1
|
Sevrin T, Strasser L, Ternet C, Junk P, Caffarini M, Prins S, D’Arcy C, Catozzi S, Oliviero G, Wynne K, Kiel C, Luthert PJ. Whole-cell energy modeling reveals quantitative changes of predicted energy flows in RAS mutant cancer cell lines. iScience 2023; 26:105931. [PMID: 36711246 PMCID: PMC9874014 DOI: 10.1016/j.isci.2023.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cellular utilization of available energy flows to drive a multitude of forms of cellular "work" is a major biological constraint. Cells steer metabolism to address changing phenotypic states but little is known as to how bioenergetics couples to the richness of processes in a cell as a whole. Here, we outline a whole-cell energy framework that is informed by proteomic analysis and an energetics-based gene ontology. We separate analysis of metabolic supply and the capacity to generate high-energy phosphates from a representation of demand that is built on the relative abundance of ATPases and GTPases that deliver cellular work. We employed mouse embryonic fibroblast cell lines that express wild-type KRAS or oncogenic mutations and with distinct phenotypes. We observe shifts between energy-requiring processes. Calibrating against Seahorse analysis, we have created a whole-cell energy budget with apparent predictive power, for instance in relation to protein synthesis.
Collapse
Affiliation(s)
- Thomas Sevrin
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Lisa Strasser
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Camille Ternet
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Miriam Caffarini
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Stella Prins
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Cian D’Arcy
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Simona Catozzi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Corresponding author
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Corresponding author
| |
Collapse
|
2
|
Colombo M, Passarelli F, Corsetto PA, Rizzo AM, Marabese M, De Simone G, Pastorelli R, Broggini M, Brunelli L, Caiola E. NSCLC Cells Resistance to PI3K/mTOR Inhibitors Is Mediated by Delta-6 Fatty Acid Desaturase (FADS2). Cells 2022; 11:cells11233719. [PMID: 36496978 PMCID: PMC9736998 DOI: 10.3390/cells11233719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.
Collapse
Affiliation(s)
- Marika Colombo
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Federico Passarelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paola A. Corsetto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Angela M. Rizzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia De Simone
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Roberta Pastorelli
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: (M.B.); (L.B.)
| | - Laura Brunelli
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: (M.B.); (L.B.)
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
3
|
Blaquier JB, Cardona AF, Recondo G. Resistance to KRAS G12C Inhibitors in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:787585. [PMID: 35004309 PMCID: PMC8739760 DOI: 10.3389/fonc.2021.787585] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
KRAS mutations are one of the most prevalent oncogenic alterations in cancer. Until recently, drug development targeting KRAS did not convey clinical benefits to patients. Specific KRASG12C inhibitors, such as sotorasib and adagrasib, have been designed to bind to the protein's mutant structure and block KRASG12C in its GDP-bound inactive state. Phase 1/2 trials have shown promising anti-tumor activity, especially in pretreated non-small cell lung cancer patients. As expected, both primary and secondary resistance to KRASG12C inhibitors invariably occurs, and molecular mechanisms have been characterized in pre-clinical models and patients. Several mechanisms such as tyrosine kinase receptors (RTKs) mediated feedback reactivation of ERK-dependent signaling can result in intrinsic resistance to KRAS target therapy. Acquired resistance to KRASG12C inhibitors include novel KRAS mutations such as Y96D/C and other RAS-MAPK effector protein mutations. This review focuses on the intrinsic and acquired mechanisms of resistance to KRASG12C inhibitors in KRASG12C mutant non-small cell lung cancer and the potential clinical strategies to overcome or prevent it.
Collapse
Affiliation(s)
- Juan Bautista Blaquier
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| | - Andrés Felipe Cardona
- Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G/ONCOLGroup), Universidad El Bosque, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| |
Collapse
|
4
|
Borzi C, Caiola E, Ganzinelli M, Centonze G, Boeri M, Milione M, Broggini M, Sozzi G, Moro M. miR-17 Epigenetic Modulation of LKB1 Expression in Tumor Cells Uncovers a New Group of Patients With Poor-Prognosis NSCLC. J Thorac Oncol 2021; 16:e68-e70. [PMID: 34426000 DOI: 10.1016/j.jtho.2021.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Borzi
- Tumor Genomics Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Monica Ganzinelli
- Unit of Thoracic Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- Tumor Genomics Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy; First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Mattia Boeri
- Tumor Genomics Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy.
| | - Massimo Moro
- Tumor Genomics Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
5
|
Ghaddar N, Wang S, Woodvine B, Krishnamoorthy J, van Hoef V, Darini C, Kazimierczak U, Ah-Son N, Popper H, Johnson M, Officer L, Teodósio A, Broggini M, Mann KK, Hatzoglou M, Topisirovic I, Larsson O, Le Quesne J, Koromilas AE. The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nat Commun 2021; 12:4651. [PMID: 34330898 PMCID: PMC8324901 DOI: 10.1038/s41467-021-24661-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in lung adenocarcinoma (LUAD) development, the most common histological type of lung cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the translation initiation factor eIF2 (p-eIF2α), the focal point of ISR, is related to invasiveness, increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in KRAS-driven lung tumorigenesis in mice demonstrated that p-eIF2α causes the translational repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in LUAD treatment.
Collapse
Affiliation(s)
- Nour Ghaddar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Bethany Woodvine
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Vincent van Hoef
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Cedric Darini
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Urszula Kazimierczak
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nicolas Ah-Son
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Helmuth Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Myriam Johnson
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Leah Officer
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Ana Teodósio
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - John Le Quesne
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- MRC Toxicology Unit, University of Cambridge, Leicester, UK.
- Beatson Cancer Research Institute, Glasgow, UK.
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Common and mutation specific phenotypes of KRAS and BRAF mutations in colorectal cancer cells revealed by integrative -omics analysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:225. [PMID: 34233735 PMCID: PMC8265010 DOI: 10.1186/s13046-021-02025-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genes in the Ras pathway have somatic mutations in at least 60 % of colorectal cancers. Despite activating the same pathway, the BRAF V600E mutation and the prevalent mutations in codon 12 and 13 of KRAS have all been linked to different clinical outcomes, but the molecular mechanisms behind these differences largely remain to be clarified. METHODS To characterize the similarities and differences between common activating KRAS mutations and between KRAS and BRAF mutations, we used genome editing to engineer KRAS G12C/D/V and G13D mutations in colorectal cancer cells that had their mutant BRAF V600E allele removed and subjected them to transcriptome sequencing, global proteomics and metabolomics analyses. RESULTS By intersecting differentially expressed genes, proteins and metabolites, we uncovered (i) two-fold more regulated genes and proteins when comparing KRAS to BRAF mutant cells to those lacking Ras pathway mutation, (ii) five differentially expressed proteins in KRAS mutants compared to cells lacking Ras pathway mutation (IFI16, S100A10, CD44, GLRX and AHNAK2) and 6 (CRABP2, FLNA, NXN, LCP1, S100A10 and S100A2) compared to BRAF mutant cells, (iii) 19 proteins expressed differentially in a KRAS mutation specific manner versus BRAF V600E cells, (iv) regulation of the Integrin Linked Kinase pathway by KRAS but not BRAF mutation, (v) regulation of amino acid metabolism, particularly of the tyrosine, histidine, arginine and proline pathways, the urea cycle and purine metabolism by Ras pathway mutations, (vi) increased free carnitine in KRAS and BRAF mutant RKO cells. CONCLUSIONS This comprehensive integrative -omics analysis confirms known and adds novel genes, proteins and metabolic pathways regulated by mutant KRAS and BRAF signaling in colorectal cancer. The results from the new model systems presented here can inform future development of diagnostic and therapeutic approaches targeting tumors with KRAS and BRAF mutations.
Collapse
|
7
|
Mukhopadhyay S, Vander Heiden MG, McCormick F. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy. NATURE CANCER 2021; 2:271-283. [PMID: 33870211 PMCID: PMC8045781 DOI: 10.1038/s43018-021-00184-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Our understanding of how the RAS protein family, and in particular mutant KRAS promote metabolic dysregulation in cancer cells has advanced significantly over the last decade. In this Review, we discuss the metabolic reprogramming mediated by oncogenic RAS in cancer, and elucidating the underlying mechanisms could translate to novel therapeutic opportunities to target metabolic vulnerabilities in RAS-driven cancers.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frank McCormick
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Colombo M, Marabese M, Vargiu G, Broggini M, Caiola E. Activity of Birinapant, a SMAC Mimetic Compound, Alone or in Combination in NSCLCs With Different Mutations. Front Oncol 2020; 10:532292. [PMID: 33194590 PMCID: PMC7643013 DOI: 10.3389/fonc.2020.532292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Liver kinase B1 (LKB1/STK11) is the second tumor suppressor gene most frequently mutated in non-small-cell lung cancer (NSCLC) and its activity is impaired in about half KRAS-mutated NSCLCs. Nowadays, no effective therapies are available for patients having these mutations. To highlight new vulnerabilities of this subgroup of tumors exploitable to design specific therapies we screened an US FDA-approved drug library using an isogenic system of wild-type (WT) or deleted LKB1. Among eight hit compounds, Birinapant, an inhibitor of the Inhibitor of Apoptosis Proteins (IAPs), was the most active compound in LKB1-deleted clone only compared to its LKB1 WT counterpart. We validated the Birinapant cells response and its mechanism of action to be dependent on LKB1 deletion. Indeed, we demonstrated the ability of this compound to induce apoptosis, through activation of caspases in the LKB1-deleted clone only. Expanding our results, we found that the presence of KRAS mutations could mediate Birinapant resistance in a panel of NSCLC cell lines. The combination of Birinapant with Ralimetinib, inhibitor of p38α, restores the sensitivity of LKB1- and KRAS-mutated cell lines to the IAP inhibitor Birinapant. Our study shows how the use of Birinapant could be a viable therapeutic option for patients with LKB1-mutated NSCLCs. In addition, combination of Birinapant and a KRAS pathway inhibitor, as Ralimetinib, could be useful for patients with LKB1 and KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Vargiu
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
9
|
Tahir R, Renuse S, Udainiya S, Madugundu AK, Cutler JA, Nirujogi RS, Na CH, Xu Y, Wu X, Pandey A. Mutation-Specific and Common Phosphotyrosine Signatures of KRAS G12D and G13D Alleles. J Proteome Res 2020; 20:670-683. [PMID: 32986951 DOI: 10.1021/acs.jproteome.0c00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
KRAS is one of the most frequently mutated genes across all cancer subtypes. Two of the most frequent oncogenic KRAS mutations observed in patients result in glycine to aspartic acid substitution at either codon 12 (G12D) or 13 (G13D). Although the biochemical differences between these two predominant mutations are not fully understood, distinct clinical features of the resulting tumors suggest involvement of disparate signaling mechanisms. When we compared the global phosphotyrosine proteomic profiles of isogenic colorectal cancer cell lines bearing either G12D or G13D KRAS mutation, we observed both shared as well as unique signaling events induced by the two KRAS mutations. Remarkably, while the G12D mutation led to an increase in membrane proximal and adherens junction signaling, the G13D mutation led to activation of signaling molecules such as nonreceptor tyrosine kinases, MAPK kinases, and regulators of metabolic processes. The importance of one of the cell surface molecules, MPZL1, which was found to be hyperphosphorylated in G12D cells, was confirmed by cellular assays as its knockdown led to a decrease in proliferation of G12D but not G13D expressing cells. Overall, our study reveals important signaling differences across two common KRAS mutations and highlights the utility of our approach to systematically dissect subtle differences between related oncogenic mutants and potentially lead to individualized treatments.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Savita Udainiya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chan Hyun Na
- Department of Neurology, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yaoyu Xu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
10
|
Caiola E, Broggini M, Marabese M. LKB1ness Dictates ERK Inhibitors Response in NSCLC. J Thorac Oncol 2020; 15:e59. [PMID: 32216950 DOI: 10.1016/j.jtho.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
11
|
Ricci F, Guffanti F, Affatato R, Brunelli L, Roberta P, Fruscio R, Perego P, Bani MR, Chiorino G, Rinaldi A, Bertoni F, Fratelli M, Damia G. Establishment of patient-derived tumor xenograft models of mucinous ovarian cancer. Am J Cancer Res 2020; 10:572-580. [PMID: 32195028 PMCID: PMC7061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023] Open
Abstract
Mucinous ovarian carcinoma (mEOC) represents a rare subtype of epithelial ovarian cancer, accounting for 3-4% of all ovarian carcinomas. The rarity of this tumor type renders both the preclinical and clinical research compelling. Very few preclinical in vitro and in vivo models exist. We here report the molecular, metabolic and pharmacological characterization of two patient derived xenografts (PDXs) from mEOC, recently obtained in our laboratory. These PDXs maintain the histological and molecular characteristics of the patient's tumors they derived from, including a wild type TP53. Gene expression analysis and metabolomics profile suggest that they differ from high grade serous/endometrioid ovarian carcinoma PDXs. The pharmacological characterization was undertaken testing the in vivo antitumor activity of both cytotoxic agents (cisplatin, paclitaxel, yondelis, oxaliplatin and 5-fluorouracile) and targeted agents (bevacizumab and lapatinib). These newly established mucinous PDXs do recapitulate mEOC and will be of value in the preclinical development of possible new therapeutic strategies for this tumor type.
Collapse
Affiliation(s)
- Francesca Ricci
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Roberta Affatato
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Laura Brunelli
- Protein and Gene Biomarkers Unit, Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Pastorelli Roberta
- Protein and Gene Biomarkers Unit, Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan BicoccaMonza 20900, Italy
| | - Patrizia Perego
- Clinic of Obstetrics and Gynecology, San Gerardo HospitalMonza 20900, Italy
| | - Maria Rosa Bani
- Laboratory of Laboratory of Biology and Treatment of Metastasis, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo and Elvo TempiaBiella, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera italianaBellinzona 6500, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera italianaBellinzona 6500, Switzerland
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilan 20156, Italy
| |
Collapse
|
12
|
Wang H, Lv Q, Xu Y, Cai Z, Zheng J, Cheng X, Dai Y, Jänne PA, Ambrogio C, Köhler J. An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer. EBioMedicine 2019; 49:106-117. [PMID: 31668570 PMCID: PMC6945285 DOI: 10.1016/j.ebiom.2019.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background KRAS mutations are the most frequent oncogenic aberration in lung adenocarcinoma. KRAS mutant isoforms differentially shape tumour biology and influence drug responses. This heterogeneity challenges the development of effective therapies for patients with KRAS-driven non-small cell lung cancer (NSCLC). Methods We developed an integrative pharmacogenomics analysis to identify potential drug targets to overcome MEK/ERK inhibitor resistance in lung cancer cell lines with KRAS(G12C) mutation (n = 12). We validated our predictive in silico results with in vitro models using gene knockdown, pharmacological target inhibition and reporter assays. Findings Our computational analysis identifies casein kinase 2A1 (CSNK2A1) as a mediator of MEK/ERK inhibitor resistance in KRAS(G12C) mutant lung cancer cells. CSNK2A1 knockdown reduces cell proliferation, inhibits Wnt/β-catenin signalling and increases the anti-proliferative effect of MEK inhibition selectively in KRAS(G12C) mutant lung cancer cells. The specific CK2-inhibitor silmitasertib phenocopies the CSNK2A1 knockdown effect and sensitizes KRAS(G12C) mutant cells to MEK inhibition. Interpretation Our study supports the importance of accurate patient stratification and rational drug combinations to gain benefit from MEK inhibition in patients with KRAS mutant NSCLC. We develop a genotype-based strategy that identifies CK2 as a promising co-target in KRAS(G12C) mutant NSCLC by using available pharmacogenomics gene expression datasets. This approach is applicable to other oncogene driven cancers. Fund This work was supported by grants from the National Natural Science Foundation of China, the National Key Research and Development Program of China, the Lung Cancer Research Foundation and a Mildred-Scheel postdoctoral fellowship from the German Cancer Aid Foundation.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Qi Lv
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yue Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhaoqing Cai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jie Zheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiaojie Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yao Dai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| |
Collapse
|
13
|
Muñoz-Maldonado C, Zimmer Y, Medová M. A Comparative Analysis of Individual RAS Mutations in Cancer Biology. Front Oncol 2019; 9:1088. [PMID: 31681616 PMCID: PMC6813200 DOI: 10.3389/fonc.2019.01088] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
In human cells, three closely related RAS genes, termed HRAS, KRAS, and NRAS, encode four highly homologous proteins. RAS proteins are small GTPases involved in a broad spectrum of key molecular and cellular activities, including proliferation and survival among others. Gain-of-function missense mutations, mostly located at codons 12, 13, and 61, constitutively activate RAS proteins and can be detected in various types of human cancers. KRAS is the most frequently mutated, followed by NRAS and HRAS. However, each isoform exhibits distinctive mutation frequency at each codon, supporting the hypothesis that different RAS mutants may lead to distinct biologic manifestations. This review is focused on the differences in signaling and phenotype, as well as on transcriptomics, proteomics, and metabolomics profiles related to individual RAS-mutated variants. Additionally, association of these mutants with particular targeted outcomes and rare mutations at additional RAS codons are discussed.
Collapse
Affiliation(s)
- Carmen Muñoz-Maldonado
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.,Radiation Oncology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.,Radiation Oncology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.,Radiation Oncology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Caiola E, Iezzi A, Tomanelli M, Bonaldi E, Scagliotti A, Colombo M, Guffanti F, Micotti E, Garassino MC, Minoli L, Scanziani E, Broggini M, Marabese M. LKB1 Deficiency Renders NSCLC Cells Sensitive to ERK Inhibitors. J Thorac Oncol 2019; 15:360-370. [PMID: 31634668 DOI: 10.1016/j.jtho.2019.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Serine/threonine kinase 11 (LKB1/STK11) is one of the most mutated genes in NSCLC accounting for approximately one-third of cases and its activity is impaired in approximately half of KRAS-mutated NSCLC. At present, these patients cannot benefit from any specific therapy. METHODS Through CRISPR/Cas9 technology, we systematically deleted LKB1 in both wild-type (WT) and KRAS-mutated human NSCLC cells. By using these isogenic systems together with genetically engineered mouse models we investigated the cell response to ERK inhibitors both in vitro and in vivo. RESULTS In all the systems used here, the loss of LKB1 creates vulnerability and renders these cells particularly sensitive to ERK inhibitors both in vitro and in vivo. The same cells expressing a WT LKB1 poorly respond to these drugs. At the molecular level, in the absence of LKB1, ERK inhibitors induced a marked inhibition of p90 ribosomal S6 kinase activation, which in turn abolished S6 protein activation, promoting the cytotoxic effect. CONCLUSIONS This work shows that ERK inhibitors are effective in LKB1 and LKB1/KRAS-mutated tumors, thus offering a therapeutic strategy for this prognostically unfavorable subgroup of patients. Because ERK inhibitors are already in clinical development, our findings could be easily translatable to the clinic. Importantly, the lack of effect in cells expressing WT LKB1, predicts that treatment of LKB1-mutated tumors with ERK inhibitors should have a favorable toxicity profile.
Collapse
Affiliation(s)
- Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alice Iezzi
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michele Tomanelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bonaldi
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Arianna Scagliotti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Lucia Minoli
- Mouse & Animal Pathology Lab, Fondazione Filarete, Milan, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Eugenio Scanziani
- Mouse & Animal Pathology Lab, Fondazione Filarete, Milan, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
15
|
Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin Cancer Biol 2019; 68:59-74. [PMID: 31562957 DOI: 10.1016/j.semcancer.2019.09.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.
Collapse
|
16
|
Charitou T, Srihari S, Lynn MA, Jarboui MA, Fasterius E, Moldovan M, Shirasawa S, Tsunoda T, Ueffing M, Xie J, Xin J, Wang X, Proud CG, Boldt K, Al-Khalili Szigyarto C, Kolch W, Lynn DJ. Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRAS G13D mutation. Br J Cancer 2019; 121:37-50. [PMID: 31133691 PMCID: PMC6738113 DOI: 10.1038/s41416-019-0477-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Activating mutations in KRAS frequently occur in colorectal cancer (CRC) patients, leading to resistance to EGFR-targeted therapies. Methods To better understand the cellular reprogramming which occurs in mutant KRAS cells, we have undertaken a systems-level analysis of four CRC cell lines which express either wild type (wt) KRAS or the oncogenic KRASG13D allele (mtKRAS). Results RNAseq revealed that genes involved in ribosome biogenesis, mRNA translation and metabolism were significantly upregulated in mtKRAS cells. Consistent with the transcriptional data, protein synthesis and cell proliferation were significantly higher in the mtKRAS cells. Targeted metabolomics analysis also confirmed the metabolic reprogramming in mtKRAS cells. Interestingly, mtKRAS cells were highly transcriptionally responsive to EGFR activation by TGFα stimulation, which was associated with an unexpected downregulation of genes involved in a range of anabolic processes. While TGFα treatment strongly activated protein synthesis in wtKRAS cells, protein synthesis was not activated above basal levels in the TGFα-treated mtKRAS cells. This was likely due to the defective activation of the mTORC1 and other pathways by TGFα in mtKRAS cells, which was associated with impaired activation of PKB signalling and a transient induction of AMPK signalling. Conclusions We have found that mtKRAS cells are substantially rewired at the transcriptional, translational and metabolic levels and that this rewiring may reveal new vulnerabilities in oncogenic KRAS CRC cells that could be exploited in future.
Collapse
Affiliation(s)
- Theodosia Charitou
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Sriganesh Srihari
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Miriam A Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Mohamed-Ali Jarboui
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
| | - Erik Fasterius
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Max Moldovan
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Senji Shirasawa
- Faculty of Medicine, Fukuoka University, Fukuoka, Fukuoka Prefecture, 814-0133, Japan
| | - Toshiyuki Tsunoda
- Faculty of Medicine, Fukuoka University, Fukuoka, Fukuoka Prefecture, 814-0133, Japan
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jianling Xie
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jin Xin
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Xuemin Wang
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Christopher G Proud
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Karsten Boldt
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| | - David J Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia. .,School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
17
|
Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W, Parlati F, Wang J, Gandhi V, Skoulidis F, DeBerardinis RJ, Minna JD, Heymach JV. LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in KRAS-Mutant Lung Adenocarcinoma. Cancer Res 2019; 79:3251-3267. [PMID: 31040157 DOI: 10.1158/0008-5472.can-18-3527] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/19/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
In KRAS-mutant lung adenocarcinoma, tumors with LKB1 loss (KL) are highly enriched for concurrent KEAP1 mutations, which activate the KEAP1/NRF2 pathway (KLK). Here, we investigated the biological consequences of these cooccurring alterations and explored whether they conferred specific therapeutic vulnerabilities. Compared with KL tumors, KLK tumors exhibited increased expression of genes involved in glutamine metabolism, the tricarboxylic acid cycle, and the redox homeostasis signature. Using isogenic pairs with knockdown or overexpression of LKB1, KEAP1, and NRF2, we found that LKB1 loss results in increased energetic and redox stress marked by increased levels of intracellular reactive oxygen species and decreased levels of ATP, NADPH/NADP+ ratio, and glutathione. Activation of the KEAP1/NRF2 axis in LKB1-deficient cells enhanced cell survival and played a critical role in the maintenance of energetic and redox homeostasis in a glutamine-dependent manner. LKB1 and the KEAP1/NRF2 pathways cooperatively drove metabolic reprogramming and enhanced sensitivity to the glutaminase inhibitor CB-839 in vitro and in vivo. Overall, these findings elucidate the adaptive advantage provided by KEAP1/NRF2 pathway activation in KL tumors and support clinical testing of glutaminase inhibitor in subsets of KRAS-mutant lung adenocarcinoma. SIGNIFICANCE: In KRAS-mutant non-small cell lung cancer, LKB1 loss results in enhanced energetic/redox stress, which is tolerated, in part, through cooccurring KEAP1/NRF2-dependent metabolic adaptations, thus enhancing glutamine dependence and vulnerability to glutaminase inhibition.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3251/F1.large.jpg.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Adenosine Triphosphate/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Cellular Reprogramming
- Energy Metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Glutaminase/metabolism
- Glutamine/metabolism
- Humans
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Metabolic Networks and Pathways
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Mutation
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Signal Transduction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ana Galan-Cobo
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Piyada Sitthideatphaiboon
- Department of Medicine, Division of Medical Oncology, Chulalongkorn University-King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, P.R. China
| | - Alissa Poteete
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marlese A Pisegna
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei-Hsuan Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachussets
| | | | | | - Winter Zhang
- Calithera Biosciences, South San Francisco, California
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ferdinandos Skoulidis
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph J DeBerardinis
- Eugene McDermott Center for Human Growth & Development, Children's Medical Center Research Institute at UTSW, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
18
|
Veyrat-Durebex C, Bouzamondo N, Le Mao M, Chao de la Barca JM, Bris C, Dieu X, Simard G, Gadras C, Tessier L, Drui D, Borson-Chazot F, Barlier A, Reynier P, Prunier-Mirebeau D. Metabolomics signatures of a subset of RET variants according to their oncogenic risk level. Endocr Relat Cancer 2019; 26:379-389. [PMID: 30653460 DOI: 10.1530/erc-18-0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Thirty percent of medullary thyroid carcinomas (MTCs) are related to dominant germline pathogenic variants in the RET proto-oncogene. According to their aggressiveness, these pathogenic variants are classified in three risk levels: 'moderate', 'high' and 'highest'. The present study compares the metabolomics profiles of five pathogenic variants, whether already classified or not. We have generated six stable murine fibroblast cell lines (NIH3T3) expressing the WT allele or variants of the human RET gene, with different levels of pathogenicity, including the M918V variant that is yet to be accurately classified. We carried out a targeted metabolomics study of the cell extracts with a QTRAP mass spectrometer, using the Biocrates Absolute IDQ p180 kit, which allows the quantification of 188 endogenous molecules. The data were then subjected to multivariate statistical analysis. One hundred seventy three metabolites were accurately measured. The metabolic profiles of the cells expressing the RET variants were found to be correlated with their oncogenic risk. In addition, the statistical model we constructed for predicting the oncogenic risk attributed a moderate risk to the M918V variant. Our results indicate that metabolomics may be useful for characterizing the pathogenicity of the RET gene variants and their levels of aggressiveness.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
- Equipe Mitolab, Institut MITOVASC, Unité Mixte de Recherche CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | | | - Morgane Le Mao
- Equipe Mitolab, Institut MITOVASC, Unité Mixte de Recherche CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan Manuel Chao de la Barca
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
- Equipe Mitolab, Institut MITOVASC, Unité Mixte de Recherche CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Céline Bris
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
- Equipe Mitolab, Institut MITOVASC, Unité Mixte de Recherche CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Xavier Dieu
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Gilles Simard
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Cédric Gadras
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Lydie Tessier
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Delphine Drui
- Service d'Endocrinologie, CHU de Nantes, Nantes, France
| | - Françoise Borson-Chazot
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Lyon 1, HESPER EA 7425, Lyon, France
| | - Anne Barlier
- Aix-Marseille University, CNRS, CRN2M, UMR 7286, and APHM La Conception Hospital, Molecular Biology Laboratory, Marseille, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
- Equipe Mitolab, Institut MITOVASC, Unité Mixte de Recherche CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Delphine Prunier-Mirebeau
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
- Equipe Mitolab, Institut MITOVASC, Unité Mixte de Recherche CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| |
Collapse
|
19
|
Caiola E, Falcetta F, Giordano S, Marabese M, Garassino MC, Broggini M, Pastorelli R, Brunelli L. Co-occurring KRAS mutation/LKB1 loss in non-small cell lung cancer cells results in enhanced metabolic activity susceptible to caloric restriction: an in vitro integrated multilevel approach. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:302. [PMID: 30514331 PMCID: PMC6280460 DOI: 10.1186/s13046-018-0954-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Background Non–small-cell lung cancer (NSCLC) is a heterogeneous disease, with multiple different oncogenic mutations. Approximately 25–30% of NSCLC patients present KRAS mutations, which confer poor prognosis and high risk of tumor recurrence. About half of NSCLCs with activating KRAS lesions also have deletions or inactivating mutations in the serine/threonine kinase 11 (LKB1) gene. Loss of LKB1 on a KRAS-mutant background may represent a significant source of heterogeneity contributing to poor response to therapy. Methods Here, we employed an integrated multilevel proteomics, metabolomics and functional in-vitro approach in NSCLC H1299 isogenic cells to define their metabolic state associated with the presence of different genetic background. Protein levels were obtained by label free and single reaction monitoring (SRM)-based proteomics. The metabolic state was studied coupling targeted and untargeted mass spectrometry (MS) strategy. In vitro metabolic dependencies were evaluated using 2-deoxy glucose (2-DG) treatment or glucose/glutamine nutrient limitation. Results Here we demonstrate that co-occurring KRAS mutation/LKB1 loss in NSCLC cells allowed efficient exploitation of glycolysis and oxidative phosphorylation, when compared to cells with each single oncologic genotype. The enhanced metabolic activity rendered the viability of cells with both genetic lesions susceptible towards nutrient limitation. Conclusions Co-occurrence of KRAS mutation and LKB1 loss in NSCLC cells induced an enhanced metabolic activity mirrored by a growth rate vulnerability under limited nutrient conditions relative to cells with the single oncogenetic lesions. Our results hint at the possibility that energy stress induced by calorie restriction regimens may sensitize NSCLCs with these co-occurring lesions to cytotoxic chemotherapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0954-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Falcetta
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Giordano
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marina C Garassino
- Thoracic Oncology, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
20
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol 2018; 13:1692-1704. [PMID: 30149143 DOI: 10.1016/j.jtho.2018.07.102] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We hypothesized that activating KRAS mutations and inactivation of the liver kinase B1 (LKB1) oncosuppressor can cooperate to sustain NSCLC aggressiveness. We also hypothesized that the growth advantage of KRAS/LKB1 co-mutated tumors could be balanced by higher sensitivity to metabolic stress conditions, such as metformin treatment, thus revealing new strategies to target this aggressive NSCLC subtype. METHODS We retrospectively determined the frequency and prognostic value of KRAS/LKB1 co-mutations in tissue specimens from NSCLC patients enrolled in the TAILOR trial. We generated stable LKB1 knockdown and LKB1-overexpressing isogenic H1299 and A549 cell variants, respectively, to test the in vitro efficacy of metformin. We also investigated the effect of metformin on cisplatin-resistant CD133+ cells in NSCLC patient-derived xenografts. RESULTS We found a trend towards worse overall survival in patients with KRAS/LKB1 co-mutated tumors as compared to KRAS-mutated ones (hazard ratio: 2.02, 95% confidence interval: 0.94-4.35, p = 0.072). In preclinical experiments, metformin produced pro-apoptotic effects and enhanced cisplatin anticancer activity specifically in KRAS/LKB1 co-mutated patient-derived xenografts. Moreover, metformin prevented the development of acquired tumor resistance to 5 consecutive cycles of cisplatin treatment (75% response rate with metformin-cisplatin as compared to 0% response rate with cisplatin), while reducing CD133+ cells. CONCLUSIONS LKB1 mutations, especially when combined with KRAS mutations, may define a specific and more aggressive NSCLC subtype. Metformin synergizes with cisplatin against KRAS/LKB1 co-mutated tumors, and may prevent or delay the onset of resistance to cisplatin by targeting CD133+ cancer stem cells. This study lays the foundations for combining metformin with standard platinum-based chemotherapy in the treatment of KRAS/LKB1 co-mutated NSCLC.
Collapse
|
22
|
Shestakova K, Brito A, Mesonzhnik NV, Moskaleva NE, Kurynina KO, Grestskaya NM, Serkov IV, Lyubimov II, Bezuglov VV, Appolonova SA. Rabbit plasma metabolomic analysis of Nitroproston®: a multi target natural prostaglandin based-drug. Metabolomics 2018; 14:112. [PMID: 30830378 DOI: 10.1007/s11306-018-1413-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/12/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Nitroproston® is a novel multi-target drug bearing natural prostaglandin E2 (PGE2) and nitric oxide (NO)-donating fragments for treatment of inflammatory and obstructive diseases (i.e., asthma and obstructive bronchitis). OBJECTIVES To investigate the effects of Nitroproston® administration on plasma metabolomics in vivo. METHODS Experimental in vivo study randomly assigning the target drug (treatment group) or a saline solution without the drug (vehicle control group) to 12 rabbits (n = 6 in each group). Untargeted (5880 initial features; 1869 negative-4011 positive ion peaks; UPLC-IT-TOF/MS) and 84 targeted moieties (Nitroproston® related metabolites, prostaglandins, steroids, purines, pyrimidines and amino acids; HPLC-QQQ-MS/MS) were measured from plasma at 0, 2, 4, 6, 8, 12, 18, 24, 32 and 60 min after administration. RESULTS PGE2, 13,14-dihydro-15-keto-PGE2, PGB2, 1,3-GDN and 15-keto-PGE2 increased in the treatment group. Steroids (i.e., cortisone, progesterone), organic acids, 3-oxododecanoic acid, nicotinate D-ribonucleoside, thymidine, the amino acids serine and aspartate, and derivatives pyridinoline, aminoadipic acid and uric acid increased (p < 0.05 AUCROC curve > 0.75) after treatment. Purines (i.e., xanthine, guanine, guanosine), bile acids, acylcarnitines and the amino acids L-tryptophan and L-phenylalanine were decreased. Nitroproston® impacted steroidogenesis, purine metabolism and ammonia recycling pathways, among others. CONCLUSION Nitroproston®, a multi action novel drug based on natural prostaglandins, altered metabolites (i.e., guanine, adenine, cortisol, cortisone and aspartate) involved in purine metabolism, urea and ammonia biological cycles, steroidogenesis, among other pathways. Suggested mechanisms of action, metabolic pathway interconnections and useful information to further understand the metabolic effects of prostaglandin administration are presented.
Collapse
Affiliation(s)
- Ksenia Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
- PhD Program in Nanoscience and Advanced Technology, Department of Diagnostics and Public Health, University of Verona, Policlinico G.B. Rossi - P.le L.A. Scuro 10, 37134, Verona, Italy
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
| | - Natalia V Mesonzhnik
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
| | - Ksenia O Kurynina
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
| | - Natalia M Grestskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russia, 117997
| | - Igor V Serkov
- Institute of Physiologically Active Compounds RAS, Severniy pr., 1, Chernogolovka, Russia, 142432
| | - Igor I Lyubimov
- LLC "Gurus BioPharm", Territory of Skolkovo Innovation Center, Bolshoy Boulevard, 42 Building 1, Moscow, Russia, 143026
| | - Vladimir V Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russia, 117997
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991.
| |
Collapse
|
23
|
Carrara M, Babini G, Baselli G, Ristagno G, Pastorelli R, Brunelli L, Ferrario M. Blood pressure variability, heart functionality, and left ventricular tissue alterations in a protocol of severe hemorrhagic shock and resuscitation. J Appl Physiol (1985) 2018; 125:1011-1020. [PMID: 30001154 PMCID: PMC6230573 DOI: 10.1152/japplphysiol.00348.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autonomic control of blood pressure (BP) and heart rate (HR) is crucial during bleeding and hemorrhagic shock (HS) to compensate for hypotension and hypoxia. Previous works have observed that at the point of hemodynamic decompensation a marked suppression of BP and HR variability occurs, leading to irreversible shock. We hypothesized that recovery of the autonomic control may be decisive for effective resuscitation, along with restoration of mean BP. We computed cardiovascular indexes of baroreflex sensitivity and BP and HR variability by analyzing hemodynamic recordings collected from five pigs during a protocol of severe hemorrhage and resuscitation; three pigs were sham-treated controls. Moreover, we assessed the effects of severe hemorrhage on heart functionality by integrating the hemodynamic findings with measures of plasma high-sensitivity cardiac troponin T and metabolite concentrations in left ventricular (LV) tissue. Resuscitation was performed with fluids and norepinephrine and then by reinfusion of shed blood. After first resuscitation, mean BP reached the target value, but cardiovascular indexes were not fully restored, hinting at a partial recovery of the autonomic mechanisms. Moreover, cardiac troponins were still elevated, suggesting a persistent myocardial sufferance. After blood reinfusion all the indexes returned to baseline. In the harvested heart, LV metabolic profile confirmed the acute stress condition sensed by the cardiomyocytes. Variability indexes and baroreflex trends can be valuable tools to evaluate the severity of HS, and they may represent a more useful end point for resuscitation in combination with standard measures such as mean values and biological measures. NEW & NOTEWORTHY Autonomic control of blood pressure was highly impaired during hemorrhagic shock, and it was not completely recovered after resuscitation despite global restoration of mean pressures. Moreover, a persistent myocardial sufferance emerged from measured cardiac troponin T and metabolite concentrations of left ventricular tissue. We highlight the importance of combining global mean values and biological markers with measures of variability and autonomic control for a better characterization of the effectiveness of the resuscitation strategy.
Collapse
Affiliation(s)
- Marta Carrara
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan , Italy
| | - Giovanni Babini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan , Milan , Italy
| | - Giuseppe Baselli
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan , Italy
| | | | | | - Laura Brunelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuela Ferrario
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan , Italy
| |
Collapse
|
24
|
Min HY, Lee HY. Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:45-56. [PMID: 29212306 PMCID: PMC5746037 DOI: 10.4062/biomolther.2017.211] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.
Collapse
Affiliation(s)
- Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Jones JW, Jackson IL, Vujaskovic Z, Kaytor MD, Kane MA. Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury. Pharm Res 2017; 34:2698-2709. [PMID: 28971289 DOI: 10.1007/s11095-017-2200-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/30/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. METHODS High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. RESULTS A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. CONCLUSIONS These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.
Collapse
Affiliation(s)
- Jace W Jones
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, 20 N. Pine Street, Baltimore, Maryland, 21201, USA
| | - Isabel L Jackson
- School of Medicine, Division of Translational Radiation Sciences Department of Radiation Oncology, University of Maryland, Baltimore, 21201, Maryland, USA
| | - Zeljko Vujaskovic
- School of Medicine, Division of Translational Radiation Sciences Department of Radiation Oncology, University of Maryland, Baltimore, 21201, Maryland, USA
| | | | - Maureen A Kane
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, 20 N. Pine Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
26
|
Jeanquartier F, Jean-Quartier C, Kotlyar M, Tokar T, Hauschild AC, Jurisica I, Holzinger A. Machine Learning for In Silico Modeling of Tumor Growth. LECTURE NOTES IN COMPUTER SCIENCE 2016. [DOI: 10.1007/978-3-319-50478-0_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|