survival rate of only 5%. PDAC is largely driven by activating KRAS mutations, and as such, cannot be directly targeted with therapeutic agents that affect the activated protein. Instead, inhibition of downstream signaling and other targets will be necessary to effectively manage PDAC. Here, we describe a tiered single-agent and combination compound screen to identify targeted agents that impair growth of a panel of PDAC cell lines. Several of the combinations identified from the screen were further validated for efficacy and mechanism. Combination of the bromodomain inhibitor JQ1 and the neddylation inhibitor MLN4294 altered the production of reactive oxygen species in PDAC cells, ultimately leading to defects in the DNA damage response. Dual bromodomain/neddylation blockade inhibited in vivo growth of PDAC cell line xenografts. Overall, this work revealed novel combinatorial regimens, including JQ1 plus MLN4294, which show promise for the treatment of RAS-driven PDAC. Mol Cancer Ther; 16(6); 1041-53. ©2017 AACR.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - James T Platt
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Robert E Means
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Pinar Iyidogan
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Michael Klein
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Matthew A Held
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jong Woo Lee
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Christos Hatzis
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Howard S Hochster
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - David F Stern
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|