1
|
Bae G, Cho H, Hong BH. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). NANOTECHNOLOGY 2024; 35:372001. [PMID: 38853586 DOI: 10.1088/1361-6528/ad55d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
A new type of 0-dimensional carbon-based materials called graphene quantum dots (GQDs) is gaining significant attention as a non-toxic and eco-friendly nanomaterial. GQDs are nanomaterials composed of sp2hybridized carbon domains and functional groups, with their lateral size less than 10 nm. The unique and exceptional physical, chemical, and optical properties arising from the combination of graphene structure and quantum confinement effect due to their nano-size make GQDs more intriguing than other nanomaterials. Particularly, the low toxicity and high solubility derived from the carbon core and abundant edge functional groups offer significant advantages for the application of GQDs in the biomedical field. In this review, we summarize various synthetic methods for preparing GQDs and important factors influencing the physical, chemical, optical, and biological properties of GQDs. Furthermore, the recent application of GQDs in the biomedical field, including biosensor, bioimaging, drug delivery, and therapeutics are discussed. Through this, we provide a brief insight on the tremendous potential of GQDs in biomedical applications and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Gaeun Bae
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: shaping the future landscape of biomedical advances. DISCOVER NANO 2024; 19:79. [PMID: 38695997 PMCID: PMC11065842 DOI: 10.1186/s11671-024-04028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Graphene quantum dots (GQDs) are a newly developed class of material, known as zero-dimensional nanomaterials, with characteristics derived from both carbon dots (CDs) and graphene. GQDs exhibit several ideal properties, including the potential to absorb incident energy, high water solubility, tunable photoluminescence, good stability, high drug-loading capacity, and notable biocompatibility, which make them powerful tools for various applications in the field of biomedicine. Additionally, GQDs can be incorporated with additional materials to develop nanocomposites with exceptional qualities and enriched functionalities. Inspired by the intriguing scientific discoveries and substantial contributions of GQDs to the field of biomedicine, we present a broad overview of recent advancements in GQDs-based nanocomposites for biomedical applications. The review first outlines the latest synthesis and classification of GQDs nanocomposite and enables their use in advanced composite materials for biomedicine. Furthermore, the systematic study of the biomedical applications for GQDs-based nanocomposites of drug delivery, biosensing, photothermal, photodynamic and combination therapies are emphasized. Finally, possibilities, challenges, and paths are highlighted to encourage additional research, which will lead to new therapeutics and global healthcare improvements.
Collapse
Affiliation(s)
- Mohammad Suhaan Dar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Fotouhi B, Faramarzi V, Ahmadi V. DNA sequencing by Förster resonant energy transfer. OPTICS EXPRESS 2022; 30:21854-21865. [PMID: 36224897 DOI: 10.1364/oe.454459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/16/2023]
Abstract
We propose a new DNA sequencing concept based on nonradiative Förster resonant energy transfer (FRET) from a donor quantum dot (QD) to an acceptor molecule. The FRET mechanism combined with the nanopore-based DNA translocation is suggested as a novel concept for sequencing DNA molecules. A recently-developed hybrid quantum/classical method is employed, which uses time-dependent density functional theory and quasistatic finite difference time domain calculations. Due to the significant absorbance of DNA bases for photon energies higher than 4 eV, biocompatibility, and stability, we use Zinc-Oxide (ZnO) QD as a donor in the FRET mechanism. The most sensitivity for the proposed method to DNA is achieved for the Hoechst fluorescent-dye acceptor and 1 nm ZnO-QD. Results show that the insertion of each type of DNA nucleobases between the donor and acceptor changes the frequency of the emitted light from the acceptor molecule between 0.25 to 1.6 eV. The noise analysis shows that the method can determine any unknown DNA nucleobases if the signal-to-noise ratio is larger than 5 dB. The proposed concept and excellent results shed light on a new promising class of DNA sequencers.
Collapse
|
5
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
6
|
Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Graphene quantum dot (GQD) is one of the youngest superstars of the carbon family. Since its emergence in 2008, GQD has attracted a great deal of attention due to its unique optoelectrical properties. Non-zero bandgap, the ability to accommodate functional groups and dopants, excellent dispersibility, highly tunable properties, and biocompatibility are among the most important characteristics of GQDs. To date, GQDs have displayed significant momentum in numerous fields such as energy devices, catalysis, sensing, photodynamic and photothermal therapy, drug delivery, and bioimaging. As this field is rapidly evolving, there is a strong need to identify the emerging challenges of GQDs in recent advances, mainly because some novel applications and numerous innovations on the ease of synthesis of GQDs are not systematically reviewed in earlier studies. This feature article provides a comparative and balanced discussion of recent advances in synthesis, properties, and applications of GQDs. Besides, current challenges and future prospects of these emerging carbon-based nanomaterials are also highlighted. The outlook provided in this review points out that the future of GQD research is boundless, particularly if upcoming studies focus on the ease of purification and eco-friendly synthesis along with improving the photoluminescence quantum yield and production yield of GQDs.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ehsan Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ali Akbari Sehat
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sara Dordanihaghighi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Colin van der Kuur
- ZEN Graphene Solutions, 210-1205 Amber Dr., Thunder Bay, ON, P7B 6M4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
7
|
Kunsel T, Jansen TLC, Knoester J. Scaling relations of exciton diffusion in linear aggregates with static and dynamic disorder. J Chem Phys 2021; 155:134305. [PMID: 34624980 DOI: 10.1063/5.0065206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exciton diffusion plays an important role in many opto-electronic processes and phenomena. Understanding the interplay of intermolecular coupling, static energetic disorder, and dephasing caused by environmental fluctuations (dynamic disorder) is crucial to optimize exciton diffusion under various physical conditions. We report on a systematic analysis of the exciton diffusion constant in linear aggregates using the Haken-Strobl-Reineker model to describe this interplay. We numerically investigate the static-disorder scaling of (i) the diffusion constant in the limit of small dephasing rate, (ii) the dephasing rate at which the diffusion is optimized, and (iii) the value of the diffusion constant at the optimal dephasing rate. Three scaling regimes are found, associated with, respectively, fully delocalized exciton states (finite-size effects), weakly localized states, and strongly localized states. The scaling powers agree well with analytically estimated ones. In particular, in the weakly localized regime, the numerical results corroborate the so-called quantum Goldilocks principle to find the optimal dephasing rate and maximum diffusion constant as a function of static disorder, while in the strong-localization regime, these quantities can be derived fully analytically.
Collapse
Affiliation(s)
- T Kunsel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - T L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Thakur MK, Fang CY, Yang YT, Effendi TA, Roy PK, Chen RS, Ostrikov KK, Chiang WH, Chattopadhyay S. Microplasma-Enabled Graphene Quantum Dot-Wrapped Gold Nanoparticles with Synergistic Enhancement for Broad Band Photodetection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28550-28560. [PMID: 32463650 DOI: 10.1021/acsami.0c06753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanostructure/semiconductor nanohybrids offer many opportunities for emerging electronic and optoelectronic device applications because of their unique geometries in the nanometer scale and material properties. However, the development of a simple and scalable synthesis of plasmonic nanostructure/semiconductor nanohybrids is still lacking. Here, we report a direct synthesis of colloidal gold nanoparticle/graphene quantum dot (Au@GQD) nanohybrids under ambient conditions using microplasmas and their application as photoabsorbers for broad band photodetectors (PDs). Due to the unique AuNP core and graphene shell nanostructures in the synthesized Au@GQD nanohybrids, the plasmonic absorption of the AuNP core extends the usable spectral range of the photodetectors. It is demonstrated that the Au@GQD-based visible light photodetector simultaneously possesses an extraordinary photoresponsivity of ∼103 A/W, ultrahigh detectivity of 1013 Jones, and fast response time in the millisecond scale (65 ms rise time and 53 ms fall time). We suggest that the synergistic effect can be attributed to the strong fluorescence quenching in Au@GQD coupled with the two-dimensional graphene layer in the device. This work provides knowledge of tailoring the optical absorption in GQDs with plasmonic AuNPs and the corresponding photophysics for broad band response in PD-related devices.
Collapse
Affiliation(s)
- Mukesh Kumar Thakur
- Institute of Biophotonics, National Yang Ming University, 155, Sec-2, Li Nong Street, Taipei 112, Taiwan
| | - Chih-Yi Fang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Da'an District, Taipei 10607, Taiwan
| | - Yung-Ta Yang
- Institute of Biophotonics, National Yang Ming University, 155, Sec-2, Li Nong Street, Taipei 112, Taiwan
| | - Tirta Amerta Effendi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Da'an District, Taipei 10607, Taiwan
| | - Pradip Kumar Roy
- Institute of Biophotonics, National Yang Ming University, 155, Sec-2, Li Nong Street, Taipei 112, Taiwan
| | - Ruei-San Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Da'an District, Taipei 10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Da'an District, Taipei 10607, Taiwan
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang Ming University, 155, Sec-2, Li Nong Street, Taipei 112, Taiwan
| |
Collapse
|
9
|
Bagheri E, Ansari L, Abnous K, Taghdisi SM, Ramezani P, Ramezani M, Alibolandi M. Silica–Quantum Dot Nanomaterials as a Versatile Sensing Platform. Crit Rev Anal Chem 2020; 51:687-708. [DOI: 10.1080/10408347.2020.1768358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Hasan MT, Gonzalez-Rodriguez R, Ryan C, Coffer JL, Naumov AV. Variation of Optical Properties of Nitrogen-doped Graphene Quantum Dots with Short/Mid/Long-wave Ultraviolet for the Development of the UV Photodetector. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39035-39045. [PMID: 31553149 DOI: 10.1021/acsami.9b10365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrogen-doped graphene quantum dots (NGQDs) synthesized from a single glucosamine precursor are utilized to develop a novel UV photodetector. Optical properties of NGQDs can be altered with short- (254 nm), mid- (302 nm), and long-wave (365 nm) ultraviolet (UV) exposure leading to the reduction of absorption from deep to mid UV (200-320 nm) and enhancement above 320 nm. Significant quenching of blue and near-IR fluorescence accompanied by the dramatic increase of green/yellow emission of UV-treated NGQDs can be used as a potential UV-sensing mechanism. These emission changes are attributed to the reduction of functional groups detected by Fourier transformed infrared spectroscopy and free-radical-driven polymerization of the NGQDs increasing their average size from 4.70 to 11.20 nm at 60 min treatment. Due to strong UV absorption and sensitivity to UV irradiation, NGQDs developed in this work are utilized to fabricate UV photodetectors. Tested under long-/mid-/short-wave UV, these devices show high photoresponsivity (up to 0.59 A/W) and excellent photodetectivity (up to 1.03 × 1011 Jones) with highly characteristic wavelength-dependent reproducible response. This study suggests that the optical/structural properties of NGQDs can be controllably altered via different wavelength UV treatment leading us to fabricate NGQD-based novel UV photodetectors providing high responsivity and detectivity.
Collapse
Affiliation(s)
- Md Tanvir Hasan
- Department of Physics and Astronomy , Texas Christian University , TCU Box 298840, Fort Worth , Texas 76129 , United States
| | - Roberto Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry , Texas Christian University , TCU Box 298860, Fort Worth , Texas 76129 , United States
| | - Conor Ryan
- Department of Physics and Astronomy , Texas Christian University , TCU Box 298840, Fort Worth , Texas 76129 , United States
| | - Jeffery L Coffer
- Department of Chemistry and Biochemistry , Texas Christian University , TCU Box 298860, Fort Worth , Texas 76129 , United States
| | - Anton V Naumov
- Department of Physics and Astronomy , Texas Christian University , TCU Box 298840, Fort Worth , Texas 76129 , United States
| |
Collapse
|
11
|
Kim YJ, Perumalsamy H, Castro-Aceituno V, Kim D, Markus J, Lee S, Kim S, Liu Y, Yang DC. Photoluminescent And Self-Assembled Hyaluronic Acid-Zinc Oxide-Ginsenoside Rh2 Nanoparticles And Their Potential Caspase-9 Apoptotic Mechanism Towards Cancer Cell Lines. Int J Nanomedicine 2019; 14:8195-8208. [PMID: 31632027 PMCID: PMC6790350 DOI: 10.2147/ijn.s221328] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NPs) are used in modern cancer therapy based on their specific target, efficacy, low toxicity and biocompatibility. The photocatalytic performance of Zinc oxide (ZnO) nanocomposites with hyaluronic acid (HA) was used to study anticancer properties against various human cancer cell lines. Methods Zinc oxide (ZnO) nanocomposites functionalized by hyaluronic acid (HA) were prepared by a co-precipitation method (HA-ZnONcs). The submicron-flower-shaped nanocomposites were further functionalized with ginsenoside Rh2 by a cleavable ester bond via carbodiimide chemistry to form Rh2HAZnO. The physicochemical behaviors of the synthesized ZnO nanocomposites were characterized by various analytical and spectroscopic techniques. We carried out 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay to evaluate the toxicity of Rh2HAZnO in various human cancer cells (A549, MCF-7, and HT29). Furthermore, to confirm the apoptotic effects of Rh2HAZnO and to determine the role of the Caspase-9/p38 MAPK pathways by various molecular techniques such as RT-PCR and Western blotting. Furthermore, Rh2HAZnO induced morphological changes of these cell lines, mainly intracellular reactive oxygen species (ROS) were observed by ROS staining and nucleus by Hoechst staining. Results We confirmed that Rh2HAZnO exhibits the anti-cancer effects on A549 lung cancer, HT29 colon cancer, and MCF7 breast cancer cells. Moreover, intracellular reactive oxygen species (ROS) were observed in three cancer cell lines. Rh2HAZnO induced apoptotic process through p53-mediated pathway by upregulating p53 and BAX and downregulating BCL2. Specifically, Rh2HAZnO induced activation of cleaved PARP (Asp214) in A549 lung cancer cells and upregulated Caspase-9/phosphorylation of p38 MAPK in other cell lines (HT29 and MCF-7). Furthermore, Rh2HAZnO induced morphological changes in the nucleus of these cell lines. Conclusion These results suggest that the potential anticancer activity of novel Rh2HAZnO nanoparticles might be linked to induction of apoptosis through the generation of ROS by activation of the Caspase-9/p38 MAPK pathway.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Haribalan Perumalsamy
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering/School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Josua Markus
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Kim
- Center for Global Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Ying Liu
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Black A, Urbanos FJ, Roberts J, Acebrón M, Bernardo-Gavito R, Juárez BH, Robinson BJ, Young RJ, Vázquez de Parga AL, Granados D. Photodetecting Heterostructures from Graphene and Encapsulated Colloidal Quantum Dot Films. ACS OMEGA 2019; 4:15824-15828. [PMID: 31592149 PMCID: PMC6776979 DOI: 10.1021/acsomega.9b01449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 05/16/2023]
Abstract
Heterostructure devices consisting of graphene and colloidal quantum dots (QDs) have been remarkably successful as photodetectors and have opened the door to technological applications based on the combination of these low-dimensional materials. This work explores the photodetection properties of a heterostructure consisting of a graphene field effect transistor covered by a film of silica-encapsulated colloidal QDs. Defects at the surface of the silica shell trap optically excited charge carriers, which simultaneously enables photodetection via two mechanisms: photogating, resulting in a net p-doping of the device, and Coulombic scattering of charge carriers in the graphene, producing an overall decrease in the current magnitude.
Collapse
Affiliation(s)
- Andrés Black
- IMDEA
Nanoscience, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Departamento de
Química-Física Aplicada, and Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | | | - Jonathan Roberts
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | | | | | - Beatriz H. Juárez
- IMDEA
Nanoscience, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Departamento de
Química-Física Aplicada, and Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | | | - Robert J. Young
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Amadeo L. Vázquez de Parga
- IMDEA
Nanoscience, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Departamento de
Química-Física Aplicada, and Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
13
|
Graphene-Based Semiconductor Heterostructures for Photodetectors. MICROMACHINES 2018; 9:mi9070350. [PMID: 30424283 PMCID: PMC6082276 DOI: 10.3390/mi9070350] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Graphene transparent conductive electrodes are highly attractive for photodetector (PD) applications due to their excellent electrical and optical properties. The emergence of graphene/semiconductor hybrid heterostructures provides a platform useful for fabricating high-performance optoelectronic devices, thereby overcoming the inherent limitations of graphene. Here, we review the studies of PDs based on graphene/semiconductor hybrid heterostructures, including device physics/design, performance, and process technologies for the optimization of PDs. In the last section, existing technologies and future challenges for PD applications of graphene/semiconductor hybrid heterostructures are discussed.
Collapse
|
14
|
Abstract
Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum.
Collapse
Affiliation(s)
- Luca Malfatti
- LMNT- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, Via Vienna 2, 07040, Sassari, University of Sassari, Italy
| | - Plinio Innocenzi
- LMNT- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, Via Vienna 2, 07040, Sassari, University of Sassari, Italy
| |
Collapse
|
15
|
Black A, Roberts J, Acebrón M, Bernardo-Gavito R, Alsharif G, Urbanos FJ, Juárez BH, Kolosov OV, Robinson BJ, Miranda R, Vázquez de Parga AL, Granados D, Young RJ. Large-Area Heterostructures from Graphene and Encapsulated Colloidal Quantum Dots via the Langmuir-Blodgett Method. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6805-6809. [PMID: 29436818 DOI: 10.1021/acsami.7b17102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This work explores the assembly of large-area heterostructures comprised of a film of silica-encapsulated, semiconducting colloidal quantum dots, deposited via the Langmuir-Blodgett method, sandwiched between two graphene sheets. The luminescent, electrically insulating film served as a dielectric, with the top graphene sheet patterned into an electrode and successfully used as a top gate for an underlying graphene field-effect transistor. This heterostructure paves the way for developing novel hybrid optoelectronic devices through the integration of 2D and 0D materials.
Collapse
Affiliation(s)
| | - Jonathan Roberts
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | | | | | - Ghazi Alsharif
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
- Physics Department, Faculty of Science, Taibah University , Tayba, Medina 42353, Saudi Arabia
| | | | | | - Oleg V Kolosov
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - Benjamin J Robinson
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | | | | | | | - Robert J Young
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
16
|
Xu Y, Wang X, Zhang WL, Lv F, Guo S. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 2018; 47:586-625. [DOI: 10.1039/c7cs00500h] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review critically summarizes recent progress in the categories, synthetic routes, properties, functionalization and applications of 2D materials-based quantum dots (QDs).
Collapse
Affiliation(s)
- Yuanhong Xu
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Xiaoxia Wang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Wen Ling Zhang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Fan Lv
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Shaojun Guo
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
17
|
Bharathi G, Nataraj D, Premkumar S, Sowmiya M, Senthilkumar K, Thangadurai TD, Khyzhun OY, Gupta M, Phase D, Patra N, Jha SN, Bhattacharyya D. Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Sci Rep 2017; 7:10850. [PMID: 28883449 PMCID: PMC5589879 DOI: 10.1038/s41598-017-10534-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Graphene has been studied intensively in opto-electronics, and its transport properties are well established. However, efforts to induce intrinsic optical properties are still in progress. Herein, we report the production of micron-sized sheets by interconnecting graphene quantum dots (GQDs), which are termed 'GQD solid sheets', with intrinsic absorption and emission properties. Since a GQD solid sheet is an interconnected QD system, it possesses the optical properties of GQDs. Metal atoms that interconnect the GQDs in the bottom-up hydrothermal growth process, induce the semiconducting behaviour in the GQD solid sheets. X-ray absorption measurements and quantum chemical calculations provide clear evidence for the metal-mediated growth process. The as-grown graphene quantum dot solids undergo a Forster Resonance Energy Transfer (FRET) interaction with GQDs to exhibit an unconventional 36% photoluminescence (PL) quantum yield in the blue region at 440 nm. A high-magnitude photocurrent was also induced in graphene quantum dot solid sheets by the energy transfer process.
Collapse
Affiliation(s)
- Ganapathi Bharathi
- Low Dimensional Materials Laboratory, Department of Physics, Bharathiar University, Coimbatore, TN, India
| | - Devaraj Nataraj
- Low Dimensional Materials Laboratory, Department of Physics, Bharathiar University, Coimbatore, TN, India. .,Centre for Advanced Studies in Physics for the development of Solar Energy Materials and Devices, Department of Physics, Bharathiar University, Coimbatore, TN, India.
| | - Sellan Premkumar
- Low Dimensional Materials Laboratory, Department of Physics, Bharathiar University, Coimbatore, TN, India
| | - Murugaiyan Sowmiya
- Molecular Quantum Mechanics laboratory, Department of Physics, Bharathiar University, Coimbatore, TN, India
| | - Kittusamy Senthilkumar
- Centre for Advanced Studies in Physics for the development of Solar Energy Materials and Devices, Department of Physics, Bharathiar University, Coimbatore, TN, India.,Molecular Quantum Mechanics laboratory, Department of Physics, Bharathiar University, Coimbatore, TN, India
| | - T Daniel Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, TN, India
| | - Oleg Yu Khyzhun
- Department of Structural Chemistry of Solids, Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, UA-03142, Ukraine
| | - Mukul Gupta
- UGC-DAE Consortium for Scientific Research, Indore, India
| | - Deodatta Phase
- UGC-DAE Consortium for Scientific Research, Indore, India
| | - Nirmalendu Patra
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Shambhu Nath Jha
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
18
|
Wang Z, Liu S, Wang Y, Quan Y, Cheng Y. Tunable AICPL of (S
)-Binaphthyl-Based Three-Component Polymers via FRET Mechanism. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/24/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Ziyu Wang
- Key Lab of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Shuai Liu
- Key Lab of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yuxiang Wang
- Key Lab of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yiwu Quan
- Key Lab of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE; Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| |
Collapse
|
19
|
Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles. Sci Rep 2017; 7:43282. [PMID: 28266619 PMCID: PMC5339731 DOI: 10.1038/srep43282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 01/03/2023] Open
Abstract
Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.
Collapse
|