1
|
Sena FV, Sousa FM, Pereira AR, Catarino T, Cabrita EJ, Pinho MG, Pinto FR, Pereira MM. The two alternative NADH:quinone oxidoreductases from Staphylococcus aureus: two players with different molecular and cellular roles. Microbiol Spectr 2024; 12:e0415223. [PMID: 39012110 DOI: 10.1128/spectrum.04152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/01/2024] [Indexed: 07/17/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that has emerged as a major public health threat due to the increased incidence of its drug resistance. S. aureus presents a remarkable capacity to adapt to different niches due to the plasticity of its energy metabolism. In this work, we investigated the energy metabolism of S. aureus, focusing on the alternative NADH:quinone oxidoreductases, NDH-2s. S. aureus presents two genes encoding NDH-2s (NDH-2A and NDH-2B) and lacks genes coding for Complex I, the canonical respiratory NADH:quinone oxidoreductase. This observation makes the action of NDH-2s crucial for the regeneration of NAD+ and, consequently, for the progression of metabolism. Our study involved the comprehensive biochemical characterization of NDH-2B and the exploration of the cellular roles of NDH-2A and NDH-2B, utilizing knockout mutants (Δndh-2a and Δndh-2b). We show that NDH-2B uses NADPH instead of NADH, does not establish a charge-transfer complex in the presence of NADPH, and its reduction by this substrate is the catalytic rate-limiting step. In the case of NDH-2B, the reduction of the flavin is inherently slow, and we suggest the establishment of a charge transfer complex between NADP+ and FADH2, as previously observed for NDH-2A, to slow down quinone reduction and, consequently, prevent the overproduction of reactive oxygen species, which is potentially unnecessary. Furthermore, we observed that the lack of NDH-2A or NDH-2B impacts cell growth, volume, and division differently. The absence of these enzymes results in distinct metabolic phenotypes, emphasizing the unique cellular roles of each NDH-2 in energy metabolism.IMPORTANCEStaphylococcus aureus is an opportunistic pathogen, posing a global challenge in clinical medicine due to the increased incidence of its drug resistance. For this reason, it is essential to explore and understand the mechanisms behind its resistance, as well as the fundamental biological features such as energy metabolism and the respective players that allow S. aureus to live and survive. Despite its prominence as a pathogen, the energy metabolism of S. aureus remains underexplored, with its respiratory enzymes often escaping thorough investigation. S. aureus bioenergetic plasticity is illustrated by its ability to use different respiratory enzymes, two of which are investigated in the present study. Understanding the metabolic adaptation strategies of S. aureus to bioenergetic challenges may pave the way for the design of therapeutic approaches that interfere with the ability of the pathogen to successfully adapt when it invades different niches within its host.
Collapse
Affiliation(s)
- Filipa V Sena
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipe M Sousa
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana R Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisco R Pinto
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Manuela M Pereira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
2
|
Pugazhendhi AS, Neal CJ, Ta KM, Molinari M, Kumar U, Wei F, Kolanthai E, Ady A, Drake C, Hughes M, Yooseph S, Seal S, Coathup MJ. A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces. Biomaterials 2024; 307:122527. [PMID: 38518591 DOI: 10.1016/j.biomaterials.2024.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce-O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2-/NO3- are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces.
Collapse
Affiliation(s)
- Abinaya Sindu Pugazhendhi
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Craig J Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Khoa Minh Ta
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom.
| | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Fei Wei
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Andrew Ady
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Christina Drake
- Kismet Technologies, 7101 TPC Drive, Suite 130, Orlando, FL, 32822, United States
| | - Megan Hughes
- University of Cardiff, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Shibu Yooseph
- Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, CA 91711, United States
| | - Sudipta Seal
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Melanie J Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|
3
|
Milojkov DV, Radosavljević-Mihajlović AS, Stanić VD, Nastasijević BJ, Radotić K, Janković-Častvan I, Živković-Radovanović V. Synthesis and characterization of luminescent Cu 2+-doped fluorapatite nanocrystals as potential broad-spectrum antimicrobial agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112649. [PMID: 36669353 DOI: 10.1016/j.jphotobiol.2023.112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/16/2023]
Abstract
Nanomaterials based on metal-doped fluorapatite (FAP) have attracted considerable interest as potential next-generation antimicrobial agents. In this study, Cu2+-doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption-desorption studies indicate the formation of single-phase FAP mesoporous nanopowders, composed of rod-like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR-ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d-d band transition at green color from FAP broadband self-activated luminescence in violet-blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+-doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F- ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+-doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad-spectrum antimicrobial agents for various biomedical and health care preparations.
Collapse
Affiliation(s)
- Dušan V Milojkov
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d'Esperey 86, P.O. Box 390, 11000 Belgrade, Serbia.
| | - Ana S Radosavljević-Mihajlović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d'Esperey 86, P.O. Box 390, 11000 Belgrade, Serbia
| | - Vojislav Dj Stanić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Branislav J Nastasijević
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ivona Janković-Častvan
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | | |
Collapse
|
4
|
Mostolizadeh R, Glöckler M, Dräger A. Towards the human nasal microbiome: Simulating D. pigrum and S. aureus. Front Cell Infect Microbiol 2022; 12:925215. [PMID: 36605126 PMCID: PMC9810029 DOI: 10.3389/fcimb.2022.925215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/15/2022] [Indexed: 01/12/2023] Open
Abstract
The human nose harbors various microbes that decisively influence the wellbeing and health of their host. Among the most threatening pathogens in this habitat is Staphylococcus aureus. Multiple epidemiological studies identify Dolosigranulum pigrum as a likely beneficial bacterium based on its positive association with health, including negative associations with S. aureus. Carefully curated GEMs are available for both bacterial species that reliably simulate their growth behavior in isolation. To unravel the mutual effects among bacteria, building community models for simulating co-culture growth is necessary. However, modeling microbial communities remains challenging. This article illustrates how applying the NCMW fosters our understanding of two microbes' joint growth conditions in the nasal habitat and their intricate interplay from a metabolic modeling perspective. The resulting community model combines the latest available curated GEMs of D. pigrum and S. aureus. This uses case illustrates how to incorporate genuine GEM of participating microorganisms and creates a basic community model mimicking the human nasal environment. Our analysis supports the role of negative microbe-microbe interactions involving D. pigrum examined experimentally in the lab. By this, we identify and characterize metabolic exchange factors involved in a specific interaction between D. pigrum and S. aureus as an in silico candidate factor for a deep insight into the associated species. This method may serve as a blueprint for developing more complex microbial interaction models. Its direct application suggests new ways to prevent disease-causing infections by inhibiting the growth of pathogens such as S. aureus through microbe-microbe interactions.
Collapse
Affiliation(s)
- Reihaneh Mostolizadeh
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany,Department of Computer Science, University of Tübingen, Tübingen, Germany,German Center for Infection Research (DZIF), Partner site, Tübingen, Germany,Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Tübingen, Germany,*Correspondence: Reihaneh Mostolizadeh,
| | - Manuel Glöckler
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany,Department of Computer Science, University of Tübingen, Tübingen, Germany,German Center for Infection Research (DZIF), Partner site, Tübingen, Germany,Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Wang Z, Li H, Zhou W, Lee J, Liu Z, An Z, Xu D, Mo H, Hu L, Zhou X. Ferrous sulfate-loaded hydrogel cures Staphylococcus aureus infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model. Biomaterials 2022; 290:121842. [DOI: 10.1016/j.biomaterials.2022.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
|
6
|
Menendez-Gil P, Catalan-Moreno A, Caballero CJ, Toledo-Arana A. Staphylococcus aureus ftnA 3'-Untranslated Region Modulates Ferritin Production Facilitating Growth Under Iron Starvation Conditions. Front Microbiol 2022; 13:838042. [PMID: 35572681 PMCID: PMC9093591 DOI: 10.3389/fmicb.2022.838042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3’-untranslated region (3’UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3’UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3’UTR. A transcriptional fusion of the ftnA 3’UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3’UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3’UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3’UTR for iron homeostasis in S. aureus.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
7
|
Graf AC, Striesow J, Pané-Farré J, Sura T, Wurster M, Lalk M, Pieper DH, Becher D, Kahl BC, Riedel K. An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum. Front Cell Infect Microbiol 2021; 11:724569. [PMID: 34513734 PMCID: PMC8432295 DOI: 10.3389/fcimb.2021.724569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
Collapse
Affiliation(s)
- Alexander C Graf
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Johanna Striesow
- Research Group ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Thomas Sura
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Martina Wurster
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Dietmar H Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Fuchs S, Kucklick M, Lehmann E, Beckmann A, Wilkens M, Kolte B, Mustafayeva A, Ludwig T, Diwo M, Wissing J, Jänsch L, Ahrens CH, Ignatova Z, Engelmann S. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLoS Genet 2021; 17:e1009585. [PMID: 34061833 PMCID: PMC8195425 DOI: 10.1371/journal.pgen.1009585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/11/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.
Collapse
Affiliation(s)
- Stephan Fuchs
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
| | - Martin Kucklick
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Erik Lehmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Alexander Beckmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Maya Wilkens
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Baban Kolte
- University of Hamburg, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Ayten Mustafayeva
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Tobias Ludwig
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Maurice Diwo
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Josef Wissing
- Helmholtz Center for Infection Research GmbH, Cellular Proteomics, Braunschweig, Germany
| | - Lothar Jänsch
- Helmholtz Center for Infection Research GmbH, Cellular Proteomics, Braunschweig, Germany
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Zoya Ignatova
- University of Hamburg, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Susanne Engelmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| |
Collapse
|
9
|
Carbon Source-Dependent Reprogramming of Anaerobic Metabolism in Staphylococcus aureus. J Bacteriol 2021; 203:JB.00639-20. [PMID: 33526614 DOI: 10.1128/jb.00639-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
To be a successful pathogen, Staphylococcus aureus has to adapt its metabolism to the typically oxygen- and glucose-limited environment of the host. Under fermenting conditions and in the presence of glucose, S. aureus uses glycolysis to generate ATP via substrate-level phosphorylation and mainly lactic acid fermentation to maintain the redox balance by reoxidation of NADH equivalents. However, it is less clear how S. aureus proceeds under anoxic conditions and glucose limitation, likely representing the bona fide situation in the host. Using a combination of proteomic, transcriptional, and metabolomic analyses, we show that in the absence of an abundant glycolysis substrate, the available carbon source pyruvate is converted to acetyl coenzyme A (AcCoA) in a pyruvate formate-lyase (PflB)-dependent reaction to produce ATP and acetate. This process critically depends on derepression of the catabolite control protein A (CcpA), leading to upregulation of pflB transcription. Under these conditions, ethanol production is repressed to prevent wasteful consumption of AcCoA. In addition, our global and quantitative characterization of the metabolic switch prioritizing acetate over lactate fermentation when glucose is absent illustrates examples of carbon source-dependent control of colonization and pathogenicity factors.IMPORTANCE Under infection conditions, S. aureus needs to ensure survival when energy production via oxidative phosphorylation is not possible, e.g., either due to the lack of terminal electron acceptors or by the inactivation of components of the respiratory chain. Under these conditions, S. aureus can switch to mixed-acid fermentation to sustain ATP production by substrate level phosphorylation. The drop in the cellular NAD+/NADH ratio is sensed by the repressor Rex, resulting in derepression of fermentation genes. Here, we show that expression of fermentation pathways is further controlled by CcpA in response to the availability of glucose to ensure optimal resource utilization under growth-limiting conditions. We provide evidence for carbon source-dependent control of colonization and virulence factors. These findings add another level to the regulatory network controlling mixed-acid fermentation in S. aureus and provide additional evidence for the lifestyle-modulating effect of carbon sources available to S. aureus.
Collapse
|
10
|
Menendez-Gil P, Toledo-Arana A. Bacterial 3'UTRs: A Useful Resource in Post-transcriptional Regulation. Front Mol Biosci 2021; 7:617633. [PMID: 33490108 PMCID: PMC7821165 DOI: 10.3389/fmolb.2020.617633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial messenger RNAs (mRNAs) are composed of 5′ and 3′ untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3′UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3′UTRs in bacteria. Over the past few years, 3′UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3′UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3′UTRs that interact with the 5′UTR of the same transcript to modulate translation, 3′UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3′UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3′UTRs and its impact in the species-specific expression of orthologous genes are also discussed.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
11
|
Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Sci Rep 2020; 10:8467. [PMID: 32439871 PMCID: PMC7242376 DOI: 10.1038/s41598-020-64952-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is an important opportunistic pathogen of humans and animals. It produces extracellular vesicles (EVs) that are involved in cellular communication and enable inter-kingdom crosstalk, the delivery of virulence factors and modulation of the host immune response. The protein content of EVs determines their biological functions. Clarifying which proteins are selected, and how, is of crucial value to understanding the role of EVs in pathogenesis and the development of molecular delivery systems. Here, we postulated that S. aureus EVs share a common proteome containing components involved in cargo sorting. The EV proteomes of five S. aureus strains originating from human, bovine, and ovine hosts were characterised. The clustering of EV proteomes reflected the diversity of the producing strains. A total of 253 proteins were identified, 119 of which composed a core EV proteome with functions in bacterial survival, pathogenesis, and putatively in EV biology. We also identified features in the sequences of EV proteins and the corresponding genes that could account for their packaging into EVs. Our findings corroborate the hypothesis of a selective sorting of proteins into EVs and offer new perspectives concerning the roles of EVs in S. aureus pathogenesis in specific host niches.
Collapse
|
12
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
13
|
Godard T, Zühlke D, Richter G, Wall M, Rohde M, Riedel K, Poblete-Castro I, Krull R, Biedendieck R. Metabolic Rearrangements Causing Elevated Proline and Polyhydroxybutyrate Accumulation During the Osmotic Adaptation Response of Bacillus megaterium. Front Bioeng Biotechnol 2020; 8:47. [PMID: 32161752 PMCID: PMC7053513 DOI: 10.3389/fbioe.2020.00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
For many years now, Bacillus megaterium serves as a microbial workhorse for the high-level production of recombinant proteins in the g/L-scale. However, efficient and stable production processes require the knowledge of the molecular adaptation strategies of the host organism to establish optimal environmental conditions. Here, we interrogated the osmotic stress response of B. megaterium using transcriptome, proteome, metabolome, and fluxome analyses. An initial transient adaptation consisted of potassium import and glutamate counterion synthesis. The massive synthesis of the compatible solute proline constituted the second longterm adaptation process. Several stress response enzymes involved in iron scavenging and reactive oxygen species (ROS) fighting proteins showed higher levels under prolonged osmotic stress induced by 1.8 M NaCl. At the same time, the downregulation of the expression of genes of the upper part of glycolysis resulted in the activation of the pentose phosphate pathway (PPP), generating an oversupply of NADPH. The increased production of lactate accompanied by the reduction of acetate secretion partially compensate for the unbalanced (NADH/NAD+) ratio. Besides, the tricarboxylic acid cycle (TCA) mainly supplies the produced NADH, as indicated by the higher mRNA and protein levels of involved enzymes, and further confirmed by 13C flux analyses. As a consequence of the metabolic flux toward acetyl-CoA and the generation of an excess of NADPH, B. megaterium redirected the produced acetyl-CoA toward the polyhydroxybutyrate (PHB) biosynthetic pathway accumulating around 30% of the cell dry weight (CDW) as PHB. This direct relation between osmotic stress and intracellular PHB content has been evidenced for the first time, thus opening new avenues for synthesizing this valuable biopolymer using varying salt concentrations under non-limiting nutrient conditions.
Collapse
Affiliation(s)
- Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Universität Greifswald, Greifswald, Germany
| | - Georg Richter
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Wall
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Universität Greifswald, Greifswald, Germany
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
14
|
Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S, Lalk M, Becher D, Pané-Farré J, Riedel K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol Cell Proteomics 2019; 18:1036-1053. [PMID: 30850421 PMCID: PMC6553939 DOI: 10.1074/mcp.ra118.001120] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Alexander C Graf
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Anne Leonard
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Manuel Schäuble
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Lisa M Rieckmann
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Juliane Hoyer
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Sandra Maass
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Michael Lalk
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Dörte Becher
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Jan Pané-Farré
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Katharina Riedel
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology;
| |
Collapse
|
15
|
Cirrincione S, Neumann B, Zühlke D, Riedel K, Pessione E. Detailed Soluble Proteome Analyses of a Dairy-Isolated Enterococcus faecalis: A Possible Approach to Assess Food Safety and Potential Probiotic Value. Front Nutr 2019; 6:71. [PMID: 31157229 PMCID: PMC6533484 DOI: 10.3389/fnut.2019.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enterococci are common inhabitants of the gastrointestinal tracts of humans and animals and thanks to their capability to tolerate different environmental conditions and their high rates of gene transfer, they are able to colonize various ecological niches, as food matrices. Enterococcus faecalis bacteria are defined as controversial microorganisms. From one side they are used as food starters, bio-control agents and probiotics to improve human or animal health. From the other side, in the last two decades enterococci have emerged as important nosocomial pathogens, because bearing high-level of resistance to antibiotics and several putative virulence factors. In this study, the soluble proteome quantitation data (LC-MS/MS) of the food-isolated strain E. faecalis D27 (dairy-isolate) was compared with the soluble proteome quantitation data of the pathogenic E. faecalis UW3114 (urinary tract infection isolate) and with the one of the health promoting strain E. faecalis Symbioflor1, respectively. The comparison of cytosolic protein expression profiles highlighted statistically significant changes in the abundance of proteins mainly involved in specific metabolic pathways, nutrient transport, stress response, and cell wall modulation. Moreover, especially in the dairy isolate and the clinical isolate, several proteins with potential pathogenic implications were found, such as serine proteases, von Willebrand factor, serine hydrolase with beta lactamase activity, efflux transporter, and proteins involved in horizontal gene transfer. The analysis of the extracellular proteome provided interesting results concerning proteins involved in bacterial communication, such as pheromones and conjugative elements and also proteins able to interact with human components. The phenotypic characterization evaluating (i) biofilm formation (ii) hemolytic activity on blood agar plates (iii) protease activity (iv) gelatinase (v) antibiotic resistance pattern, enabled us to elucidate the risks associated with the poor characterized foodborne E. faecalis D27.
Collapse
Affiliation(s)
- Simona Cirrincione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| | - Bernd Neumann
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| |
Collapse
|
16
|
Sievers S, Metzendorf NG, Dittmann S, Troitzsch D, Gast V, Tröger SM, Wolff C, Zühlke D, Hirschfeld C, Schlüter R, Riedel K. Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol 2019; 10:258. [PMID: 30833939 PMCID: PMC6387971 DOI: 10.3389/fmicb.2019.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/31/2019] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.
Collapse
Affiliation(s)
- Susanne Sievers
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nicole G Metzendorf
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silvia Dittmann
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Daniel Troitzsch
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Viola Gast
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sophie Marlen Tröger
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christian Wolff
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Guerrero Montero I, Dolata KM, Schlüter R, Malherbe G, Sievers S, Zühlke D, Sura T, Dave E, Riedel K, Robinson C. Comparative proteome analysis in an Escherichia coli CyDisCo strain identifies stress responses related to protein production, oxidative stress and accumulation of misfolded protein. Microb Cell Fact 2019; 18:19. [PMID: 30696436 PMCID: PMC6350376 DOI: 10.1186/s12934-019-1071-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023] Open
Abstract
Background The Twin-arginine translocation (Tat) pathway of Escherichia coli has great potential for the export of biopharmaceuticals to the periplasm due to its ability to transport folded proteins, and its proofreading mechanism that allows correctly folded proteins to translocate. Coupling the Tat-dependent protein secretion with the formation of disulfide bonds in the cytoplasm of E. coli CyDisCo provides a powerful platform for the production of industrially challenging proteins. In this study, we investigated the effects on the E. coli cells of exporting a folded substrate (scFv) to the periplasm using a Tat signal peptide, and the effects of expressing an export-incompetent misfolded variant. Results Cell growth is decreased when either the correctly folded or misfolded scFv is expressed with a Tat signal peptide. However, only the production of misfolded scFv leads to cell aggregation and formation of inclusion bodies. The comprehensive proteomic analysis revealed that both conditions, recombinant protein overexpression and misfolded protein accumulation, lead to downregulation of membrane transporters responsible for protein folding and insertion into the membrane while upregulating the production of chaperones and proteases involved in removing aggregates. These conditions also differentially affect the production of transcription factors and proteins involved in DNA replication. The most distinct stress response observed was the cell aggregation caused by elevated levels of antigen 43. Finally, Tat-dependent secretion causes an increase in tatA expression only after induction of protein expression, while the subsequent post-induction analysis revealed lower tatA and tatB expression levels, which correlate with lowered TatA and TatB protein abundance. Conclusions The study identified characteristic changes occurring as a result of the production of both a folded and a misfolded protein, but also highlights an exclusive unfolded stress response. Countering and compensating for these changes may result in higher yields of pharmaceutically relevant proteins exported to the periplasm. Electronic supplementary material The online version of this article (10.1186/s12934-019-1071-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Katarzyna Magdalena Dolata
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487, Greifswald, Germany
| | - Gilles Malherbe
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.,UCB Celltech, 216 Bath Road, Slough, SL1 3WE, UK
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Thomas Sura
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Emma Dave
- UCB Celltech, 216 Bath Road, Slough, SL1 3WE, UK
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
18
|
Far-reaching cellular consequences of tat deletion in Escherichia coli revealed by comprehensive proteome analyses. Microbiol Res 2019; 218:97-107. [DOI: 10.1016/j.micres.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 11/22/2022]
|
19
|
Quintieri L, Giribaldi M, Giuffrida MG, Creanza TM, Ancona N, Cavallarin L, De Angelis M, Caputo L. Proteome Response of Staphylococcus xylosus DSM 20266T to Anaerobiosis and Nitrite Exposure. Front Microbiol 2018; 9:2275. [PMID: 30319582 PMCID: PMC6167427 DOI: 10.3389/fmicb.2018.02275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The viability and competitiveness of Staphylococcus xylosus in meat mostly depend on the ability to adapt itself to rapid oxygen and nutrients depletion during meat fermentation. The utilization of nitrite instead of oxygen becomes a successful strategy for this strain to improve its performance in anaerobiosis; however, metabolic pathways of this strain underlying this adaptation, are partially known. The aim of this study was to provide an overview on proteomic changes of S. xylosus DSM 20266T cultured under anaerobiosis and nitrite exposure. Thus, two different cultures of this strain, supplemented or not with nitrite, were in vitro incubated in aerobiosis and anaerobiosis monitoring cell viability, pH, oxidation reduction potential and nitrite content. Protein extracts, obtained from cells, collected as nitrite content was depleted, were analyzed by 2DE/MALDI-TOF/TOF-MS. Results showed that DSM 20266T growth was significantly sustained by nitrite in anaerobiosis, whereas no differences were found in aerobiosis. Accordingly, nitrite content was depleted after 13 h only in anaerobiosis. At this time of sampling, a comparative proteomic analysis showed 45 differentially expressed proteins. Most differences were found between aerobic and anaerobic cultures without nitrite; the induction of glycolytic enzymes and glyoxylate cycle, the reduction of TCA enzymes, and acetate fermentation were found in anaerobiosis to produce ATP and maintain the cell redox balance. In anaerobic cultures the nitrite supplementation partially restored TCA cycle, and reduced the amount of glycolytic enzymes. These results were confirmed by phenotypic microarray that, for the first time, was carried out on cell previously adapted at the different growth conditions. Overall, metabolic changes were similar between aerobiosis and anaerobiosis NO2-adapted cells, whilst cells grown under anaerobiosis showed different assimilation profiles by confirming proteomic data; indeed, these latter extensively assimilated substrates addressed at both supplying glucose for glycolysis or fueling alternative pathways to TCA cycle. In conclusion, metabolic pathways underlying the ability of S. xylosus to adapt itself to oxygen starvation were revealed; the addition of nitrite allowed S. xylosus to take advantage of nitrite to this condition, restoring some metabolic pathway underlying aerobic behavior of the strain.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy.,Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, Turin, Italy
| | | | - Teresa Maria Creanza
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Nicola Ancona
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
20
|
Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, Trebino C, Jha J, Aubee JI, Thompson KM, Camberg JL, Ramamurthi KS. An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics. eLife 2018; 7:38856. [PMID: 30277210 PMCID: PMC6168285 DOI: 10.7554/elife.38856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022] Open
Abstract
Binary fission has been well studied in rod-shaped bacteria, but the mechanisms underlying cell division in spherical bacteria are poorly understood. Rod-shaped bacteria harbor regulatory proteins that place and remodel the division machinery during cytokinesis. In the spherical human pathogen Staphylococcus aureus, we found that the essential protein GpsB localizes to mid-cell during cell division and co-constricts with the division machinery. Depletion of GpsB arrested cell division and led to cell lysis, whereas overproduction of GpsB inhibited cell division and led to the formation of enlarged cells. We report that S. aureus GpsB, unlike other Firmicutes GpsB orthologs, directly interacts with the core divisome component FtsZ. GpsB bundles and organizes FtsZ filaments and also stimulates the GTPase activity of FtsZ. We propose that GpsB orchestrates the initial stabilization of the Z-ring at the onset of cell division and participates in the subsequent remodeling of the divisome during cytokinesis. A bacterium called Staphylococcus aureus causes many infections in humans, especially in hospital patients with weakened immune systems. These infections are generally treated with drugs known as antibiotics that interact with specific proteins in the bacteria to kill the cells, or stop them from growing. However, some S. aureus infections are resistant to the antibiotics currently available so there is a need to develop new drugs that target different bacterial proteins. Bacteria multiply by dividing to make identical copies of themselves. When a bacterium is preparing to divide, filaments made of a protein called FtsZ form a ring at the site where the cell will split. Many other proteins are involved in controlling how and when a cell divides. For example, several species of bacteria harbor a dispensable cell division protein called GpsB. In at least one organism, it helps to maintain the proper shape of the cell during cell division. In S. aureus, though, GpsB is essential for cells to survive and could therefore be a potential target for new antibiotics. However, its role in S. aureus has not been studied. Eswara et al. have now used genetic and biochemical approaches to study the S. aureus form of the GpsB protein. The experiments show that GpsB moves to the middle of S. aureus cells just before they begin to divide and binds directly to FtsZ. This helps to secure the position of FtsZ across the middle of the cell and activates the protein so that the cell can begin to divide into two. In cells that produce too much GpsB, the FtsZ proteins become active too early, leading to the cells growing larger and larger until they burst. The findings of Eswara et al. reveal that GpsB plays a different role in S. aureus cells than in some other species of bacteria. Further studies into such differences could help researchers to develop new antibiotics, as well as improving our understanding of why bacteria are so diverse.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Marissa G Viola
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States
| | - Gianni Graham
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Catherine Spanoudis
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Catherine Trebino
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States
| | - Jyoti Jha
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, United States
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, United States
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States.,Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
21
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
22
|
Abstract
Antibiotics act on bacterial metabolism, and antibiotic resistance involves changes in this metabolism. Interventions on metabolism with drugs might therefore modify drug susceptibility and drug resistance. In their recent article, Martin Vestergaard et al. (mBio 8:e01114-17, 2017, https://doi.org/10.1128/mBio.01114-17) illustrate the possibility of converting intrinsically resistant bacteria into susceptible ones. They reported that inhibition of a central metabolic enzyme, ATP synthase, allows otherwise ineffective polymyxin antibiotics to act on Staphylococcus aureus The study of the intrinsic resistome of bacterial pathogens has shown that several metabolic genes, including multigene transcriptional regulators, contribute to antibiotic resistance. In some cases, these genes only marginally increase antibiotic resistance, but reduced levels of susceptibility might be critical in the evolution or resistance under low antibiotic concentrations or in the clinical response of highly resistant bacteria. Drug interventions on bacterial metabolism might constitute a critical adjuvant therapy in combination with antibiotics to ensure susceptibility of pathogens with intrinsic or acquired antimicrobial resistance.
Collapse
|
23
|
Fuchs S, Mehlan H, Bernhardt J, Hennig A, Michalik S, Surmann K, Pané-Farré J, Giese A, Weiss S, Backert L, Herbig A, Nieselt K, Hecker M, Völker U, Mäder U. AureoWiki ̵ The repository of the Staphylococcus aureus research and annotation community. Int J Med Microbiol 2017; 308:558-568. [PMID: 29198880 DOI: 10.1016/j.ijmm.2017.11.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022] Open
Abstract
In light of continuously accumulating data and knowledge on major human pathogens, comprehensive and up-to-date sources of easily accessible information are urgently required. The AureoWiki database (http://aureowiki.med.uni-greifswald.de) provides detailed information on the genes and proteins of clinically and experimentally relevant S. aureus strains, currently covering NCTC 8325, COL, Newman, USA300_FPR3757, and N315. By implementing a pan-genome approach, AureoWiki facilitates the transfer of knowledge gained in studies with different S. aureus strains, thus supporting functional annotation and better understanding of this organism. All data related to a given gene or gene product is compiled on a strain-specific gene page. The gene pages contain sequence-based information complemented by data on, for example, protein function and localization, transcriptional regulation, and gene expression. The information provided is connected via links to other databases and published literature. Importantly, orthologous genes of the individual strains, which are linked by a pan-genome gene identifier and a unified gene name, are presented side by side using strain-specific tabs. The respective pan-genome gene page contains an orthologue table for 32 S. aureus strains, a multiple-strain genome viewer, a protein sequence alignment as well as other comparative information. The data collected in AureoWiki is also accessible through various download options in order to support bioinformatics applications. In addition, based on two large-scale gene expression data sets, AureoWiki provides graphical representations of condition-dependent mRNA levels and protein profiles under various laboratory and infection-related conditions.
Collapse
Affiliation(s)
- Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany; Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Henry Mehlan
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - André Hennig
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Anne Giese
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Linus Backert
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Alexander Herbig
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Kay Nieselt
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany; ZIK FunGene, Ernst-Moritz-Arndt-University Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; ZIK FunGene, Ernst-Moritz-Arndt-University Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
24
|
Stability of Proteins Out of Service: the GapB Case of Bacillus subtilis. J Bacteriol 2017; 199:JB.00148-17. [PMID: 28760849 DOI: 10.1128/jb.00148-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/22/2017] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis possesses two glyceraldehyde-3-phosphate dehydrogenases with opposite roles, the glycolytic NAD-dependent GapA and the NADP-dependent GapB enzyme, which is exclusively required during gluconeogenesis but not active under conditions promoting glycolysis. We propose that proteins that are no longer needed will be recognized and proteolyzed by Clp proteases and thereby recycled. To test this postulation, we analyzed the stability of the glycolytic enzyme GapA and the gluconeogenetic enzyme GapB in the presence and absence of glucose. It turned out that GapA remained rather stable under both glycolytic and gluconeogenetic conditions. In contrast, the gluconeogenetic enzyme GapB was degraded after a shift from malate to glucose (i.e., from gluconeogenesis to glycolysis), displaying an estimated half-life of approximately 3 h. Comparative in vivo pulse-chase labeling and immunoprecipitation experiments of the wild-type strain and isogenic mutants identified the ATP-dependent ClpCP protease as the enzyme responsible for the degradation of GapB. However, arginine protein phosphorylation, which was recently described as a general tagging mechanism for protein degradation, did not seem to play a role in GapB proteolysis, because GapB was also degraded in a mcsB mutant, lacking arginine kinase, in the same manner as in the wild type.IMPORTANCE GapB, the NADP-dependent glyceraldehyde-3-phosphosphate dehydrogenase, is essential for B. subtilis under gluconeogenetic conditions. However, after a shift to glycolytic conditions, GapB loses its physiological function within the cell and becomes susceptible to degradation, in contrast to GapA, the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, which remains stable under glycolytic and gluconeogenetic conditions. Subsequently, GapB is proteolyzed in a ClpCP-dependent manner. According to our data, the arginine kinase McsB is not involved as adaptor protein in this process. ClpCP appears to be in charge in the removal of inoperable enzymes in B. subtilis, which is a strictly regulated process in which the precise recognition mechanism(s) remains to be identified.
Collapse
|
25
|
A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci Rep 2017; 7:9718. [PMID: 28887440 PMCID: PMC5591248 DOI: 10.1038/s41598-017-10059-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022] Open
Abstract
Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 105 S. aureus cells, 578 proteins were identified. Increased abundance of proteins required for oxidative stress response, amino acid biosynthesis, and fermentation together with decreased abundance of ribosomal proteins and nucleotide reductase NrdEF was observed in post-infection samples compared to the pre-infection state.
Collapse
|
26
|
Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci Rep 2017; 7:862. [PMID: 28408760 PMCID: PMC5429845 DOI: 10.1038/s41598-017-00893-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/16/2017] [Indexed: 01/24/2023] Open
Abstract
The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.
Collapse
|