1
|
Zhang Q, Liu G, Li Y, Yang B, Guo W, Zhang Y, Pan L, Zhang P, Zhang W, Kong D. Thermal proteome profiling reveals the glial toxicity of dencichine via inhibiting proteasome. Food Chem Toxicol 2023; 182:114146. [PMID: 37923194 DOI: 10.1016/j.fct.2023.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
2
|
P62/SQSTM1 mediates the autophagy-lysosome degradation of CDK2 protein undergoing PI3Kα/AKT T308 inhibition. Biochem Biophys Res Commun 2022; 627:5-11. [PMID: 36007335 DOI: 10.1016/j.bbrc.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
CDK2 forms a complex with cyclin A and cyclin E to promote the progress of cell cycle, but when cyclin A and cyclin E are dissociated from the complex and degraded by the ubiquitin proteasome pathway, the fate of the inactive CDK2 is unclear. In this study, we found that the inactive CDK2 protein was degraded by autophagy-lysosome pathway. In the classic model of G0/G1 phase arrest induced by serum starvation, we found that the mRNA level in CDK2 did not change but the protein level decreased. Subsequently, using PI3K and AKT inhibitors and gene knockout methods, it was found that CDK2 degradation was mediated by the inhibition of PI3Kα/AKTT308. In addition, P62/SQSTM1 was found to bind to the inactivated CDK2 protein to help it enter autophagy-lysosome degradation in a CTSB-dependent manner. Taken together, these results confirm that the PI3Kα/AKTT308 inhibition leads to degradation of CDK2 protein in the autophagy-lysosome pathway. These data reveal a new molecular mechanism of CDK2 protein degradation and provide a new strategy and method for regulating CDK2 protein.
Collapse
|
3
|
Luthold C, Varlet AA, Lambert H, Bordeleau F, Lavoie JN. Chaperone-Assisted Mitotic Actin Remodeling by BAG3 and HSPB8 Involves the Deacetylase HDAC6 and Its Substrate Cortactin. Int J Mol Sci 2020; 22:ijms22010142. [PMID: 33375626 PMCID: PMC7795263 DOI: 10.3390/ijms22010142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin–HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3′s function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| |
Collapse
|
4
|
Ma F, Wang X, Chung SSW, Sicinski P, Shang E, Wolgemuth DJ. Cyclin A2 is essential for mouse gonocyte maturation. Cell Cycle 2020; 19:1654-1664. [PMID: 32420805 DOI: 10.1080/15384101.2020.1762314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In mammals, male gonocytes are derived from primordial germ cells during embryogenesis, enter a period of mitotic proliferation, and then become quiescent until birth. After birth, the gonocytes proliferate and migrate from the center of testicular cord toward the basement membrane to form the pool of spermatogonial stem cells (SSCs) and establish the SSC niche architecture. However, the molecular mechanisms underlying gonocyte proliferation, migration and differentiation are largely unknown. Cyclin A2 is a key component of the cell cycle and required for cell proliferation. Here, we show that cyclin A2 is required in mouse male gonocyte development and the establishment of spermatogenesis in the neonatal testis. Loss of cyclin A2 function in embryonic gonocytes by targeted gene disruption affected the regulation of the male gonocytes to SSC transition, resulting in the disruption of SSC pool formation, imbalance between SSC self-renewal and differentiation, and severely abnormal spermatogenesis in the adult testis.
Collapse
Affiliation(s)
- Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University , Wuhan, Hubei, China.,Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Xiangyuan Wang
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Sanny S W Chung
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York , New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA.,Institute of Human Nutrition, Columbia University Medical Center , New York, NY, USA
| |
Collapse
|