1
|
Perelló-Trias MT, Serrano-Muñoz AJ, Rodríguez-Fernández A, Segura-Sampedro JJ, Ramis JM, Monjo M. Intraperitoneal drug delivery systems for peritoneal carcinomatosis: Bridging the gap between research and clinical implementation. J Control Release 2024; 373:70-92. [PMID: 38986910 DOI: 10.1016/j.jconrel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Several abdominal-located cancers develop metastasis within the peritoneum, what is called peritoneal carcinomatosis (PC), constituting a clinical challenge in their therapeutical management, often leading to poor prognoses. Current multidisciplinary strategies, including cytoreductive surgery (CRS), hyperthermic intraperitoneal chemotherapy (HIPEC), and pressurized intraperitoneal aerosol chemotherapy (PIPAC), demonstrate efficacy but have limitations. In response, alternative strategies are explored in the drug delivery field for intraperitoneal chemotherapy. Controlled drug delivery offers a promising avenue, maintaining localized drug concentrations for optimal PC management. Drug delivery systems (DDS), including hydrogels, implants, nanoparticles, and hybrid systems, show potential for sustained and region-specific drug release. The present review aims to offer an overview of the advances and current designs of DDS for PC chemotherapy administration, focusing on their composition, main characteristics, and principal experimental outcomes, highlighting the importance of biomaterial rationale design and in vitro/vivo models for their testing. Moreover, since clinical data for human subjects are scarce, we offer a critical discussion of the gap between bench and bedside in DDS translation, emphasizing the need for further research.
Collapse
Affiliation(s)
- M Teresa Perelló-Trias
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Antonio Jose Serrano-Muñoz
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Ana Rodríguez-Fernández
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Juan José Segura-Sampedro
- Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; General & Digestive Surgery Service, Hospital Universitario La Paz, Paseo de la Castellana, 261, Fuencarral-El Pardo, 28046 Madrid, Spain; School of Medicine, University of the Balearic Islands (UIB), Carretera de Valldemossa, km 7,5, 07122 Palma, Balearic Islands, Spain
| | - Joana Maria Ramis
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain.
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain.
| |
Collapse
|
2
|
Lin J, Jia S, Cao F, Huang J, Chen J, Wang J, Liu P, Zeng H, Zhang X, Cui W. Research Progress on Injectable Microspheres as New Strategies for the Treatment of Osteoarthritis Through Promotion of Cartilage Repair. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/07/2024]
Abstract
AbstractOsteoarthritis (OA) is a degenerative disease caused by a variety of factors with joint pain as the main symptom, including fibrosis, chapping, ulcers, and loss of cartilage. Traditional treatment can only delay the progression of OA, and classical delivery system have many side effects. In recent years, microspheres have shown great application prospects in the field of OA treatment. Microspheres can support cells, reproduce the natural tissue microenvironment in vitro and in vivo, and are an efficient delivery system for the release of drugs or biological agents, which can promote cell proliferation, migration, and differentiation. Thus, they have been widely used in cartilage repair and regeneration. In this review, preparation processes, basic materials, and functional characteristics of various microspheres commonly used in OA treatment are systematically reviewed. Then it is introduced surface modification strategies that can improve the biological properties of microspheres and discussed a series of applications of microsphere functionalized scaffolds in OA treatment. Finally, based on bibliometrics research, the research development, future potential, and possible research hotspots of microspheres in the field of OA therapy is systematically and dynamically evaluated. The comprehensive and systematic review will bring new understanding to the field of microsphere treatment of OA.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Fuyang Cao
- Department of Orthopedics Second Hospital of Shanxi Medical University Taiyuan Shanxi 030001 P. R. China
| | - Jingtao Huang
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Hui Zeng
- Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University) Shenzhen Guangdong 518035 China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| |
Collapse
|
3
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
5
|
Metwally WM, El-Habashy SE, El-Nekhily NA, Mahmoud HE, Eltaher HM, El-Khordagui L. Nano zinc oxide-functionalized nanofibrous microspheres: A bioactive hybrid platform with antimicrobial, regenerative and hemostatic activities. Int J Pharm 2023; 638:122920. [PMID: 37011829 DOI: 10.1016/j.ijpharm.2023.122920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Bioactive hybrid constructs are at the cutting edge of innovative biomaterials. PLA nanofibrous microspheres (NF-MS) were functionalized with zinc oxide nanoparticles (nZnO) and DDAB-modified nZnO (D-nZnO) for developing inorganic/nano-microparticulate hybrid constructs (nZnO@NF-MS and D-nZnO@NF-MS) merging antibacterial, regenerative, and haemostatic functionalities. The hybrids appeared as three-dimensional NF-MS frameworks made-up entirely of interconnecting nanofibers embedding nZnO or D-nZnO. Both systems achieved faster release of Zn2+ than their respective nanoparticles and D-nZnO@NF-MS exhibited significantly greater surface wettability than nZnO@NF-MS. Regarding bioactivity, D-nZnO@NF-MS displayed a significantly greater and fast-killing effect against Staphylococcus aureus. Both nZnO@NF-MS and D-nZnO@NF-MS showed controllable concentration-dependent cytotoxicity to human gingival fibroblasts (HGF) compared with pristine NF-MS. They were also more effective than pristine NF-MS in promoting migration of human gingival fibroblasts (HGF) in the in vitro wound healing assay. Although D-nZnO@NF-MS showed greater in vitro hemostatic activity than nZnO@NF-MS, (blood-clotting index 22.82 ± 0.65% vs.54.67 ±2.32%) both structures exhibited instant hemostasis (0 s) with no blood loss (0 mg) in the rat-tail cutting technique. By merging the multiple therapeutic bioactivities of D-nZnO and the 3D-structural properties of NF-MS, the innovative D-nZnO@NF-MS hybrid construct provides a versatile bioactive material platform for different biomedical applications.
Collapse
|
6
|
Sachi Das S, Singh SK, Verma PRP, Gahtori R, Sibuh BZ, Kesari KK, Jha NK, Dhanasekaran S, Thakur VK, Wong LS, Djearamane S, Gupta PK. Polyester nanomedicines targeting inflammatory signaling pathways for cancer therapy. Biomed Pharmacother 2022; 154:113654. [PMID: 36067568 DOI: 10.1016/j.biopha.2022.113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
The growth of cancerous cells and their responses towards substantial therapeutics are primarily controlled by inflammations (acute and chronic) and inflammation-associated products, which either endorse or repress tumor progression. Additionally, major signaling pathways, including NF-κB, STAT3, inflammation-causing factors (cytokines, TNF-α, chemokines), and growth-regulating factors (VEGF, TGF-β), are vital regulators responsible for the instigation and resolution of inflammations. Moreover, the conventional chemotherapeutics have exhibited diverse limitations, including poor pharmacokinetics, unfavorable chemical properties, poor targetability to the disease-specific disease leading to toxicity; thus, their applications are restricted in inflammation-mediated cancer therapy. Furthermore, nanotechnology has demonstrated potential benefits over conventional chemotherapeutics, such as it protected the incorporated drug/bioactive moiety from enzymatic degradation within the systemic circulation, improving the physicochemical properties of poorly aqueous soluble chemotherapeutic agents, and enhancing their targetability in specified carcinogenic cells rather than accumulating in the healthy cells, leading reduced cytotoxicity. Among diverse nanomaterials, polyester-based nanoparticulate delivery systems have been extensively used to target various inflammation-mediated cancers. This review summarizes the therapeutic potentials of various polyester nanomaterials (PLGA, PCL, PLA, PHA, and others)-based delivery systems targeting multiple signaling pathways related to inflammation-mediated cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India; School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India.
| | - P R P Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland; Department of Applied Physics, Aalto University, Espoo, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia.
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| |
Collapse
|
7
|
Wintjens AGWE, Simkens GA, Fransen PPKH, Serafras N, Lenaerts K, Franssen GHLM, de Hingh IHJT, Dankers PYW, Bouvy ND, Peeters A. Intraperitoneal drug delivery systems releasing cytostatic agents to target gastro-intestinal peritoneal metastases in laboratory animals: a systematic review. Clin Exp Metastasis 2022; 39:541-579. [PMID: 35737252 PMCID: PMC9338897 DOI: 10.1007/s10585-022-10173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
For peritoneal metastases (PM), there are few curative treatment options, and they are only available for a select patient group. Recently, new therapies have been developed to deliver intraperitoneal chemotherapy for a prolonged period, suitable for a larger patient group. These drug delivery systems (DDSs) seem promising in the experimental setting. Many types of DDSs have been explored in a variety of animal models, using different cytostatics. This review aimed to provide an overview of animal studies using DDSs containing cytostatics for the treatment of gastro-intestinal PM and identify the most promising therapeutic combinations. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) guidelines. The 35 studies included revealed similar results: using a cytostatic-loaded DDS to treat PM resulted in a higher median survival time (MST) and a lower intraperitoneal tumor load compared to no treatment or treatment with a ‘free’ cytostatic or an unloaded DDS. In 65% of the studies, the MST was significantly longer and in 24% the tumor load was significantly lower in the animals treated with cytostatic-loaded DDS. The large variety of experimental setups made it impossible to identify the most promising DDS-cytostatic combination. In most studies, the risk of bias was unclear due to poor reporting. Future studies should focus more on improving the clinical relevance of the experiments, standardizing the experimental study setup, and improving their methodological quality and reporting.
Collapse
Affiliation(s)
- Anne G W E Wintjens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. .,Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Geert A Simkens
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | | - Narcis Serafras
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Gregor H L M Franssen
- Department of Education, Content & Support, University Library, Maastricht University, Maastricht, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Andrea Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
8
|
|
9
|
Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M, Baniebrahimi G, Mirzaei H. Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Front Pharmacol 2021; 12:668567. [PMID: 34456716 PMCID: PMC8386020 DOI: 10.3389/fphar.2021.668567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers are known as frequently occurred solid malignant tumors that can cause the high rate mortality in the world. Metastasis is a significant destructive feature of tumoral cells, which directly correlates with decreased prognosis and survival. Curcumin, which is found in turmeric, has been identified as a potent therapeutic natural bioactive compound (Curcuma longa). It has been traditionally applied for centuries to treat different diseases, and it has shown efficacy for its anticancer properties. Numerous studies have revealed that curcumin inhibits migration and metastasis of GI cancer cells by modulating various genes and proteins, i.e., growth factors, inflammatory cytokines and their receptors, different types of enzymes, caspases, cell adhesion molecules, and cell cycle proteins. Herein, we summarized the antimetastatic effects of curcumin in GI cancers, including pancreatic cancer, gastric cancer, colorectal cancer, oral cancer, and esophageal cancer.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | | | - Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Obireddy SR, Lai WF. Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv 2021; 28:1562-1568. [PMID: 34286634 PMCID: PMC8297403 DOI: 10.1080/10717544.2021.1955043] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The present study reports the generation of 2-hydroxyethyl starch microparticles for co-delivery and controlled release of multiple agents. The obtained microparticles are characterized by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. By using ofloxacin and ketoprofen as drug models, the release sustainability of the microparticles is examined at pH 1.2, 5.4, and 6.8 at 37 °C, with Fickian diffusion being found to be the major mechanism controlling the kinetics of drug release. Upon being loaded with the drug models, the microparticles show high efficiency in acting against Escherichia coli and Bacillus cereus. The results suggest that our reported microparticles warrant further development for applications in which co-administration of multiple bioactive agents is required.
Collapse
Affiliation(s)
| | - Wing-Fu Lai
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.,School of Education, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
A novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers for postoperative rapid hemostasis and prevention of tumor recurrence. Int J Biol Macromol 2021; 182:1339-1350. [PMID: 34000316 DOI: 10.1016/j.ijbiomac.2021.05.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Surgical resection of the tumor remains the preferred treatment for most solid tumors at an early stage, but surgical treatment often leads to massive bleeding and residual tumor cells. Therefore, a novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers (CFAGS) for rapid hemostasis and prevention of tumor recurrence was prepared by using an electrospinning and interpenetrating polymer network (IPN) strategy. The present results show that alginate/gelatin sponge display excellent hemostatic properties and possess more advantages than commercial gelatin hemostasis sponge. More importantly, CFAGS could control the release of curcumin, inducing curcumin to accumulate at the surgical site of the tumor, thereby inhibiting local tumor recurrence in the subcutaneous postoperative recurrence model. In addition, the sponge was safe to implant in the body and did not cause toxicity to normal tissues and organs. This approach represents a new strategy to implant a dual functional sponge at the postoperative site as an adjuvant to the surgical treatment of cancer.
Collapse
|
12
|
Lakshmi BA, Reddy AS, Sangubotla R, Hong JW, Kim S. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer. Colloids Surf B Biointerfaces 2021; 204:111773. [PMID: 33933878 DOI: 10.1016/j.colsurfb.2021.111773] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022]
Abstract
Ruthenium complexes have increased the scope for improvement in current cancer treatment by replacing platinum-based drugs. However, to reduce metal-associated toxicity, a biocompatible flavonoid, such as curcumin, is indispensable, as it offers uncompensated therapeutic benefits through formation of complexes. In this study, we synthesized metal-based flavonoid complexes using ruthenium(II) and curcumin by adopting a convenient reflux reaction, represented as Ru-Cur complexes. These complexes were thoroughly characterized using 1H, 13C NMR, XPS, FT-IR, and UV-vis spectroscopy. As curcumin is sparingly soluble in water and has poor chemical stability, we loaded Ru-Cur complexes into liposomes and further formed nanoparticles (NPs) using the thin layer evaporation method. These were named Ru-Cur loaded liposome nanoparticles (RCLNPs). The effects of RCLNPs on cell proliferation was investigated using human cervical cancer cell lines (HeLa). These RCLNPs exhibited significant cytotoxicity in HeLa cells. The anticancer properties of RCLNPs were studied using reactive oxygen species (ROS), LDH, and MTT assays as well as live-dead staining. Nuclear damage studies of RCLNPs were performed in HeLa cells using the Hoechst staining assay.
Collapse
Affiliation(s)
| | - Ankireddy Seshadri Reddy
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Jong Wook Hong
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Republic of Korea; Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea.
| | - Sanghyo Kim
- Department of Bio-nanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
13
|
Tiwari A, Jain SK. Curcumin Based Drug Delivery Systems for Cancer Therapy. Curr Pharm Des 2020; 26:5430-5440. [DOI: 10.2174/1381612826666200429095503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023]
Abstract
Cancer accounts for the second major cause of death globally. Conventional cancer therapies lead to
systemic toxicity that forbids their long term application. Besides, tumor resistance and recurrence have been
observed in the majority of cases. Thus, the development of such therapy, which will pose minimum side effects,
is the need of the hour. Curcumin or diferuloylmethane (CUR) is a natural polyphenol bioactive (obtained from
Curcuma longa) which possesses anti-cancer and chemo-preventive activity. It acts by modulating various components
of signaling cascades that are involved in cancer cell proliferation, invasion, and apoptosis process. It
interacts with the adaptive and innate immune systems of our body and causes tumor regression. This may be the
reason behind the attainment of in vivo anti-tumor activity at a very low concentration. Its ease of availability,
safety profile, low cost, and multifaceted role in cancer prevention and treatment has made it a promising agent
for chemoprevention of many cancers. Regardless of the phenomenal properties, its clinical utility is haltered due
to its low aqueous solubility, poor bioavailability, rapid metabolism, and low cellular uptake. In the last few
years, a variety of novel drug carriers have been fabricated to enhance the bioavailability and pharmacokinetic
profile of CUR to attain better targeting of cancer. In this review, the recent developments in the arena of nanoformulations,
like liposomes, polymeric NPs, solid lipid NPs (SNPs), polymeric micelles, nanoemulsions, microspheres,
nanogels, etc. in anticancer therapy have been discussed along with a brief overview of the molecular
targets for CUR in cancer therapy and role of CUR in cancer immunotherapy.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), 470 003, India
| | - Sanjay K. Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), 470 003, India
| |
Collapse
|
14
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Wang F, Li J, Tang X, Huang K, Chen L. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf B Biointerfaces 2020; 190:110925. [DOI: 10.1016/j.colsurfb.2020.110925] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
16
|
Zhang Y, Ge T, Xiang P, Zhou J, Tang S, Mao H, Tang Q. Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway. Onco Targets Ther 2019; 12:9725-9734. [PMID: 32009805 PMCID: PMC6859961 DOI: 10.2147/ott.s217914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Oxaliplatin (OXA)-based chemotherapy is generally used to treat human cancers, whereas OXA resistance is a main obstacle for the treatment of colorectal cancer (CRC). Evidence has shown that tanshinone IIA (Tan IIA) could induce apoptosis in CRC cells. However, the role of combination of OXA and Tan IIA on OXA-resistance CRC cells remains unknown. Thus, this study aimed to investigate the effects of Tan IIA in combination with OXA on OXA-resistance CRC cells. Methods MTT assay, Ki67 immunofluorescence staining and flow cytometry were used to detect viability, proliferation and apoptosis in OXA-resistant cell line SW480/OXA, respectively. The expressions of Bcl-2, Bax, active caspase 3, p-Akt and p-ERK in SW480/OXA cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of OXA on the proliferation and invasion of SW480/OXA cells were significantly enhanced by Tan IIA. In addition, Tan IIA obviously enhanced the anti-apoptosis effects of OXA on SW480/OXA cells via decreasing the levels of Bcl-2, p-Akt and p-ERK, and increasing the levels of Bax and active caspase 3. In vivo experiments confirmed that Tan IIA enhanced OXA sensitivity in SW480/OXA xenograft model. Conclusion We found that Tan IIA could reverse OXA resistance in OXA-resistance CRC cells. Therefore, OXA combined with Tan IIA might be considered as a therapeutic approach for the treatment of OXA-resistant CRC.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Tingrui Ge
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Ping Xiang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Jingyi Zhou
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Shumin Tang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Haibing Mao
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, People's Republic of China
| |
Collapse
|
17
|
Upadhyay M, Adena SKR, Vardhan H, Yadav SK, Mishra B. Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating Capecitabine: Improved pharmacokinetics, cytotoxicity &in vivo antitumor activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109958. [DOI: 10.1016/j.msec.2019.109958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022]
|
18
|
Yu H, Zhang C, Zhang K, Zhou Y, Li C. Fabrication of novel combinatorial drug encapsulated micelles for enhanced tumor targeting in intestinal cancer in mouse model. J Cell Physiol 2019; 234:15450-15458. [PMID: 30693509 DOI: 10.1002/jcp.28192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Hindrance to successful therapy of colon cancer is generally characterized with reduced potency of a single drug at the active site of cancer, poor drug release, and most importantly, potential toxic side effects of the drug resulting in cytotoxicity. Therefore, we investigated combinatorial drug micelles which are a potent combination of twin anticancer drugs (indomethacin and piroxicam, IND+PIR mc) for successful therapeutics of colon cancer. The novel combinatorial micelles showed improved drug encapsulation efficiency, an in vitro burst release of the dual drugs, increased cytocompatibility and increased efficacy in tumor reduction (weight and volume) than in single drug micelles (IND mc or PIR mc). The improved IND+PIR MC were to have small size 150.36 ± 15.13 nm (to avoid being taken up by liver, lungs or kidney or to sediment) with poly dispersity index (PDI) value at 0.24 ± 0.01. The PDI values suggest homogenous distribution. Encapsulation efficiency of IND+PIR mc was calculated at 86%. IND+PR mc had improved biocompatibility as demonstrated by CRL-1459™ (normal colon) cell line than IND mc or PIR mc individually. The in vivo studies in mice model clearly depict that subcutaneous tumor weight reduced by almost 75% and volume reduced drastically by 55% on administration of IND+PIR mc than IND mc or PIR mc. Furthermore, fewer side effects were found with IND+PIR mc. To conclude, IND+PIR mc may be a potential anticancer strategy to be explored more in the future.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunpeng Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Zhang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yangyang Zhou
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunsheng Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Boda SK, Chen S, Chu K, Kim HJ, Xie J. Electrospraying Electrospun Nanofiber Segments into Injectable Microspheres for Potential Cell Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25069-25079. [PMID: 29993232 PMCID: PMC6689401 DOI: 10.1021/acsami.8b06386] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanofiber microspheres have attracted a lot of attention for biomedical applications because of their injectable and biomimetic properties. Herein, we report for the first time a new method for fabrication of nanofiber microspheres by combining electrospinning and electrospraying and explore their potential applications for cell therapy. Electrospraying of aqueous dispersions of electrospun nanofiber segments with desired length obtained by either cryocutting or homogenization into liquid nitrogen followed by freeze-drying and thermal treatment can form nanofiber microspheres. The microsphere size can be controlled by varying the applied voltage during the electrospray process. A variety of morphologies were achieved including solid, nanofiber, porous and nanofiber microspheres, and hollow nanofiber microspheres. Furthermore, a broad range of polymer and inorganic bioactive glass nanofiber-based nanofiber microspheres could be fabricated by electrospraying of their short nanofiber dispersions, indicating a comprehensive applicability of this method. A higher cell carrier efficiency of nanofiber microspheres as compared to solid microspheres was demonstrated with rat bone marrow-derived mesenchymal stem cells, along with the formation of microtissue-like structures in situ, when injected into microchannel devices. Also, mouse embryonic stem cells underwent neural differentiation on the nanofiber microspheres, indicated by positive staining of β-III-tubulin and neurite outgrowth. Taken together, we developed a new method for generating nanofiber microspheres that are injectable and have improved viability and maintenance of stem cells for potential application in cell therapy.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine
| | - Kathy Chu
- Department of Psychiatry and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Hyung Joon Kim
- Department of Psychiatry and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine
- Corresponding Author.
| |
Collapse
|
20
|
Duong HV, Chau TTL, Dang NTT, Vanterpool F, Salmerón-Sánchez M, Lizundia E, Tran HT, Nguyen LV, Nguyen TD. Biocompatible Chitosan-Functionalized Upconverting Nanocomposites. ACS OMEGA 2018; 3:86-95. [PMID: 30023767 PMCID: PMC6044559 DOI: 10.1021/acsomega.7b01355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/18/2017] [Indexed: 05/12/2023]
Abstract
Simultaneous integration of photon emission and biocompatibility into nanoparticles is an interesting strategy to develop applications of advanced optical materials. In this work, we present the synthesis of biocompatible optical nanocomposites from the combination of near-infrared luminescent lanthanide nanoparticles and water-soluble chitosan. NaYF4:Yb,Er upconverting nanocrystal guests and water-soluble chitosan hosts are prepared and integrated together into biofunctional optical composites. The control of aqueous dissolution, gelation, assembly, and drying of NaYF4:Yb,Er nanocolloids and chitosan liquids allowed us to design novel optical structures of spongelike aerogels and beadlike microspheres. Well-defined shape and near-infrared response lead upconverting nanocrystals to serve as photon converters to couple with plasmonic gold (Au) nanoparticles. Biocompatible chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites are prepared to show their potential use in biomedicine as we find them exhibiting a half-maximal effective concentration (EC50) of 0.58 mg mL-1 for chitosan-stabilized Au/NaYF4:Yb,Er nanorods versus 0.24 mg mL-1 for chitosan-stabilized NaYF4:Yb,Er after 24 h. As a result of their low cytotoxicity and upconverting response, these novel materials hold promise to be interesting for biomedicine, analytical sensing, and other applications.
Collapse
Affiliation(s)
- Hau Van Duong
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
- Department
of Chemistry, Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue 530000, Vietnam
| | - Trang The Lieu Chau
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
| | - Nhan Thi Thanh Dang
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le
Loi, Hue 530000, Vietnam
| | - Frankie Vanterpool
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Manuel Salmerón-Sánchez
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Erlantz Lizundia
- Department
of Graphic Design and Engineering Projects, Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Hoa Thai Tran
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
| | - Long Viet Nguyen
- Ceramics and Biomaterials Research Group and Faculty of Applied
Sciences, Ton Duc Thang University, Ho Chi Minh City 71000, Vietnam
| | - Thanh-Dinh Nguyen
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
21
|
Long H, Li X, Sang Z, Mei L, Yang T, Li Z, Zhou L, Zheng Y, He G, Guo G, Wang Z, Deng Y, Luo Y. Improving the pharmacokinetics and tissue distribution of pyrinezolid by self-assembled polymeric micelles. Colloids Surf B Biointerfaces 2017; 156:149-156. [PMID: 28527358 DOI: 10.1016/j.colsurfb.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/05/2023]
Abstract
Antibiotic-resistance by bacteria is a growing global concern within the healthcare field, and it has provided an impetus for continued antimicrobial development. Pyrinezolid (PZ), a novel oxazolidinone compound, can effectively inhibit most gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Though PZ is a promising antimicrobial candidate, the druggability of PZ is limited by its poor water solubility. Therefore, the amphipathic mPEG-PLLA copolymer was used to prepare the pyrinezolid micelles (PZ-M). Herein, we described the preparation, pharmacokinetic properties, tissue distribution, efficacy and toxicity of PZ-M. In vivo studies show that PZ-M possess prolonged blood circulation time and increased oral bioavailability compared with free PZ. Meanwhile, PZ-M increase lung PZ exposure and reduce liver and kidney exposure, which indicates that PZ-M may enhance the efficacy in vivo in MRSA-related pneumonia patients and decrease potential renal and hepatic toxicities.
Collapse
Affiliation(s)
- Haiyue Long
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zitai Sang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zicheng Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yu Zheng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Deng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
22
|
Kim JJ, El-Fiqi A, Kim HW. Synergetic Cues of Bioactive Nanoparticles and Nanofibrous Structure in Bone Scaffolds to Stimulate Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2059-2073. [PMID: 28029246 DOI: 10.1021/acsami.6b12089] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Providing a nanotopological physical cue in concert with a bioactive chemical signal within 3D scaffolds, while it being considered a promising approach for bone regeneration, has yet to be explored. Here, we develop 3D porous scaffolds that are networked to be a nanofibrous structure and incorporated with bioactive glass nanoparticles (BGn) to tackle this issue. The presence of BGn and nanofibrous structure (BGn + nanofibrous) substantially increased the surface area, hydro-affinity and protein loading capacity of scaffolds. In particular, the BGn released Si and Ca ions to the levels known to be biologically effective, offering the bone scaffold an ability to deliver therapeutic ions. The mesenchymal stem cells (MSCs) from rats exhibited significantly accelerated adhesion events including cell anchorage, cytoskeletal extensions, and the expression of adhesion signaling molecules on the BGn/nanofibrous scaffolds. The cells gained a more rapid proliferation and migration (penetration) ability over 2 weeks within the BGn + nanofibrous scaffolds than within either nanofibrous or BGn scaffolds. The osteogenesis of MSCs, as confirmed by the expressions of bone-associated genes and proteins, as well as the cellular mineralization was significantly stimulated by the BGn and nanofibrous topology in a synergistic manner. The behaviors of endothelial cells (HUVECs) including cell migration and tubule networking were also enhanced when influenced by the BGn and nanofibrous scaffolds (but more by BGn than by nanofiber). A subcutaneous tissue implantation of the scaffolds further evidenced the in vivo stimulation of neo-blood vessel formation by the BGn + nanofibrous cues, suggesting the possible promising role in bone regeneration. Taken together, the therapeutic ions and nanofibrous topology implemented within 3D scaffolds are considered to play synergistic actions in osteogenesis and angiogenesis, implying the potential usefulness of the BGn + nanofibrous scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University , Cheonan 330-714, Republic of Korea
| |
Collapse
|
23
|
Li H, Zhu J, Chen S, Jia L, Ma Y. Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Adv 2017. [DOI: 10.1039/c7ra12394a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper presents a new nanofabrication method for dual drug loaded regenerated silk fibroin (RSF) nanofibers, based on a simple, colloid-electrospinning technique.
Collapse
Affiliation(s)
- Huijun Li
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Jingxin Zhu
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Song Chen
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Lan Jia
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Yanlong Ma
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| |
Collapse
|
24
|
Optimization and evaluation of Oridonin-loaded Soluplus ®-Pluronic P105 mixed micelles for oral administration. Int J Pharm 2016; 518:193-202. [PMID: 28012993 DOI: 10.1016/j.ijpharm.2016.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023]
Abstract
In this study, a new type of mixed micelles was developed using Soluplus® (SOL) and Pluronic® P105 (P105) for the encapsulation of Oridonin (ORN). Oridonin-loaded micelles (ORN-M) were simply prepared using solvent evaporation and characterized for particle size, particle morphology, encapsulation efficiency, and drug loading. In addition, the in vitro drug release behavior of ORN-M was assessed using the widely applied dialysis bag technique. The pharmacokinetic property of ORN was explored in rats after oral administration of ORN-M. Optimized ORN-M were of a small size (137.2±1.65nm) and spherical shape when the ratio of SOL:P105 was 3:1, with entrapment efficiency 90.48±1.85% and drug loading 15.08±0.38%. Oral absorption capacity of ORN was greatly enhanced with a relative bioavailability of 210.55% in comparison to that of in-house suspensions, which suggests that ORN-M shows significantly improved bioavailability and drug absorption characteristics. Overall, the optimized SOL-P105 dual mixed micelles show great potential for use as oral drug carriers for cancer treatment.
Collapse
|