1
|
Kaiser VB, Semple CA. CTCF-anchored chromatin loop dynamics during human meiosis. BMC Biol 2025; 23:83. [PMID: 40114154 PMCID: PMC11927364 DOI: 10.1186/s12915-025-02181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND During meiosis, the mammalian genome is organised within chromatin loops, which facilitate synapsis, crossing over and chromosome segregation, setting the stage for recombination events and the generation of genetic diversity. Chromatin looping is thought to play a major role in the establishment of cross overs during prophase I of meiosis, in diploid early primary spermatocytes. However, chromatin conformation dynamics during human meiosis are difficult to study experimentally, due to the transience of each cell division and the difficulty of obtaining stage-resolved cell populations. Here, we employed a machine learning framework trained on single cell ATAC-seq and RNA-seq data to predict CTCF-anchored looping during spermatogenesis, including cell types at different stages of meiosis. RESULTS We find dramatic changes in genome-wide looping patterns throughout meiosis: compared to pre-and-post meiotic germline cell types, loops in meiotic early primary spermatocytes are more abundant, more variable between individual cells, and more evenly spread throughout the genome. In preparation for the first meiotic division, loops also include longer stretches of DNA, encompassing more than half of the total genome. These loop structures then influence the rate of recombination initiation and resolution as cross overs. In contrast, in later mature sperm stages, we find evidence of genome compaction, with loops being confined to the telomeric ends of the chromosomes. CONCLUSION Overall, we find that chromatin loops do not orchestrate the gene expression dynamics seen during spermatogenesis, but loops do play important roles in recombination, influencing the positions of DNA breakage and cross over events.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
2
|
Tong X, Gao Y, Su Z. Interaction of CTCF and CTCFL in genome regulation through chromatin architecture during the spermatogenesis and carcinogenesis. PeerJ 2024; 12:e18240. [PMID: 39430552 PMCID: PMC11488495 DOI: 10.7717/peerj.18240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
The zinc finger protein CTCF is ubiquitously expressed and is integral to the regulation of chromatin architecture through its interaction with cohesin. Conversely, CTCFL expression is predominantly restricted to the adult male testis but is aberrantly expressed in certain cancers. Despite their distinct expression patterns, the cooperative and competitive mechanisms by which CTCF and CTCFL regulate target gene expression in spermatocytes and cancer cells remain inadequately understood. In this review, we comprehensively examine the literature on the divergent amino acid sequences, target sites, expression profiles and functions of CTCF and CTCFL in normal tissues and cancers. We further elucidate the mechanisms by which CTCFL competitively or cooperatively binds to CTCF target sites during spermatogenesis and carcinogenesis to modulate chromatin architecture. We mainly focus on the role of CTCFL in testicular and cancer development, highlighting its interaction with CTCF at CTCF binding sites to regulate target genes. In the testis, CTCF and CTCFL cooperate to regulate the expression of testis-specific genes, essential for proper germ cell progression. In cancers, CTCFL overexpression competes with CTCF for DNA binding, leading to aberrant gene expression, a more relaxed chromatin state, and altered chromatin loops. By uncovering the roles of CTCF and CTCFL in spermatogenesis and carcinogenesis, we can better understand the implications of aberrant CTCFL expression in altering chromatin loops and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Xin Tong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Gao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Biot M, Toth A, Brun C, Guichard L, de Massy B, Grey C. Principles of chromosome organization for meiotic recombination. Mol Cell 2024; 84:1826-1841.e5. [PMID: 38657614 DOI: 10.1016/j.molcel.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes. Here, we identify three categories of axis-associated genomic sites: PRDM9 binding sites, where DSBs form; binding sites of the insulator protein CTCF; and H3K4me3-enriched sites. We demonstrate that PRDM9 promotes the recruitment of MEI4 and IHO1, two proteins essential for DSB formation. In turn, IHO1 anchors DSB sites to the axis components HORMAD1 and SYCP3. We discovered that IHO1, HORMAD1, and SYCP3 are associated at the DSB ends during DSB repair. Our results highlight how interactions of proteins with specific genomic elements shape the meiotic chromosome organization for recombination.
Collapse
Affiliation(s)
- Mathilde Biot
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Attila Toth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Christine Brun
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Leon Guichard
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Bernard de Massy
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Corinne Grey
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Zhou F, Guo C, Wang L, Zhang G, Wang J, Chen W, Cui K, Tan Y, Zhou Z. Mono-(2-ethylhexyl) Phthalate (MEHP)-Induced Telomere Structure and Function Disorder Mediates Cell Cycle Dysregulation and Apoptosis via c-Myc and Its Upstream Transcription Factors in a Mouse Spermatogonia-Derived (GC-1) Cell Line. TOXICS 2023; 11:toxics11050448. [PMID: 37235262 DOI: 10.3390/toxics11050448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
As a typical environmental endocrine disrupting chemical (EDC), di-(2-ethylhexyl) phthalate (DEHP) is thought to be related to reproductive disorders, especially in males. Growing evidence suggests that various EDCs may result in an impaired telomere structure and function, which is associated with male infertility. However, the adverse effect of DEHP on telomeres in male reproductive cells has rarely been studied, and the related mechanisms remain unclear. In this study, we tested the effects of mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP, on telomere dysfunction in mouse spermatogonia-derived cells (GC-1) and the potential role of TERT and c-Myc in MEHP-induced spermatogenic cell damage. Results showed that MEHP induced cell viability inhibition, G0/G1 phase cell cycle arrest, and apoptosis in GC-1 cells in a dose-dependent manner. Shortened telomeres, reduced telomerase activity, and decreased expression of TERT, c-Myc, and upstream transcription factors of c-Myc were also observed in the MEHP-treated cells. In conclusion, it can be concluded that TERT-mediated telomere dysfunction may contribute to MEHP-induced G0/G1 phase cell cycle arrest and apoptosis in GC-1 cells through the impairment of c-Myc and its upstream transcription factors.
Collapse
Affiliation(s)
- Fangji Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
6
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
7
|
Torres-Flores U, Díaz-Espinosa F, López-Santaella T, Rebollar-Vega R, Vázquez-Jiménez A, Taylor IJ, Ortiz-Hernández R, Echeverría OM, Vázquez-Nin GH, Gutierrez-Ruiz MC, De la Rosa-Velázquez IA, Resendis-Antonio O, Hernández-Hernandez A. Spermiogenesis alterations in the absence of CTCF revealed by single cell RNA sequencing. Front Cell Dev Biol 2023; 11:1119514. [PMID: 37065848 PMCID: PMC10097911 DOI: 10.3389/fcell.2023.1119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
CTCF is an architectonic protein that organizes the genome inside the nucleus in almost all eukaryotic cells. There is evidence that CTCF plays a critical role during spermatogenesis as its depletion produces abnormal sperm and infertility. However, defects produced by its depletion throughout spermatogenesis have not been fully characterized. In this work, we performed single cell RNA sequencing in spermatogenic cells with and without CTCF. We uncovered defects in transcriptional programs that explain the severity of the damage in the produced sperm. In the early stages of spermatogenesis, transcriptional alterations are mild. As germ cells go through the specialization stage or spermiogenesis, transcriptional profiles become more altered. We found morphology defects in spermatids that support the alterations in their transcriptional profiles. Altogether, our study sheds light on the contribution of CTCF to the phenotype of male gametes and provides a fundamental description of its role at different stages of spermiogenesis.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Graduate Program in Experimental Biology, DCBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, Mexico
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Fernanda Díaz-Espinosa
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Rosa Rebollar-Vega
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Aarón Vázquez-Jiménez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ian J. Taylor
- BD Life Sciences Informatics, Ashland, OR, United States
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olga M. Echeverría
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo H. Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Concepción Gutierrez-Ruiz
- Laboratorio de Fisiología Celular y Medicina Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Mexico City, Mexico
| | - Inti Alberto De la Rosa-Velázquez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Osbaldo Resendis-Antonio
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| | - Abrahan Hernández-Hernandez
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| |
Collapse
|
8
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Rivera-Egea R, Garrido N, Luján S, Santos-Ribeiro S, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Maldonado V, Villegas-Salmerón J, Burgos M, Jiménez R, Pinto MG, Pereira I, Nunes J, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L, IVIRMA Group, Lisbon Clinical Group. Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermia. Front Cell Dev Biol 2022; 10:1089782. [PMID: 36589743 PMCID: PMC9797780 DOI: 10.3389/fcell.2022.1089782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33-02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain,Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain,CEIFER Biobanco—GAMETIA, Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - Javier Villegas-Salmerón
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Maria Graça Pinto
- Centro de Medicina Reprodutiva, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Isabel Pereira
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Joaquim Nunes
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia Isabel Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M. Lopes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | | | | |
Collapse
|
9
|
Contreras‐Marciales ADP, López‐Guzmán SF, Benítez‐Hess ML, Oviedo N, Hernández‐Sánchez J. Characterization of the promoter region of the murine Catsper2 gene. FEBS Open Bio 2022; 12:2236-2249. [PMID: 36345591 PMCID: PMC9714369 DOI: 10.1002/2211-5463.13518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
CATSPER2 (Cation channel sperm-associated protein 2) protein, which is part of the calcium CATSPER channel located in the membrane of the flagellar principal piece of the sperm cell, is only expressed in the testis during spermatogenesis. Deletions or mutations in the Catsper2 gene are associated with the deafness-infertility syndrome (DIS) and non-syndromic male infertility. However, the mechanisms by which Catsper2 is regulated are unknown. Here, we report the characterization of the promoter region of murine Catsper2 and the role of CTCF and CREMτ in its transcription. We report that the promoter region has transcriptional activity in both directions, as determined by observing luciferase activity in mouse Sertoli and GC-1 spg transfected cells. WGBS data analysis indicated that a CpG island identified in silico is non-methylated; Chromatin immunoprecipitation (ChIP)-seq data analysis revealed that histone marks H3K4me3 and H3K36me3 are present in the promoter and body of the Catsper2 gene respectively, indicating that Catsper2 is subject to epigenetic regulation. In addition, the murine Catsper2 core promoter was delimited to a region between -54/+189 relative to the transcription start site (TSS), where three CTCF and one CRE binding site were predicted. The functionality of these sites was determined by mutation of the CTCF sites and deletion of the CRE site. Finally, ChIP assays confirmed that CREMτ and CTCF bind to the Catsper2 minimal promoter region. This study represents the first functional analysis of the murine Catsper2 promoter region and the mechanisms that regulate its expression.
Collapse
Affiliation(s)
- Andrea del Pilar Contreras‐Marciales
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - Sergio Federico López‐Guzmán
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - María Luisa Benítez‐Hess
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La RazaInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
| | - Javier Hernández‐Sánchez
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| |
Collapse
|
10
|
Sujit KM, Pallavi S, Singh V, Andrabi SW, Trivedi S, Sankhwar SN, Gupta G, Rajender S.
SPATA16
promoter hypermethylation and downregulation in male infertility. Andrologia 2022; 54:e14548. [DOI: 10.1111/and.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Saini Pallavi
- Division of Endocrinology Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Vertika Singh
- Department of Molecular and Human Genetics Banaras Hindu University Varanasi India
| | | | - Sameer Trivedi
- Department of Urology Institute of Medical Sciences, Banaras Hindu University Varanasi India
| | | | - Gopal Gupta
- Division of Endocrinology Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Singh Rajender
- Division of Endocrinology Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
11
|
Shang Y, Tan T, Fan C, Nie H, Wang Y, Yang X, Zhai B, Wang S, Zhang L. Meiotic chromosome organization and crossover patterns. Biol Reprod 2022; 107:275-288. [PMID: 35191959 DOI: 10.1093/biolre/ioac040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Meiosis is the foundation of sexual reproduction, and crossover recombination is one hallmark of meiosis. Crossovers establish the physical connections between homolog chromosomes (homologs) for their proper segregation and exchange DNA between homologs to promote genetic diversity in gametes and thus progenies. Aberrant crossover patterns, e.g. absence of the obligatory crossover, are the leading cause of infertility, miscarriage, and congenital disease. Therefore, crossover patterns have to be tightly controlled. During meiosis, loop/axis organized chromosomes provide the structural basis and regulatory machinery for crossover patterning. Accumulating evidence shows that chromosome axis length regulates not only the numbers but also the positions of crossovers. In addition, recent studies suggest that alterations in axis length and the resultant alterations in crossover frequency may contribute to evolutionary adaptation. Here, current advances regarding these issues are reviewed, the possible mechanisms for axis length regulating crossover frequency are discussed, and important issues that need further investigations are suggested.
Collapse
Affiliation(s)
- Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Taicong Tan
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Cunxian Fan
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Ying Wang
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xiao Yang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Center for Reproductive Medicine, Shandong University
| | - Binyuan Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Shandong University.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
12
|
Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2021; 13:721-741. [PMID: 34731408 PMCID: PMC9233729 DOI: 10.1007/s13238-021-00884-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Collapse
|
13
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Wu X, Lu M, Yun D, Gao S, Chen S, Hu L, Wu Y, Wang X, Duan E, Cheng CY, Sun F. Single cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Hum Mol Genet 2021; 31:321-333. [PMID: 33438010 DOI: 10.1093/hmg/ddab006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
During human spermatogenesis, germ cells undergo dynamic changes in chromatin organization/re-packaging and in transcriptomes. In order to better understand the underlying mechanism(s), scATAC-Seq of 5376 testicular cells from 3 normal men were performed. Data were analyzed in parallel with the scRNA-Seq data of human testicular cells. Ten germ cell types associated with spermatogenesis and 6 testicular somatic cell types were identified, along with 142 024 peaks located in promoter, genebody and CpG Island. We had examined chromatin accessibility of all chromosomes, with chromosomes 19 and 17 emerged as the leading chromosomes that displayed high chromatin accessibility. In accessible chromatin regions, transcription factor (TF)-binding sites were identified and specific motifs with high frequencies at different spermatogenesis stages were detected, including CTCF, BORIS, NFY, DMRT6, EN1, ISL1 and GLI3. Two most notable observations were noted. First, TLE3 was specifically expressed in differentiating spermatogonia. Second, PFN4 was found to be involved in actin cytoskeletal organization during meiosis. More important, unique regions upstream of PFN4 and TLE3 were shown to display high accessibility, illustrating their significance in supporting human spermatogenesis.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Mujun Lu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Shitao Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, China
| | - Yunhao Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaorong Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
15
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
16
|
Torres-Flores U, Hernández-Hernández A. The Interplay Between Replacement and Retention of Histones in the Sperm Genome. Front Genet 2020; 11:780. [PMID: 32765595 PMCID: PMC7378789 DOI: 10.3389/fgene.2020.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
The genome of eukaryotes is highly organized within the cell nucleus, this organization per se elicits gene regulation and favors other mechanisms like cell memory throughout histones and their post-translational modifications. In highly specialized cells, like sperm, the genome is mostly organized by protamines, yet a significant portion of it remains organized by histones. This protamine-histone-DNA organization, known as sperm epigenome, is established during spermiogenesis. Specific histones and their post-translational modifications are retained at specific genomic sites and during embryo development these sites recapitulate their histone profile that harbored in the sperm nucleus. It is known that histones are the conduit of epigenetic memory from cell to cell, hence histones in the sperm epigenome may have a role in transmitting epigenetic memory from the sperm to the embryo. However, the exact function and mechanism of histone retention remains elusive. During spermatogenesis, most of the histones that organize the genome are replaced by protamines and their retention at specific regions may be deeply intertwined with the eviction and replacement mechanism. In this review we will cover some relevant aspects of histone replacement that in turn may help us to contextualize histone retention. In the end, we focus on the architectonical protein CTCF that is, so far, the only factor that has been directly linked to the histone retention process.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
17
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
18
|
Wang Y, Wang H, Zhang Y, Du Z, Si W, Fan S, Qin D, Wang M, Duan Y, Li L, Jiao Y, Li Y, Wang Q, Shi Q, Wu X, Xie W. Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis. Mol Cell 2019; 73:547-561.e6. [PMID: 30735655 DOI: 10.1016/j.molcel.2018.11.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/17/2018] [Accepted: 11/15/2018] [Indexed: 02/05/2023]
Abstract
Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.
Collapse
Affiliation(s)
- Yao Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Suixing Fan
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuying Jiao
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yuanyuan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|
20
|
Arzate-Mejía RG, Recillas-Targa F, Corces VG. Developing in 3D: the role of CTCF in cell differentiation. Development 2018; 145:dev137729. [PMID: 29567640 PMCID: PMC5897592 DOI: 10.1242/dev.137729] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CTCF is a highly conserved zinc-finger DNA-binding protein that mediates interactions between distant sequences in the genome. As a consequence, CTCF regulates enhancer-promoter interactions and contributes to the three-dimensional organization of the genome. Recent studies indicate that CTCF is developmentally regulated, suggesting that it plays a role in cell type-specific genome organization. Here, we review these studies and discuss how CTCF functions during the development of various cell and tissue types, ranging from embryonic stem cells and gametes, to neural, muscle and cardiac cells. We propose that the lineage-specific control of CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via chromatin looping.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Gold HB, Jung YH, Corces VG. Not just heads and tails: The complexity of the sperm epigenome. J Biol Chem 2018; 293:13815-13820. [PMID: 29507096 DOI: 10.1074/jbc.r117.001561] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transgenerational inheritance requires mechanisms by which epigenetic information is transferred via gametes. Canonical thought holds that mammalian sperm chromatin would be incapable of carrying epigenetic information as post-translational modifications of histones because of their replacement with protamine proteins. Furthermore, compaction of the sperm genome would hinder DNA accessibility of proteins involved in transcriptional regulation and genome architecture. In this Minireview, we delineate the paternal chromatin remodeling events during spermatogenesis and fertilization. Sperm chromatin is epigenetically modified at various time points throughout its development. This allows for the addition of environment-specific modifications that can be passed from parents to offspring.
Collapse
Affiliation(s)
- Hannah B Gold
- From the Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Yoon Hee Jung
- From the Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Victor G Corces
- From the Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
22
|
Wu J, Yonezawa T, Kishino H. Rates of Molecular Evolution Suggest Natural History of Life History Traits and a Post-K-Pg Nocturnal Bottleneck of Placentals. Curr Biol 2017; 27:3025-3033.e5. [DOI: 10.1016/j.cub.2017.08.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/12/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
|
23
|
Jha KN, Tripurani SK, Johnson GR. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci 2017; 130:1835-1844. [PMID: 28389581 DOI: 10.1242/jcs.202721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022] Open
Abstract
Spermiogenesis includes transcriptional silencing, chromatin condensation and extensive morphological changes as spermatids transform into sperm. Chromatin condensation involves histone hyperacetylation, transitory DNA breaks, histone H2AX (also known as H2AFX) phosphorylation at Ser139 (γH2AX), and replacement of histones by protamines. Previously, we have reported that the spermatid protein kinase TSSK6 is essential for fertility in mice, but its specific role in spermiogenesis is unknown. Here, we show that TSSK6 expression is spatiotemporally coincident with γH2AX formation in the nuclei of developing mouse spermatids. RNA-sequencing analysis demonstrates that genetic ablation of Tssk6 does not impact gene expression or silencing in spermatids. However, loss of TSSK6 blocks γH2AX formation, even though the timing and level of the transient DNA breaks is unaltered. Further, Tssk6-knockout sperm contained increased levels of histones H3 and H4, and protamine 2 precursor and intermediate(s) indicative of a defective histone-to-protamine transition. These results demonstrate that TSSK6 is required for γH2AX formation during spermiogenesis, and also link γH2AX to the histone-to-protamine transition and male fertility.
Collapse
Affiliation(s)
- Kula N Jha
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Swamy K Tripurani
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Gibbes R Johnson
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
24
|
Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, Khatib H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 2017; 18:280. [PMID: 28381255 PMCID: PMC5382486 DOI: 10.1186/s12864-017-3673-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/31/2017] [Indexed: 11/12/2022] Open
Abstract
Background Infertility in dairy cattle is a concern where reduced fertilization rates and high embryonic loss are contributing factors. Studies of the paternal contribution to reproductive performance are limited. However, recent discoveries have shown that, in addition to DNA, sperm delivers transcription factors and epigenetic components that are required for fertilization and proper embryonic development. Hence, characterization of the paternal contribution at the time of fertilization is warranted. We hypothesized that sire fertility is associated with differences in DNA methylation patterns in sperm and that the embryonic transcriptomic profiles are influenced by the fertility status of the bull. Embryos were generated in vitro by fertilization with either a high or low fertility Holstein bull. Blastocysts derived from each high and low fertility bulls were evaluated for morphology, development, and transcriptomic analysis using RNA-Sequencing. Additionally, DNA methylation signatures of sperm from high and low fertility sires were characterized by performing whole-genome DNA methylation binding domain sequencing. Results Embryo morphology and developmental capacity did not differ between embryos generated from either a high or low fertility bull. However, RNA-Sequencing revealed 98 genes to be differentially expressed at a false discovery rate < 1%. A total of 65 genes were upregulated in high fertility bull derived embryos, and 33 genes were upregulated in low fertility derived embryos. Expression of the genes CYCS, EEA1, SLC16A7, MEPCE, and TFB2M was validated in three new pairs of biological replicates of embryos. The role of the differentially expressed gene TFB2M in embryonic development was further assessed through expression knockdown at the zygotic stage, which resulted in decreased development to the blastocyst stage. Assessment of the epigenetic signature of spermatozoa between high and low fertility bulls revealed 76 differentially methylated regions. Conclusions Despite similar morphology and development to the blastocyst stage, preimplantation embryos derived from high and low fertility bulls displayed significant transcriptomic differences. The relationship between the paternal contribution and the embryonic transcriptome is unclear, although differences in methylated regions were identified which could influence the reprogramming of the early embryo. Further characterization of paternal factors delivered to the oocyte could lead to the identification of biomarkers for better selection of sires to improve reproductive efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3673-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenna Kropp
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - José A Carrillo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Hadjer Namous
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alyssa Daniels
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sana M Salih
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792, USA.,Present address: Department of Obstetrics and Gynecology, West Virginia University, Morgantown, WV, 26508, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
25
|
Nasri F, Gharesi-Fard B, Namavar Jahromi B, Farazi-Fard MA, Banaei M, Davari M, Ebrahimi S, Anvar Z. Sperm DNA methylation of H19 imprinted gene and male infertility. Andrologia 2017; 49. [PMID: 28295500 DOI: 10.1111/and.12766] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Infertility affects up to 15% of reproductive-aged couples worldwide, with male factor being detected in 40%-50% of the cases. Proper sperm production is associated with the establishment of appropriate epigenetic marks in developing germ cells. Several studies have demonstrated the association between abnormal spermatogenesis and epigenetic disturbances with the major focus on DNA methylation. Imprinted genes are expressed in a parent-of-origin-specific manner, and the role of their DNA methylation in proper spermatogenesis has been documented recently. The existing evidence along with the absence of relevant data in south of Iran prompted us to study the methylation of H19 imprinted gene in spermatozoa of idiopathic infertile patients (males with abnormalities in sperm parameters) and healthy controls by Combined Bisulfite Restriction Analysis. According to our results, the lowest methylation percentage of H19 imprinted gene belongs to three cases with sperm characteristics under normal range (two cases Oligoasthenoteratozoospermia and one case Oligoteratozoospermia). However, our results show that the median of methylation percentage for H19 is not statistically significant between case and control groups. Our results and those of others introduce DNA methylation as a potential marker of fertility and should be investigated with more patients in future studies.
Collapse
Affiliation(s)
- F Nasri
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - B Gharesi-Fard
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - B Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Farazi-Fard
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Banaei
- IVF Division, Ghadir-Mother and Child Hospital of Shiraz, Shiraz, Iran
| | - M Davari
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,IVF Division, Ghadir-Mother and Child Hospital of Shiraz, Shiraz, Iran
| | - S Ebrahimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Testis-specific transcriptional regulators selectively occupy BORIS-bound CTCF target regions in mouse male germ cells. Sci Rep 2017; 7:41279. [PMID: 28145452 PMCID: PMC5286509 DOI: 10.1038/srep41279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Despite sharing the same sequence specificity in vitro and in vivo, CCCTC-binding factor (CTCF) and its paralog brother of the regulator of imprinted sites (BORIS) are simultaneously expressed in germ cells. Recently, ChIP-seq analysis revealed two classes of CTCF/BORIS-bound regions: single CTCF target sites (1xCTSes) that are bound by CTCF alone (CTCF-only) or double CTCF target sites (2xCTSes) simultaneously bound by CTCF and BORIS (CTCF&BORIS) or BORIS alone (BORIS-only) in germ cells and in BORIS-positive somatic cancer cells. BORIS-bound regions (CTCF&BORIS and BORIS-only sites) are, on average, enriched for RNA polymerase II (RNAPII) binding and histone retention in mature spermatozoa relative to CTCF-only sites, but little else is known about them. We show that subsets of CTCF&BORIS and BORIS-only sites are occupied by several testis-specific transcriptional regulators (TSTRs) and associated with highly expressed germ cell-specific genes and histone retention in mature spermatozoa. We also demonstrate a physical interaction between BORIS and one of the analyzed TSTRs, TATA-binding protein (TBP)-associated factor 7-like (TAF7L). Our data suggest that CTCF and BORIS cooperate with additional TSTRs to regulate gene expression in developing male gametes and histone retention in mature spermatozoa, potentially priming certain regions of the genome for rapid activation following fertilization.
Collapse
|