1
|
Chatterjee N, Misra SK. Nanocarbon-Enforced Anisotropic MusCAMLR for Rapid Rescue of Mechanically Damaged Skeletal Muscles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257065 DOI: 10.1021/acsami.3c01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mechanical damages to skeletal muscles could be detrimental to the active work hours and lifestyle of athletes, mountaineers, and security personnel. In this regard, the slowness of conventional treatment strategies and drug-associated side effects greatly demand the design and development of novel biomaterials, which can rescue such mechanically damaged skeletal muscles. To accomplish this demand, we have developed a musculoresponsive polymer-carbon composite for assisting myotubular regeneration (MusCAMLR). The MusCAMLR is enforced to attain anisotropic muscle-like characteristics while incorporating a smartly passivated nanoscale carbon material in the PNIPAM gel under physiological conditions as a stimulus, which is not achieved by the pristine nanocarbon system. The MusCAMLR establishes a specific mechanical interaction with muscle cells, supports myotube regeneration, maintains excellent mechanical similarity with the myotube, and restores the structural integrity and biochemical parameters of mechanically damaged muscles in a delayed onset muscle soreness (DOMS) rat model within a short period of 72 h. Concisely, this study discloses the potential of smartly passivated nanocarbon in generating an advanced biomaterial system, MusCAMLR, from a regularly used polymeric hydrogel system. This engineered polymer-carbon composite reveals its possible potential to be used as a nondrug therapeutic alternative for rescuing mechanically damaged muscles and probably can be extended for therapy of various other diseases including muscular dystrophy.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Santosh Kumar Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
2
|
Pérez-Herrero E, Fernández-Medarde A. The reversed intra- and extracellular pH in tumors as a unified strategy to chemotherapeutic delivery using targeted nanocarriers. Acta Pharm Sin B 2021; 11:2243-2264. [PMID: 34522586 PMCID: PMC8424227 DOI: 10.1016/j.apsb.2021.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are complex entities, comprising a wide variety of malignancies with very different molecular alterations. Despite this, they share a set of characteristics known as "hallmarks of cancer" that can be used as common therapeutic targets. Thus, every tumor needs to change its metabolism in order to obtain the energy levels required for its high proliferative rates, and these adaptations lead to alterations in extra- and intracellular pH. These changes in pH are common to all solid tumors, and can be used either as therapeutic targets, blocking the cell proton transporters and reversing the pH changes, or as means to specifically deliver anticancer drugs. In this review we will describe how proton transport inhibitors in association with nanocarriers have been designed to block the pH changes that are needed for cancer cells to survive after their metabolic adaptations. We will also describe studies aiming to decrease intracellular pH in cancer using nanoparticles as molecular cages for protons which will be released upon UV or IR light exposure. Finally, we will comment on several studies that have used the extracellular pH in cancer for an enhanced cell internalization and tumor penetration of nanocarriers and a controlled drug delivery, describing how nanocarriers are being used to increase drug stability and specificity.
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Tenerife, Spain
| | - Alberto Fernández-Medarde
- Instituto de Biología Molecular y Celular Del Cáncer, Centro de Investigación Del Cáncer (USAL-CSIC), Salamanca 37007, Spain
| |
Collapse
|
3
|
Chimeric Drug Design with a Noncharged Carrier for Mitochondrial Delivery. Pharmaceutics 2021; 13:pharmaceutics13020254. [PMID: 33673228 PMCID: PMC7918843 DOI: 10.3390/pharmaceutics13020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.
Collapse
|
4
|
Ostadhossein F, Sar D, Tripathi I, Soares J, Remsen EE, Pan D. Oligodots: Structurally Defined Fluorescent Nanoprobes for Multiscale Dual-Color Imaging in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10183-10192. [PMID: 32031773 DOI: 10.1021/acsami.0c00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoscale fluorescent probes are of great importance due to their capabilities for imaging on multiscale. Herein, we report the first synthesis of structurally well-defined nanoparticulate "oligodots" developed for multicolor imaging in vitro and in vivo. These nanoparticles are prepared via condensation and curing reactions where the engineering of the solvent results in the nanoparticles with green (λem = 550 nm) and red (λem = 650 nm) emission range. Differences found in the photophysical properties have been attributed to variations in oligomeric compositions produced during the synthesis as was corroborated by extensive physicochemical characterizations. Specifically, mass spectroscopy provided a picture of the formed species during the synthesis. The feasibility of the oligodots for multicolor imaging is demonstrated both in vitro and in vivo. The red-emitting oligodot is employed for dynamic whole-body imaging in mice. It is envisioned that oligodots would enable multicolor imaging of various biomarkers in complex diseases such as cancer where numerous molecular and metabolic phenotypes work in concert in their emergence.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 611 West Park Street, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 611 West Park Street, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Indu Tripathi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 611 West Park Street, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Julio Soares
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Edward E Remsen
- Mund-Lagowski Department of Chemistry and Biochemistry, Bradley University, Peoria, Illinois 61625, United States
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 611 West Park Street, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Misra SK, Wu Z, Ostadhossein F, Ye M, Boateng K, Schulten K, Tajkhorshid E, Pan D. Pro-Nifuroxazide Self-Assembly Leads to Triggerable Nanomedicine for Anti-cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18074-18089. [PMID: 31013055 PMCID: PMC7066988 DOI: 10.1021/acsami.9b01343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transcription factor STAT3 has been shown to regulate genes that are involved in stem cell self-renewal and thus represents a novel therapeutic target of great biological significance. However, many small-molecule agents with potential effects through STAT3 modulation in cancer therapy lack aqueous solubility and high off-target toxicity, hence impeding efficient bioavailability and activity. This work, for the first time, reports a prodrug-based strategy for selective and safer delivery of STAT3 inhibitors designed toward metastatic and drug-resistant breast cancer. We have synthesized a novel lipase-labile SN-2 phospholipid prodrug from a clinically investigated STAT3 inhibitor, nifuroxazide (Pro-nifuroxazide), which can be regioselectively cleaved by the membrane-abundant enzymes in cancer cells. Pro-nifuroxazide self-assembled to sub 20 nm nanoparticles (NPs), and the cytotoxic ability was screened in ER(+)-MCF-7 and ER(-)-MD-MB231 cells at 48-72 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide proliferation assay. Results indicated that Pro-nifuroxazide NPs are multifold more effective toward inhibiting cancer cells in a time-dependent manner compared to parent nifuroxazide. A remarkable improvement in the local concentration of drugs to as high as ∼240 fold when assembled into NPs is presumably the reason for this functional improvement. We also introduced molecular dynamics simulations to generate Pro-nifuroxazide nano-assembly, as a model assembly from triggerable anti-cancer drugs, to provide molecular insights correlating physicochemical and anti-cancer properties. In silico properties of Pro-nifuroxazide including size, chemistry of NPs and membrane interactions with individual molecules could be validated by in vitro functional activities in cells of breast cancer origin. The in vivo anti-cancer efficiencies of Pro-nifuroxazide NPs in nude mice xenografts with MCF-7 revealed remarkable growth inhibition of as high as 400%. Histopathological analysis corroborated these findings to show significantly high nuclear fragmentation and retracted cytoplasm. Immunostaining on tumor section demonstrated a significantly lower level of pSTAT-3 by Pro-nifuroxazide NP treatment, establishing the inhibition of STAT-3 phosphorylation. Our strategy for the first time proposes a translatable prodrug agent self-assembled into NPs and demonstrates remarkable enhancement in IC50, induced apoptosis, and reduced cancer cell population through STAT-3 inhibition via reduced phosphorylation.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana 61801 , United States
- Mills Breast Cancer Institute, Carle Foundation Hospital , 502 N. Busey , Urbana , Illinois 61801 , United States
| | | | - Fatemeh Ostadhossein
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana 61801 , United States
- Mills Breast Cancer Institute, Carle Foundation Hospital , 502 N. Busey , Urbana , Illinois 61801 , United States
| | - Mao Ye
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana 61801 , United States
- Mills Breast Cancer Institute, Carle Foundation Hospital , 502 N. Busey , Urbana , Illinois 61801 , United States
| | | | | | | | - Dipanjan Pan
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana 61801 , United States
- Mills Breast Cancer Institute, Carle Foundation Hospital , 502 N. Busey , Urbana , Illinois 61801 , United States
| |
Collapse
|
6
|
Tyszka-Czochara M, Bukowska-Strakova K, Majka M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation. Food Chem Toxicol 2017; 106:260-272. [PMID: 28576465 DOI: 10.1016/j.fct.2017.05.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/25/2022]
Abstract
Metformin shows benefits in anticancer prevention in humans. In this study, normal human fibroblasts (FB) and metastatic cervical cancer cells (SiHa) were exposed to 10 mM Metformin (Met), 100 μM Caffeic Acid (trans-3,4-dihydroxycinnamic acid, CA) or combination of the compounds. Both drugs were selectively toxic towards cancer cells, but neither Met nor CA treatment suppressed growth of normal cells. Met and CA regulated metabolic reprogramming in SiHa tumor cells through different mechanisms: Met suppressed regulatory enzymes Glurtaminase (GLS) and Malic Enzyme 1 (ME1) and enhanced pyruvate oxidation via tricarboxylic acids (TCA) cycle, while CA acted as glycolytic inhibitor. Met/CA treatment impaired expression of Sterol Regulatory Element-Binding Protein 1 (SREBP1c) which resulted in alleviation of de novo synthesis of unsaturated fatty acid. The toxic action of CisPt was supported by Met and CA not only in tumor cells, but also during co-culture of SiHa GFP+ cells with fibroblasts. Furthermore, Met and CA augmented Cisplatin (CisPt) action against quiescent tumor cells involving reprogramming of cell cycle. Our findings provide new insights into specific targeting of mitochondrial metabolism in neoplastic cells and into designing new cisplatin-based selective strategies for treating cervical cancer in humans with regard to the role of tumor microenvironment.
Collapse
Affiliation(s)
- Malgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland.
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 258, 30-688 Krakow, Poland.
| |
Collapse
|
7
|
Caffeic Acid Expands Anti-Tumor Effect of Metformin in Human Metastatic Cervical Carcinoma HTB-34 Cells: Implications of AMPK Activation and Impairment of Fatty Acids De Novo Biosynthesis. Int J Mol Sci 2017; 18:ijms18020462. [PMID: 28230778 PMCID: PMC5343995 DOI: 10.3390/ijms18020462] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
The efficacy of cancer treatments is often limited and associated with substantial toxicity. Appropriate combination of drug targeting specific mechanisms may regulate metabolism of tumor cells to reduce cancer cell growth and to improve survival. Therefore, we investigated the effects of anti-diabetic drug Metformin (Met) and a natural compound caffeic acid (trans-3,4-dihydroxycinnamic acid, CA) alone and in combination to treat an aggressive metastatic human cervical HTB-34 (ATCC CRL1550) cancer cell line. CA at concentration of 100 µM, unlike Met at 10 mM, activated 5'-adenosine monophosphate-activated protein kinase (AMPK). What is more, CA contributed to the fueling of mitochondrial tricarboxylic acids (TCA) cycle with pyruvate by increasing Pyruvate Dehydrogenase Complex (PDH) activity, while Met promoted glucose catabolism to lactate. Met downregulated expression of enzymes of fatty acid de novo synthesis, such as ATP Citrate Lyase (ACLY), Fatty Acid Synthase (FAS), Fatty Acyl-CoA Elongase 6 (ELOVL6), and Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells. In conclusion, CA mediated reprogramming of glucose processing through TCA cycle via oxidative decarboxylation. The increased oxidative stress, as a result of CA treatment, sensitized cancer cells and, acting on cell biosynthesis and bioenergetics, made HTB-34 cells more susceptible to Met and successfully inhibited neoplastic cells. The combination of Metformin and caffeic acid to suppress cervical carcinoma cells by two independent mechanisms may provide a promising approach to cancer treatment.
Collapse
|
8
|
Ostadhossein F, Misra SK, Mukherjee P, Ostadhossein A, Daza E, Tiwari S, Mittal S, Gryka MC, Bhargava R, Pan D. Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5845-5861. [PMID: 27545321 PMCID: PMC5542878 DOI: 10.1002/smll.201601161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/29/2016] [Indexed: 05/08/2023]
Abstract
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Prabuddha Mukherjee
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Alireza Ostadhossein
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Enrique Daza
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Saumya Tiwari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Shachi Mittal
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Mark C Gryka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Carle Foundation Hospital, 502 N. Busey St., Urbana, IL, 61801, USA
- Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Institute for Sustainability in Energy and Environment, 502 N. Busey St., Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Sun Y, Ji Y, Yu H, Wang D, Cao M, Wang J. Near-infrared light-sensitive liposomes for controlled release. RSC Adv 2016. [DOI: 10.1039/c6ra18702a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A 6-bromo-7-hydroxy-4-hydroxymethylcoumarin containing amphiphilic lipid was synthesized and applied as a near-infrared light triggered controlled release system.
Collapse
Affiliation(s)
- Yawei Sun
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Yanyun Ji
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Haiyan Yu
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Dong Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Meiwen Cao
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| |
Collapse
|