1
|
Zhang H, Gao Z, Li C, Xu J. Two Cold-Shock Proteins Characterised as RNA Chaperone of Hyperthermophilic Archaeon Pyrococcus yayanosii. Environ Microbiol 2025; 27:e70105. [PMID: 40325874 DOI: 10.1111/1462-2920.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Cold shock proteins (Csps) play a crucial role in facilitating cellular growth at suboptimal temperatures. In this study, we identified and characterised two Csps, PyCsp and PyTRAM, in the hyperthermophilic archaeon Pyrococcus yayanosii A1. Using bio-layer interferometry (BLI) and molecular beacon assays, we demonstrated that both proteins exhibit RNA binding and unfolding activities in vitro. Heterologously expressed PyCsp and PyTRAM exhibited transcription anti-termination activity in Escherichia coli RL211 and could restore the growth of the cold-sensitive E. coli BX04 at 22°C. Knockout of the coding genes of either PyCsp or PyTRAM impaired the growth of P. yayanosii A1 at 85°C, a comparatively lower temperature to the optimal 95°C. Gene knockout and cross-complementation analyses of the coding genes for these two proteins suggest that PyCsp and PyTRAM functionally complement each other at low temperatures. PyTRAM contains the conserved TRAM domain, which is a typical characteristic of archaeal RNA chaperones. Notably, PyCsp shows low similarity to known archaeal RNA chaperones. Deletion of PYCH_0765, the gene encoding PyCsp, led to 27.5% changes in the transcriptome. This work highlights PyCsp as a non-TRAM class RNA chaperone that globally alters the transcriptome of P. yayanosii under cold shock conditions.
Collapse
Affiliation(s)
- Huanhuan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Gao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Foustoukos DI, Houghton JL. High-pressure continuous culturing: life at the extreme. Appl Environ Microbiol 2025; 91:e0201024. [PMID: 39840974 PMCID: PMC11837531 DOI: 10.1128/aem.02010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at in-situ conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases. We present protocols for sterilization, inoculation, agitation, and sampling strategies that minimize cell lysis, applicable to a wide range of chemostat designs.
Collapse
Affiliation(s)
| | - Jennifer L. Houghton
- Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Osborn Popp TM, Karthikeyan M, Herman EM, Dufur AC, Vetriani C, Nieuwkoop AJ. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Commun Chem 2025; 8:49. [PMID: 39953270 PMCID: PMC11828890 DOI: 10.1038/s42004-025-01449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
The development of experimental methodologies that enable investigations of biochemistry at high pressure promises to yield significant advances in our understanding of life on Earth and its origins. Here, we introduce a method for studying lipid membranes at thermodynamic conditions relevant for life at deep sea hydrothermal vents. Using in situ high pressure magic-angle spinning solid state nuclear magnetic resonance spectroscopy (NMR), we measure changes in the fluidity of model microbial membranes at pressures up to 28 MPa. We find that the fluid-phase lateral diffusion of phospholipids at high pressure is significantly affected by the stoichiometric ratio of lipids in the membrane. Our results were facilitated by an accessible pressurization strategy that we have developed to enable routine preparation of solid state NMR rotors to pressures of 30 MPa or greater.
Collapse
Affiliation(s)
- Thomas M Osborn Popp
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.
| | - Mithun Karthikeyan
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Elias M Herman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Andrew C Dufur
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Li C, Li S, Song Q, Da LT, Xu J. High hydrostatic pressure promotes gene transcription via a cystathionine-β-synthase domain-containing protein in the hyperthermophilic archaeon Pyrococcus yayanosii. Nucleic Acids Res 2025; 53:gkae1289. [PMID: 39777464 PMCID: PMC11705074 DOI: 10.1093/nar/gkae1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Cystathionine-β-synthase (CBS) domains are ubiquitously prevalent in all kingdoms of life. Remarkably, in archaea, proteins consisting of solely CBS domains are widespread. However, the biological functions of CBS proteins in archaea are still unknown. Here, we identified a high hydrostatic pressure regulator (HhpR) that comprises four CBS domains serving as a transcriptional activator via specifically binding to the UAS (upstream activating sequence) motif situated within the promoter region of an operon in a hyperthermophilic archaeon Pyrococcus yayanosii under high hydrostatic pressure (HHP). By combining molecular dynamics simulations, in vitro and in vivo assays, we revealed the potential binding interfaces between HhpR and its specific DNA binding site. Particularly, one stem-loop region in HhpR (termed as 'Arm') was found to play a critical role in regulating the transcription activity, and the 192 position in the Arm region is an essential site in dictating the conformational changes of HhpR at HHP condition. Our work provides novel insights into the structure-function relationship of CBS-containing proteins that participate in archaeal gene regulation as general transcriptional activators.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Siyuan Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qinghao Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lin-tai Da
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
5
|
Qiu X, Tang X. Metabolic adaptations of Shewanella eurypsychrophilus YLB-09 for survival in the high-pressure environment of the deep sea. Front Microbiol 2024; 15:1467153. [PMID: 39483757 PMCID: PMC11527400 DOI: 10.3389/fmicb.2024.1467153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Elucidation of the adaptation mechanisms and survival strategies of deep-sea microorganisms to extreme environments could provide a theoretical basis for the industrial development of extreme enzymes. There is currently a lack of understanding of the metabolic adaptation mechanisms of deep-sea microorganisms to high-pressure environments. The objective of this study was to investigate the metabolic regulatory mechanisms enabling a strain of the deep-sea bacterium Shewanella eurypsychrophilus to thrive under high-pressure conditions. To achieve this, we used nuclear magnetic resonance-based metabolomic and RNA sequencing-based transcriptomic analyses of S. eurypsychrophilus strain YLB-09, which was previously isolated by our research group and shown to be capable of tolerating high pressure levels and low temperatures. We found that high-pressure conditions had pronounced impacts on the metabolic pattern of YLB-09, as evidenced by alterations in energy, amino acid, and glycerolipid metabolism, among other processes. YLB-09 adapted to the high-pressure conditions of the deep sea by switching from aerobic intracellular energy metabolism to trimethylamine N-oxide respiration, altering the amino acid profile, and regulating the composition and the fluidity of cell membrane. The findings of our study demonstrate the capacity of microorganisms to alter their metabolism in response to elevated pressure, thereby establishing a foundation for a more profound understanding of the survival mechanisms of life in high-pressure environments.
Collapse
Affiliation(s)
- Xu Qiu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xixiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
6
|
Uribe-Redlich PA, Amenabar MJ, Dennett GV, Blamey JM. Astrobiological implications of the organic and inorganic cyanide utilization by a novel Antarctic hyperthermophilic Pyrococcus strain. Extremophiles 2024; 28:19. [PMID: 38427139 DOI: 10.1007/s00792-024-01335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024]
Abstract
Organic and inorganic cyanides are widely distributed in nature, yet not much is known about the ability of microorganisms to use these compounds as a source of nitrogen and/or carbon at high temperatures (>80 °C). Here we studied the capacity of organic and inorganic cyanides to support growth of an hyperthermophilic Pyrococcus strain isolated from Deception Island, Antarctica. This microorganism was capable of growing with aromatic nitriles, aliphatic nitriles, heterocyclic nitriles, amino aromatic nitriles and inorganic cyanides as nitrogen and/or carbon source. This is the first report of an hyperthermophilic microorganism able to incorporate these compounds in its nitrogen and carbon metabolism. Based on enzymatic activity and genomic information, it is possibly that cells of this Pyrococcus strain growing with nitriles or cyanide, might use the carboxylic acid and/or the ammonia generated through the nitrilase enzymatic activity, as a carbon and/or nitrogen source respectively. This work expands the temperature range at which microorganisms can use organic and inorganic cyanides to growth, having important implications to understand microbial metabolisms that can support life on Earth and the possibility to support life elsewhere.
Collapse
Affiliation(s)
- Patricio A Uribe-Redlich
- Fundación Científica y Cultural Biociencia, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, Santiago, Chile.
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Malas J, Russo DC, Bollengier O, Malaska MJ, Lopes RMC, Kenig F, Meyer-Dombard DR. Biological functions at high pressure: transcriptome response of Shewanella oneidensis MR-1 to hydrostatic pressure relevant to Titan and other icy ocean worlds. Front Microbiol 2024; 15:1293928. [PMID: 38414766 PMCID: PMC10896736 DOI: 10.3389/fmicb.2024.1293928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems. Piezophiles are organisms that grow optimally at pressures higher than atmospheric (0.1 MPa) pressure and have specialized adaptations to the physical constraints of high-pressure environments - up to ~110 MPa at Challenger Deep, the highest pressure deep-sea habitat explored. While non-piezophilic microorganisms have been shown to survive short exposures at Titan relevant pressures, the mechanisms of their survival under such conditions remain largely unelucidated. To better understand these mechanisms, we have conducted a study of gene expression for Shewanella oneidensis MR-1 using a high-pressure experimental culturing system. MR-1 was subjected to short-term (15 min) and long-term (2 h) HHP of 158 MPa, a value consistent with pressures expected near the top of Titan's subsurface ocean. We show that MR-1 is metabolically active in situ at HHP and is capable of viable growth following 2 h exposure to 158 MPa, with minimal pressure training beforehand. We further find that MR-1 regulates 264 genes in response to short-term HHP, the majority of which are upregulated. Adaptations include upregulation of the genes argA, argB, argC, and argF involved in arginine biosynthesis and regulation of genes involved in membrane reconfiguration. MR-1 also utilizes stress response adaptations common to other environmental extremes such as genes encoding for the cold-shock protein CspG and antioxidant defense related genes. This study suggests Titan's ocean pressures may not limit life, as microorganisms could employ adaptations akin to those demonstrated by terrestrial organisms.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Daniel C. Russo
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Olivier Bollengier
- Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, Nantes, France
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rosaly M. C. Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Qiu X, Hu XM, Tang XX, Huang CH, Jian HH, Lin DH. Metabolic adaptations of Microbacterium sediminis YLB-01 in deep-sea high-pressure environments. Appl Microbiol Biotechnol 2024; 108:170. [PMID: 38265689 DOI: 10.1007/s00253-023-12906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 01/25/2024]
Abstract
The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao-Min Hu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xi-Xiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| | - Cai-Hua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
| | - Hua-Hua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Hai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Ganesh Kumar A, Manisha D, Nivedha Rajan N, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Biodegradation of phenanthrene by piezotolerant Bacillus subtilis EB1 and genomic insights for bioremediation. MARINE POLLUTION BULLETIN 2023; 194:115151. [PMID: 37453166 DOI: 10.1016/j.marpolbul.2023.115151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
A marine strain B. subtilis EB1, isolated from Equator water, showed excellent degradation towards a wide range of hydrocarbons. Degradation studies revealed dense growth with 93 % and 83 % removal of phenanthrene within 72 h at 0.1 and 20 MPa, respectively. The identification of phenanthrene degradation metabolites by GC-MS combined with its whole genome analysis provided the pathway involved in the degradation process. Whole genome sequencing indicated a genome size of 3,983,989 bp with 4331 annotated genes. The genome provided the genetic compartments, which includes monooxygenase, dioxygenase, dehydrogenase, biosurfactant synthesis catabolic genes for the biodegradation of aromatic compounds. Detailed COG and KEGG pathway analysis confirmed the genes involved in the oxygenation reaction of hydrocarbons, piezotolerance, siderophores, chemotaxis and transporter systems which were specific to adaptation for survival in extreme marine habitat. The results of this study will be a key to design an optimal bioremediation strategy for oil contaminated extreme marine environment.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India.
| | - D Manisha
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - N Nivedha Rajan
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - K Sujitha
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - D Magesh Peter
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - R Kirubagaran
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
10
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Fenouil R, Pradel N, Belahbib H, Roumagnac M, Bartoli M, Ben Hania W, Denis Y, Garel M, Tamburini C, Ollivier B, Summers Z, Armougom F, Dolla A. Adaptation Strategies to High Hydrostatic Pressures in Pseudothermotoga species Revealed by Transcriptional Analyses. Microorganisms 2023; 11:microorganisms11030773. [PMID: 36985346 PMCID: PMC10057702 DOI: 10.3390/microorganisms11030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Pseudothermotoga elfii strain DSM9442 and P. elfii subsp. lettingae strain DSM14385 are hyperthermophilic bacteria. P. elfii DSM9442 is a piezophile and was isolated from a depth of over 1600 m in an oil-producing well in Africa. P. elfii subsp. lettingae is piezotolerant and was isolated from a thermophilic bioreactor fed with methanol as the sole carbon and energy source. In this study, we analyzed both strains at the genomic and transcriptomic levels, paying particular attention to changes in response to pressure increases. Transcriptomic analyses revealed common traits of adaptation to increasing hydrostatic pressure in both strains, namely, variations in transport membrane or carbohydrate metabolism, as well as species-specific adaptations such as variations in amino acid metabolism and transport for the deep P. elfii DSM9442 strain. Notably, this work highlights the central role played by the amino acid aspartate as a key intermediate of the pressure adaptation mechanisms in the deep strain P. elfii DSM9442. Our comparative genomic and transcriptomic analysis revealed a gene cluster involved in lipid metabolism that is specific to the deep strain and that was differentially expressed at high hydrostatic pressures and might, thus, be a good candidate for a piezophilic gene marker in Pseudothermotogales.
Collapse
Affiliation(s)
- Romain Fenouil
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nathalie Pradel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
- Correspondence: (N.P.); (A.D.)
| | - Hassiba Belahbib
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marie Roumagnac
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Manon Bartoli
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Wajdi Ben Hania
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Yann Denis
- Institut de Microbiologie de la Méditerranée, CNRS—Aix Marseille Université, Marseille, France
| | - Marc Garel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christian Tamburini
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Zarath Summers
- LanzaTech, Illinois Science and Technology Park, Skokie, IL 60077, USA
| | - Fabrice Armougom
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Alain Dolla
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
- Correspondence: (N.P.); (A.D.)
| |
Collapse
|
12
|
Sun Y, Wang M, Chen H, Wang H, Zhong Z, Zhou L, Fu L, Li C, Sun S. Insights into symbiotic interactions from metatranscriptome analysis of deep-sea mussel Gigantidas platifrons under long-term laboratory maintenance. Mol Ecol 2023; 32:444-459. [PMID: 36326559 DOI: 10.1111/mec.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts. The results revealed that one-day short-term maintenance triggered global transcriptional perturbation in symbionts, but little gene expression changes in mussel hosts, which were mainly involved in responses to environmental changes. Long-term maintenance with depleted symbionts induced a metabolic shift in the mussel host. The most notable changes were the suppression of sterol biosynthesis and the complementary activation of terpenoid backbone synthesis in response to the reduction of bacteria-derived terpenoid sources. In addition, we detected the upregulation of host proteasomes responsible for amino acid deprivation caused by symbiont depletion. Additionally, a significant correlation between host microtubule motor activity and symbiont abundance was revealed, suggesting the possible function of microtubule-based intracellular trafficking in the nutritional interaction of symbiosis. Overall, by analyzing the dynamic transcriptomic changes during the loss of symbionts, our study highlights the nutritional importance of symbionts in supplementing terpenoid compounds and essential amino acids and provides insight into the molecular mechanisms and strategies underlying the symbiotic interactions in deep-sea ecosystems.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Wang Y, Zhang J, Yuan Z, Sun L. Characterization of the pathogenicity of a Bacillus cereus isolate from the Mariana Trench. Virulence 2022; 13:1062-1075. [PMID: 35733351 PMCID: PMC9235904 DOI: 10.1080/21505594.2022.2088641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bacillus cereus is an important opportunistic pathogen widely distributed in the environment. In this study, we reported the isolation and characterization of a B. cereus isolate, MB1, from the Challenger Deep of the Mariana Trench. MB1 is aerobic, motile, and able to form endospores. It possesses 5966 genes distributed on a circular chromosome and two plasmids. The MB1 genome contains 14 sets of 23S, 5S, and 16S ribosomal RNA operons, 106 tRNA genes, 4 sRNA genes, 12 genomic islands, 13 prophages, and 302 putative virulence genes, including enterotoxins and cytolysins. Infection studies showed that MB1 was able to cause acute and lethal infection in fish and mice, and was highly toxic to mammalian cells. MB1 induced, in a dose-dependent manner, pyroptotic cell death, characterized by activation of caspase-1, cleavage of gasdermin D, and release of IL-1β and IL-18. MB1 spores exhibited swimming and haemolytic capacity, but were severely attenuated in pathogenicity, which, however, was regained to the full extent when the spores germinated under suitable conditions. Taken together, these results provide new insights into the biological and pathogenic mechanism of deep sea B. cereus.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- School of Ocean, Yan tai University, Yantai, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Smedile F, Foustoukos DI, Patwardhan S, Mullane K, Schlegel I, Adams MW, Schut GJ, Giovannelli D, Vetriani C. Adaptations to high pressure of Nautilia sp. strain PV-1, a piezophilic Campylobacterium (aka Epsilonproteobacterium) isolated from a deep-sea hydrothermal vent. Environ Microbiol 2022; 24:6164-6183. [PMID: 36271901 PMCID: PMC10092268 DOI: 10.1111/1462-2920.16256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.
Collapse
Affiliation(s)
- Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Institute of Polar Science (ISP-CNR), Messina, Italy
| | - Dionysis I Foustoukos
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| | - Sushmita Patwardhan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kelli Mullane
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Ian Schlegel
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Michael W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Donato Giovannelli
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Wan JJ, Wang F, Zhang XY, Xin Y, Tian JW, Zhang YZ, Li CY, Fu HH. Genome sequencing and comparative genomics analysis of Halomonas sp. MT13 reveal genetic adaptation to deep-sea environment. Mar Genomics 2022; 61:100911. [DOI: 10.1016/j.margen.2021.100911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
|
16
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
17
|
Moalic Y, Hartunians J, Dalmasso C, Courtine D, Georges M, Oger P, Shao Z, Jebbar M, Alain K. The Piezo-Hyperthermophilic Archaeon Thermococcus piezophilus Regulates Its Energy Efficiency System to Cope With Large Hydrostatic Pressure Variations. Front Microbiol 2021; 12:730231. [PMID: 34803948 PMCID: PMC8595942 DOI: 10.3389/fmicb.2021.730231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Deep-sea ecosystems share a common physical parameter, namely high hydrostatic pressure (HHP). Some of the microorganisms isolated at great depths have a high physiological plasticity to face pressure variations. The adaptive strategies by which deep-sea microorganisms cope with HHP variations remain to be elucidated, especially considering the extent of their biotopes on Earth. Herein, we investigated the gene expression patterns of Thermococcus piezophilus, a piezohyperthermophilic archaeon isolated from the deepest hydrothermal vent known to date, under sub-optimal, optimal and supra-optimal pressures (0.1, 50, and 90 MPa, respectively). At stressful pressures [sub-optimal (0.1 MPa) and supra-optimal (90 MPa) conditions], no classical stress response was observed. Instead, we observed an unexpected transcriptional modulation of more than a hundred gene clusters, under the putative control of the master transcriptional regulator SurR, some of which are described as being involved in energy metabolism. This suggests a fine-tuning effect of HHP on the SurR regulon. Pressure could act on gene regulation, in addition to modulating their expression.
Collapse
Affiliation(s)
- Yann Moalic
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Jordan Hartunians
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Cécile Dalmasso
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Myriam Georges
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Philippe Oger
- Université de Lyon, INSA Lyon, CNRS UMR 5240, Villeurbanne, France
| | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France.,Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography SOA, Xiamen, China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| |
Collapse
|
18
|
Complete genome sequence of Crassaminicella sp. 143-21,isolated from a deep-sea hydrothermal vent. Mar Genomics 2021; 62:100899. [DOI: 10.1016/j.margen.2021.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022]
|
19
|
Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jørgensen SL, Schleper C. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. THE ISME JOURNAL 2021; 15:2792-2808. [PMID: 33795828 PMCID: PMC8397731 DOI: 10.1038/s41396-021-00962-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Marine sediments represent a vast habitat for complex microbiomes. Among these, ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are one of the most common, yet little explored, inhabitants, which seem extraordinarily well adapted to the harsh conditions of the subsurface biosphere. We present 11 metagenome-assembled genomes of the most abundant AOA clades from sediment cores obtained from the Atlantic Mid-Ocean ridge flanks and Pacific abyssal plains. Their phylogenomic placement reveals three independently evolved clades within the order Nitrosopumilales, of which no cultured representative is known yet. In addition to the gene sets for ammonia oxidation and carbon fixation known from other AOA, all genomes encode an extended capacity for the conversion of fermentation products that can be channeled into the central carbon metabolism, as well as uptake of amino acids probably for protein maintenance or as an ammonia source. Two lineages encode an additional (V-type) ATPase and a large repertoire of DNA repair systems that may allow to overcome the challenges of high hydrostatic pressure. We suggest that the adaptive radiation of AOA into marine sediments occurred more than once in evolution and resulted in three distinct lineages with particular adaptations to this extremely energy-limiting and high-pressure environment.
Collapse
Affiliation(s)
- Melina Kerou
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I. Ponce-Toledo
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rui Zhao
- grid.7914.b0000 0004 1936 7443Department of Earth Science, K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway ,grid.33489.350000 0001 0454 4791Present Address: School of Marine Science and Policy, University of Delaware, Lewes, DE USA
| | - Sophie S. Abby
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria ,grid.463716.10000 0004 4687 1979Present Address: University Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Miho Hirai
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hidetaka Nomaki
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshihiro Takaki
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- grid.410588.00000 0001 2191 0132Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Steffen L. Jørgensen
- grid.7914.b0000 0004 1936 7443Department of Earth Science, K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Christa Schleper
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Structure and Function of Piezophilic Hyperthermophilic Pyrococcus yayanosii pApase. Int J Mol Sci 2021; 22:ijms22137159. [PMID: 34281213 PMCID: PMC8268124 DOI: 10.3390/ijms22137159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
3’-Phosphoadenosine 5’-monophosphate (pAp) is a byproduct of sulfate assimilation and coenzyme A metabolism. pAp can inhibit the activity of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) reductase and sulfotransferase and regulate gene expression under stress conditions by inhibiting XRN family of exoribonucleases. In metazoans, plants, yeast, and some bacteria, pAp can be converted into 5’-adenosine monophosphate (AMP) and inorganic phosphate by CysQ. In some bacteria and archaea, nanoRNases (Nrn) from the Asp-His-His (DHH) phosphoesterase superfamily are responsible for recycling pAp. In addition, histidinol phosphatase from the amidohydrolase superfamily can hydrolyze pAp. The bacterial enzymes for pAp turnover and their catalysis mechanism have been well studied, but these processes remain unclear in archaea. Pyrococcus yayanosii, an obligate piezophilic hyperthermophilic archaea, encodes a DHH family pApase homolog (PyapApase). Biochemical characterization showed that PyapApase can efficiently convert pAp into AMP and phosphate. The resolved crystal structure of apo-PyapApase is similar to that of bacterial nanoRNaseA (NrnA), but they are slightly different in the α-helix linker connecting the DHH and Asp-His-His associated 1 (DHHA1) domains. The longer α-helix of PyapApase leads to a narrower substrate-binding cleft between the DHH and DHHA1 domains than what is observed in bacterial NrnA. Through mutation analysis of conserved amino acid residues involved in coordinating metal ion and binding substrate pAp, it was confirmed that PyapApase has an ion coordination pattern similar to that of NrnA and slightly different substrate binding patterns. The results provide combined structural and functional insight into the enzymatic turnover of pAp, implying the potential function of sulfate assimilation in hyperthermophilic cells.
Collapse
|
21
|
Ganesh Kumar A, Manisha D, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Genome sequence analysis of deep sea Aspergillus sydowii BOBA1 and effect of high pressure on biodegradation of spent engine oil. Sci Rep 2021; 11:9347. [PMID: 33931710 PMCID: PMC8087790 DOI: 10.1038/s41598-021-88525-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
A deep-sea fungus Aspergillus sydowii BOBA1 isolated from marine sediment at a depth of 3000 m was capable of degrading spent engine (SE) oil. The response of immobilized fungi towards degradation at elevated pressure was studied in customized high pressure reactors without any deviation in simulating in situ deep-sea conditions. The growth rate of A. sydowii BOBA1 in 0.1 MPa was significantly different from the growth at 10 MPa pressure. The degradation percentage reached 71.2 and 82.5% at atmospheric and high pressure conditions, respectively, within a retention period of 21 days. The complete genome sequence of BOBA1 consists of 38,795,664 bp in size, comprises 2582 scaffolds with predicted total coding genes of 18,932. A total of 16,247 genes were assigned with known functions and many families found to have a potential role in PAHs and xenobiotic compound metabolism. Functional genes controlling the pathways of hydrocarbon and xenobiotics compound degrading enzymes such as dioxygenase, decarboxylase, hydrolase, reductase and peroxidase were identified. The spectroscopic and genomic analysis revealed the presence of combined catechol, gentisate and phthalic acid degradation pathway. These results of degradation and genomic studies evidenced that this deep-sea fungus could be employed to develop an eco-friendly mycoremediation technology to combat the oil polluted marine environment. This study expands our knowledge on piezophilic fungi and offer insight into possibilities about the fate of SE oil in deep-sea.
Collapse
Affiliation(s)
- A. Ganesh Kumar
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Manisha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - K. Sujitha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Magesh Peter
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - R. Kirubagaran
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - G. Dharani
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| |
Collapse
|
22
|
Chen H, Wang M, Li M, Lian C, Zhou L, Zhang X, Zhang H, Zhong Z, Wang H, Cao L, Li C. A glimpse of deep-sea adaptation in chemosynthetic holobionts: Depressurization causes DNA fragmentation and cell death of methanotrophic endosymbionts rather than their deep-sea Bathymodiolinae host. Mol Ecol 2021; 30:2298-2312. [PMID: 33774874 DOI: 10.1111/mec.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Bathymodiolinae mussels are typical species in deep-sea cold seeps and hydrothermal vents and an ideal model for investigating chemosynthetic symbiosis and the influence of high hydrostatic pressure on deep-sea organisms. Herein, the potential influence of depressurization on DNA fragmentation and cell death in Bathymodiolinae hosts and their methanotrophic symbionts were surveyed using isobaric and unpressurized samples. As a hallmark of cell death, massive DNA fragmentation was observed in methanotrophic symbionts from unpressurized Bathymodiolinae while several endonucleases and restriction enzymes were upregulated. Additionally, genes involved in DNA repair, glucose/methane metabolism as well as two-component regulatory system were also differentially expressed in depressurized symbionts. DNA fragmentation and programmed cell death, however, were rarely detected in the host bacteriocytes owing to the orchestrated upregulation of inhibitor of apoptosis genes and downregulation of caspase genes. Meanwhile, diverse host immune recognition receptors were promoted during depressurization, probably enabling the regain of symbionts. When the holobionts were subjected to a prolonged acclimation at atmospheric pressure, alternations in both the DNA fragmentation and the expression atlas of aforesaid genes were continuously observed in symbionts, demonstrating the persistent influence of depressurization. Contrarily, the host cells demonstrated certain tolerance against depressurization stress as expression level of some immune-related genes returned to the basal level in isobaric samples. Altogether, the present study illustrates the distinct stress responses of Bathymodiolinae hosts and their methanotrophic symbionts against depressurization, which could provide further insight into the deep-sea adaptation of Bathymodiolinae holobionts while highlighting the necessity of using isobaric sampling methods in deep-sea research.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mengna Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Lian
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
24
|
Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA, Yayanos AA, Kusube M, Methé BA, Bartlett DH. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genomics 2020; 21:692. [PMID: 33023469 PMCID: PMC7542103 DOI: 10.1186/s12864-020-07102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. Results Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. Conclusions We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Than S Kyaw
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Roger A Chastain
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A Aristides Yayanos
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Masataka Kusube
- Department of Material Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama, 644-0023, Japan
| | - Barbara A Methé
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
25
|
Zhong C, Wang L, Ning K. Pan-genome study of Thermococcales reveals extensive genetic diversity and genetic evidence of thermophilic adaption. Environ Microbiol 2020; 23:3599-3613. [PMID: 32939951 DOI: 10.1111/1462-2920.15234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
Thermococcales has a strong adaptability to extreme environments, which is of profound interest in explaining how complex life forms emerge on earth. However, their gene composition, thermal stability and evolution in hyperthermal environments are still little known. Here, we characterized the pan-genome architecture of 30 Thermococcales species to gain insight into their genetic properties, evolutionary patterns and specific metabolisms adapted to niches. We revealed an open pan-genome of Thermococcales comprising 6070 gene families that tend to increase with the availability of additional genomes. The genome contents of Thermococcales were flexible, with a series of genes experienced gene duplication, progressive divergence, or gene gain and loss events exhibiting distinct functional features. These archaea had concise types of heat shock proteins, such as HSP20, HSP60 and prefoldin, which were constrained by strong purifying selection that governed their conservative evolution. Furthermore, purifying selection forced genes involved in enzyme, motility, secretion system, defence system and chaperones to differ in functional constraints and their disparity in the rate of evolution may be related to adaptation to specific niche. These results deepened our understanding of genetic diversity and adaptation patterns of Thermococcales, and provided valuable research models for studying the metabolic traits of early life forms.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
26
|
Yi Z, Cao X, Li H, Jian H, Xu X, Yu L, Tang X. Genomic analysis of Microbacterium sediminis YLB-01 T reveals backgrounds related to its deep-sea environment adaptation. Mar Genomics 2020; 56:100818. [PMID: 33632425 DOI: 10.1016/j.margen.2020.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Microbacterium sediminis YLB-01T, a piezotolerant and psychrotolerant actinomycete, was isolated from deep-sea sediment of the South-West Indian Ocean and could be a good model for understanding the adaptation of extremophiles to the benthic piezosphere. Here, we report the analysis of the complete genome sequence of strain YLB-01T. The genome sequence consists of a single circular chromosome comprising 2,792,195 bp and a linear plasmid comprising 127,669 bp with G + C content of 71.76 and 68.49 mol%, respectively. In this regard, strain YLB-01T possesses the smallest genome size but the highest G + C content among the genus Microbacterium sequenced to date. As the first complete genome sequence of the genus Microbacterium isolated from deep-sea environment, the strain YLB-01T genome is unique or enriched in genes involved in xenobiotics biodegradation and metabolism, compatible solutes, and transposases, some of which might be related to bacterial enhancement of ecological fitness in the deep sea.
Collapse
Affiliation(s)
- Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hong Li
- China National Accreditation Insititute for Conformity Assessment, No. 8 Nanhuashi Dajie Chongwen District, Beijing 10086, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiashutong Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Respository (Biology), Xiamen 361005, China.
| |
Collapse
|
27
|
Zhao W, Ma X, Liu X, Jian H, Zhang Y, Xiao X. Cross-Stress Adaptation in a Piezophilic and Hyperthermophilic Archaeon From Deep Sea Hydrothermal Vent. Front Microbiol 2020; 11:2081. [PMID: 33013758 PMCID: PMC7511516 DOI: 10.3389/fmicb.2020.02081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Hyperthermophiles, living in environments above 80°C and usually coupling with multi-extreme environmental stresses, have drawn great attention due to their application potential in biotechnology and being the primitive extant forms of life. Studies on their survival and adaptation mechanisms have extended our understanding on how lives thrive under extreme conditions. During these studies, the "cross-stress" behavior in various organisms has been observed between the extreme high temperature and other environmental stresses. Despite the broad observation, the global view of the cross-stress behavior remains unclear in hyperthermophiles, leaving a knowledge gap in our understanding of extreme adaptation. In this study, we performed a global quantitative proteomic analysis under extreme temperatures, pH, hydrostatic pressure (HP), and salinity on an archaeal strain, Thermococcus eurythermalis A501, which has outstanding growth capability on a wide range of temperatures (50-100°C), pH (4-9), and HPs (0.1-70 MPa), but a narrow range of NaCl (1.0-5.0 %, w/v). The proteomic analysis (79.8% genome coverage) demonstrated that approximately 61.5% of the significant differentially expressed proteins (DEPs) responded to multiple stresses. The responses to most of the tested stresses were closely correlated, except the responses to high salinity and low temperature. The top three enriched universal responding processes include the biosynthesis and protection of macromolecules, biosynthesis and metabolism of amino acids, ion transport, and binding activities. In addition, this study also revealed that the specific dual-stress responding processes, such as the membrane lipids for both cold and HP stresses and the signal transduction for both hyperosmotic and heat stresses, as well as the sodium-dependent energetic processes might be the limiting factor of the growth range in salinity. The present study is the first to examine the global cross-stress responses in a piezophilic hyperthermophile at the proteomic level. Our findings provide direct evidences of the cross-stress adaptation strategy (33.5% of coding-genes) to multiple stresses and highlight the specific and unique responding processes (0.22-0.63% of coding genes for each) to extreme temperature, pH, salinity, and pressure, which are highly relevant to the fields of evolutionary biology as well as next generation industrial biotechnology (NGIB).
Collapse
Affiliation(s)
- Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopan Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Oliver GC, Cario A, Rogers KL. Rate and Extent of Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High Hydrostatic Pressures. Front Microbiol 2020; 11:1023. [PMID: 32595611 PMCID: PMC7303961 DOI: 10.3389/fmicb.2020.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
High hydrostatic pressure (HHP) batch cultivation of a model extremophile, Archaeoglobus fulgidus type strain VC-16, was performed to explore how elevated pressures might affect microbial growth and physiology in the deep marine biosphere. Though commonly identified in high-temperature and high-pressure marine environments (up to 2-5 km below sea level, 20-50 MPa pressures), A. fulgidus growth at elevated pressure has not been characterized previously. Here, exponential growth of A. fulgidus was observed up to 60 MPa when supported by the heterotrophic metabolism of lactate oxidation coupled to sulfate reduction, and up to 40 MPa for autotrophic CO2 fixation coupled to thiosulfate reduction via H2. Maximum growth rates for this heterotrophic metabolism were observed at 20 MPa, suggesting that A. fulgidus is a moderate piezophile under these conditions. However, only piezotolerance was observed for autotrophy, as growth rates remained nearly constant from 0.3 to 40 MPa. Experiments described below show that A. fulgidus continues both heterotrophic sulfate reduction and autotrophic thiosulfate reduction nearly unaffected by increasing pressure up to 30 MPa and 40 MPa, respectively. As these pressures encompass a variety of subsurface marine environments, A. fulgidus serves as a model extremophile for exploring the effects of elevated pressure on microbial metabolisms in the deep subsurface. Further, these results exemplify the need for high-pressure cultivation of deep-sea and subsurface microorganisms to better reflect in situ physiological conditions.
Collapse
Affiliation(s)
- Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
29
|
Martin KP, MacKenzie SM, Barnes JW, Ytreberg FM. Protein Stability in Titan's Subsurface Water Ocean. ASTROBIOLOGY 2020; 20:190-198. [PMID: 31730377 PMCID: PMC7041334 DOI: 10.1089/ast.2018.1972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Models of Titan predict that there is a subsurface ocean of water and ammonia under a layer of ice. Such an ocean would be important in the search for extraterrestrial life since it provides a potentially habitable environment. To evaluate how Earth-based proteins would behave in Titan's subsurface ocean environment, we used molecular dynamics simulations to calculate the properties of proteins with the most common secondary structure types (alpha helix and beta sheet) in both Earth and Titan-like conditions. The Titan environment was simulated by using a temperature of 300 K, a pressure of 1000 bar, and a eutectic mixture of water and ammonia. We analyzed protein compactness, flexibility, and backbone dihedral distributions to identify differences between the two environments. Secondary structures in the Titan environment were found to be less long-lasting, less flexible, and had small differences in backbone dihedral preferences (e.g., in one instance a pi helix formed). These environment-driven differences could lead to changes in how these proteins interact with other biomolecules and therefore changes in how evolution would potentially shape proteins to function in subsurface ocean environments.
Collapse
Affiliation(s)
- Kyle P. Martin
- Department of Physics, University of Idaho, Moscow, Idaho
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho
| | | | | | - F. Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, Idaho
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho
| |
Collapse
|
30
|
Yu J, Zhang T, Xu H, Dong X, Cai Y, Pan Y, Cao C. Thermostable iron oxide nanoparticle synthesis within recombinant ferritins from the hyperthermophile Pyrococcus yayanosii CH1. RSC Adv 2019; 9:39381-39393. [PMID: 35540659 PMCID: PMC9076106 DOI: 10.1039/c9ra07397c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Thermostable nanoparticles have numerous applications in catalysis and in the oil/gas industry. However, synthesizing these nanoparticles requires expensive polymers. Here, a novel thermostable ferritin named PcFn, originally from the hyperthermophilic archaeon Pyrococcus yayanosii CH1, was overexpressed in Escherichia coli, purified and characterized, which could successfully direct the synthesis of thermostable magnetoferritins (M-PcFn) with monodispersed iron oxide nanoparticles in one step. Transmission electron microscopy and magnetic measurements show that the cores of the M-PcFn have an average diameter of 4.7 nm, are well-crystalline and superparamagnetic. Both the PcFn and M-PcFn can resist temperatures up to 110 °C, which is significantly higher than for human H-chain ferritin (HFn) and M-HFn, and comparable to temperatures previously reported for Pyrococcus furiosus ferritin (PfFn) and M-PfFn. After heating at 110 °C for 30 minutes, PcFn and M-PcFn maintained their secondary structures and PcFn retained 87.4% of its iron uptake activity. This remarkable thermostability of PcFn and M-PcFn suggests potential applications in elevated temperature environments.
Collapse
Affiliation(s)
- Jiacheng Yu
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 P. R. China .,Innovation Academy for Earth Science, CAS Beijing 100029 P. R. China.,College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tongwei Zhang
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 P. R. China .,Innovation Academy for Earth Science, CAS Beijing 100029 P. R. China
| | - Huangtao Xu
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 P. R. China .,Innovation Academy for Earth Science, CAS Beijing 100029 P. R. China.,College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary Calgary AB T2N 1N4 Canada
| | - Yao Cai
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 P. R. China .,Innovation Academy for Earth Science, CAS Beijing 100029 P. R. China
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 P. R. China .,Innovation Academy for Earth Science, CAS Beijing 100029 P. R. China.,College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Changqian Cao
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 P. R. China .,Innovation Academy for Earth Science, CAS Beijing 100029 P. R. China.,College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
31
|
Abstract
Despite the typical human notion that the Earth is a habitable planet, over three quarters of our planet is uninhabitable by us without assistance. The organisms that live and thrive in these “inhospitable” environments are known by the name extremophiles and are found in all Domains of Life. Despite our general lack of knowledge about them, they have already assisted humans in many ways and still have much more to give. In this review, I describe how they have adapted to live/thrive/survive in their niches, helped scientists unlock major scientific discoveries, advance the field of biotechnology, and inform us about the boundaries of Life and where we might find it in the Universe.
Collapse
Affiliation(s)
- James A Coker
- Department of Sciences, University of Maryland Global Campus, Adelphi, MD, USA
| |
Collapse
|
32
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
33
|
Houghton JL, Foustoukos DI, Fike DA. The effect of O 2 and pressure on thiosulfate oxidation by Thiomicrospira thermophila. GEOBIOLOGY 2019; 17:564-576. [PMID: 31180189 DOI: 10.1111/gbi.12352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur-oxidizing micro-organisms in particular. In this study, the thiosulfate-oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04-1.9 mM) and high pressure (5-10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed-system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr-1 . This is comparable to the μmax (0.28 hr-1 ) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half-saturation constant for O2 ( KO2 ) estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4-10 MPa), consistent with piezotolerant behavior of this strain. The cell-specific KO2 was determined to be 1.5 pmol O2 /cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell-specific KO2 and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).
Collapse
Affiliation(s)
- Jennifer L Houghton
- Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri
| | - Dionysis I Foustoukos
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri
| |
Collapse
|
34
|
Wang B, Qin W, Ren Y, Zhou X, Jung MY, Han P, Eloe-Fadrosh EA, Li M, Zheng Y, Lu L, Yan X, Ji J, Liu Y, Liu L, Heiner C, Hall R, Martens-Habbena W, Herbold CW, Rhee SK, Bartlett DH, Huang L, Ingalls AE, Wagner M, Stahl DA, Jia Z. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME JOURNAL 2019; 13:3067-3079. [PMID: 31462715 PMCID: PMC6863869 DOI: 10.1038/s41396-019-0493-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Thaumarchaeota are responsible for a significant fraction of ammonia oxidation in the oceans and in soils that range from alkaline to acidic. However, the adaptive mechanisms underpinning their habitat expansion remain poorly understood. Here we show that expansion into acidic soils and the high pressures of the hadopelagic zone of the oceans is tightly linked to the acquisition of a variant of the energy-yielding ATPases via horizontal transfer. Whereas the ATPase genealogy of neutrophilic Thaumarchaeota is congruent with their organismal genealogy inferred from concatenated conserved proteins, a common clade of V-type ATPases unites phylogenetically distinct clades of acidophilic/acid-tolerant and piezophilic/piezotolerant species. A presumptive function of pumping cytoplasmic protons at low pH is consistent with the experimentally observed increased expression of the V-ATPase in an acid-tolerant thaumarchaeote at low pH. Consistently, heterologous expression of the thaumarchaeotal V-ATPase significantly increased the growth rate of E. coli at low pH. Its adaptive significance to growth in ocean trenches may relate to pressure-related changes in membrane structure in which this complex molecular machine must function. Together, our findings reveal that the habitat expansion of Thaumarchaeota is tightly correlated with extensive horizontal transfer of atp operons.
Collapse
Affiliation(s)
- Baozhan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Wei Qin
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xue Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Man-Young Jung
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Ping Han
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Emiley A Eloe-Fadrosh
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.,Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lu Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xin Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junbin Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Linmeng Liu
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | | | | | - Willm Martens-Habbena
- Department of Microbiology and Cell Science & Fort Lauderdale Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.,Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
35
|
Booker AE, Hoyt DW, Meulia T, Eder E, Nicora CD, Purvine SO, Daly RA, Moore JD, Wunch K, Pfiffner SM, Lipton MS, Mouser PJ, Wrighton KC, Wilkins MJ. Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing Halanaerobium spp. Appl Environ Microbiol 2019; 85:e00018-19. [PMID: 30979840 PMCID: PMC6544827 DOI: 10.1128/aem.00018-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.
Collapse
Affiliation(s)
- Anne E Booker
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tea Meulia
- College of Food, Agricultural, and Environmental Sciences, Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rebecca A Daly
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Joseph D Moore
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Kenneth Wunch
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
36
|
Chen J, Liu H, Cai S, Zhang H. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures. Sci Rep 2019; 9:3456. [PMID: 30837550 PMCID: PMC6401005 DOI: 10.1038/s41598-019-39716-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hydrostatic pressure is an important environmental factor affecting the vertical distribution of marine organisms. Laboratory-based studies have shown that many extant shallow-water marine benthic invertebrates can tolerate hydrostatic pressure outside their known natural distributions. However, only a few studies have focused on the molecular mechanisms of pressure acclimatisation. In the present work, we examined the pressure tolerance of the shallow-water amphipod Eogammarus possjeticus at various temperatures (5, 10, 15, and 20 °C) and hydrostatic pressures (0.1–30 MPa) for 16 h. Six of these experimental groups were used for transcriptome analysis. We found that 100% of E. possjeticus survived under 20 MPa at all temperature conditions for 16 h. Sequence assembly resulted in 138, 304 unigenes. Results of differential expression analysis revealed that 94 well-annotated genes were up-regulated under high pressure. All these findings indicated that the pressure tolerance of E. possjeticus was related to temperature. Several biological processes including energy metabolism, antioxidation, immunity, lipid metabolism, membrane-related process, genetic information processing, and DNA repair are probably involved in the acclimatisation in deep-sea environments.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
37
|
Khan MF, Patra S. Deciphering the rationale behind specific codon usage pattern in extremophiles. Sci Rep 2018; 8:15548. [PMID: 30341344 PMCID: PMC6195531 DOI: 10.1038/s41598-018-33476-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
Protein stability is affected at different hierarchies – gene, RNA, amino acid sequence and structure. Gene is the first level which contributes via varying codon compositions. Codon selectivity of an organism differs with normal and extremophilic milieu. The present work attempts at detailing the codon usage pattern of six extremophilic classes and their harmony. Homologous gene datasets of thermophile-mesophile, psychrophile-mesophile, thermophile-psychrophile, acidophile-alkaliphile, halophile-nonhalophile and barophile-nonbarophile were analysed for filtering statistically significant attributes. Relative abundance analysis, 1–9 scale ranking, nucleotide compositions, attribute weighting and machine learning algorithms were employed to arrive at findings. AGG in thermophiles and barophiles, CAA in mesophiles and psychrophiles, TGG in acidophiles, GAG in alkaliphiles and GAC in halophiles had highest preference. Preference of GC-rich and G/C-ending codons were observed in halophiles and barophiles whereas, a decreasing trend was reflected in psychrophiles and alkaliphiles. GC-rich codons were found to decrease and G/C-ending codons increased in thermophiles whereas, acidophiles showed equal contents of GC-rich and G/C-ending codons. Codon usage patterns exhibited harmony among different extremophiles and has been detailed. However, the codon attribute preferences and their selectivity of extremophiles varied in comparison to non-extremophiles. The finding can be instrumental in codon optimization application for heterologous expression of extremophilic proteins.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
38
|
Li Z, Song Q, Wang Y, Xiao X, Xu J. Identification of a functional toxin-antitoxin system located in the genomic island PYG1 of piezophilic hyperthermophilic archaeon Pyrococcus yayanosii. Extremophiles 2018; 22:347-357. [PMID: 29335804 DOI: 10.1007/s00792-018-1002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/23/2017] [Indexed: 12/01/2022]
Abstract
Toxin-antitoxin (TA) system is bacterial or archaeal genetic module consisting of toxin and antitoxin gene that be organized as a bicistronic operon. TA system could elicit programmed cell death, which is supposed to play important roles for the survival of prokaryotic population under various physiological stress conditions. The phage abortive infection system (AbiE family) belongs to bacterial type IV TA system. However, no archaeal AbiE family TA system has been reported so far. In this study, a putative AbiE TA system (PygAT), which is located in a genomic island PYG1 in the chromosome of Pyrococcus yayanosii CH1, was identified and characterized. In Escherichia coli, overexpression of the toxin gene pygT inhibited its growth while the toxic effect can be suppressed by introducing the antitoxin gene pygA in the same cell. PygAT also enhances the stability of shuttle plasmids with archaeal plasmid replication protein Rep75 in E. coli. In P. yayanosii, disruption of antitoxin gene pygA cause a significantly growth delayed under high hydrostatic pressure (HHP). The antitoxin protein PygA can specifically bind to the PygAT promoter region and regulate the transcription of pygT gene in vivo. These results show that PygAT is a functional TA system in P. yayanosii, and also may play a role in the adaptation to HHP environment.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghao Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. .,Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Li Z, Li X, Xiao X, Xu J. An Integrative Genomic Island Affects the Adaptations of the Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure. Front Microbiol 2016; 7:1927. [PMID: 27965650 PMCID: PMC5126054 DOI: 10.3389/fmicb.2016.01927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is thought to play an important role in the microbial adaptation to such an extreme environment. In this study, a 21.4-kb DNA fragment was identified as a genomic island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Pyrococcus yayanosii. According to the sequence alignment and functional annotation, the genes in PYG1 could tentatively be divided into five modules, with functions related to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase can mediate the site-specific integration and excision of PYG1 in the chromosome of P. yayanosii A1. Gene replacement of PYG1 with a SimR cassette was successful. The growth of the mutant strain ΔPYG1 was compared with its parent strain P. yayanosii A2 under various stress conditions, including different pH, salinity, temperature, and hydrostatic pressure. The ΔPYG1 mutant strain showed reduced growth when grown at 100°C, while the biomass of ΔPYG1 increased significantly when cultured at 80 MPa. Differential expression of the genes in module III of PYG1 was observed under different temperature and pressure conditions. This study demonstrates the first example of an archaeal integrative genomic island that could affect the adaptation of the hyperthermophilic piezophile P. yayanosii to high temperature and high hydrostatic pressure.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; Institute of Oceanology, Shanghai Jiao Tong UniversityShanghai, China
| | - Xuegong Li
- Institute of Oceanology, Shanghai Jiao Tong UniversityShanghai, China; Deep-Sea Cellular Microbiology, Department of Deep-Sea Science, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; Institute of Oceanology, Shanghai Jiao Tong UniversityShanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; Institute of Oceanology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
40
|
Jian H, Li S, Tang X, Xiao X. A transcriptome resource for the deep-sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress. Mar Genomics 2016; 30:87-91. [PMID: 27720170 DOI: 10.1016/j.margen.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/27/2022]
Abstract
Low temperature and high hydrostatic pressure (HHP) are two of the most remarkable environmental factors influencing deep-sea ecosystem. The adaptive mechanisms of microorganisms which live in these extreme environments to low temperature and high pressure warrant investigation. In this study, the global gene expression patterns of the deep-sea bacterium Shewanella piezotolerans WP3 in response to cold (0 °C) and HHP (50 MPa) shock were evaluated through DNA microarray analysis. Results revealed that 22, 66, and 106 genes were differentially expressed after WP3 was respectively exposed to cold shock for 30, 60, and 90 min. Of these genes, 16 genes were identified as common differentially expressed genes (DEGs). After 30 min and 120 min of HHP shock, 5 and 10 genes were respectively identified as DEGs. The hierarchical clustering analysis of the DEG pattern indicated that WP3 may employ different adaptive strategies to cope with cold and HHP shock stress. Taken together, our study provided a transcriptome resource for deep-sea bacterial responses to cold and HHP stress. This study also established a basis for further investigations on environmental adaptive mechanisms utilized by benthic bacteria.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, PR China; Marine Biology Institute, Shantou University, Shantou, PR China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|