1
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
2
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
3
|
The effect of discrete wavelengths of visible light on the developing murine embryo. J Assist Reprod Genet 2022; 39:1825-1837. [PMID: 35737174 PMCID: PMC9428105 DOI: 10.1007/s10815-022-02555-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE A current focus of the IVF field is non-invasive imaging of the embryo to quantify developmental potential. Such approaches use varying wavelengths to gain maximum biological information. The impact of irradiating the developing embryo with discrete wavelengths of light is not fully understood. Here, we assess the impact of a range of wavelengths on the developing embryo. METHODS Murine preimplantation embryos were exposed daily to wavelengths within the blue, green, yellow, and red spectral bands and compared to an unexposed control group. Development to blastocyst, DNA damage, and cell number/allocation to blastocyst cell lineages were assessed. For the longer wavelengths (yellow and red), pregnancy/fetal outcomes and the abundance of intracellular lipid were investigated. RESULTS Significantly fewer embryos developed to the blastocyst stage when exposed to the yellow wavelength. Elevated DNA damage was observed within embryos exposed to blue, green, or red wavelengths. There was no effect on blastocyst cell number/lineage allocation for all wavelengths except red, where there was a significant decrease in total cell number. Pregnancy rate was significantly reduced when embryos were irradiated with the red wavelength. Weight at weaning was significantly higher when embryos were exposed to yellow or red wavelengths. Lipid abundance was significantly elevated following exposure to the yellow wavelength. CONCLUSION Our results demonstrate that the impact of light is wavelength-specific, with longer wavelengths also impacting the embryo. We also show that effects are energy-dependent. This data shows that damage is multifaceted and developmental rate alone may not fully reflect the impact of light exposure.
Collapse
|
4
|
Shin DW. Various biological effects of solar radiation on skin and their mechanisms: implications for phototherapy. Anim Cells Syst (Seoul) 2020; 24:181-188. [PMID: 33029294 PMCID: PMC7473273 DOI: 10.1080/19768354.2020.1808528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The skin protects our body from various external factors, such as chemical and physical stimuli, microorganisms, and sunlight. Sunlight is a representative environmental factor that considerably influences the physiological activity of our bodies. The molecular mechanisms and detrimental effects of ultraviolet rays (UVR) on skin have been thoroughly investigated. Chronic exposure to UVR generally causes skin damage and eventually induces wrinkle formation and reduced elasticity of the skin. Several studies have shown that infrared rays (IR) also lead to the breakdown of collagen fibers in the skin. However, several reports have demonstrated that the appropriate use of UVR or IR can have beneficial effects on skin-related diseases. Additionally, it has been revealed that visible light of different wavelengths has various biological effects on the skin. Interestingly, several recent studies have reported that photoreceptors are also expressed in the skin, similar to those in the eyes. Based on these data, I discuss the various physiological effects of sunlight on the skin and provide insights on the use of phototherapy, which uses a specific wavelength of sunlight as a non-invasive method, to improve skin-related disorders.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
5
|
Kramer B, França LM, Zhang Y, Paes AMDA, Gerdes AM, Carrillo-Sepulveda MA. Western diet triggers Toll-like receptor 4 signaling-induced endothelial dysfunction in female Wistar rats. Am J Physiol Heart Circ Physiol 2018; 315:H1735-H1747. [PMID: 30265151 DOI: 10.1152/ajpheart.00218.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Overconsumption of a diet rich in fat and carbohydrates, called the Western diet, is a major contributor to the global epidemic of cardiovascular disease. Despite previously documented cardiovascular protection exhibited in female rats, this safeguard may be lost under certain metabolic stressors. We hypothesized that female Wistar rats challenged by a Western diet composed of 21% fat and 50% carbohydrate (34.1% sucrose) for 17 wk would develop endothelial dysfunction via endothelial Toll-like receptor 4 (TLR4) signaling. Western diet-fed female rats exhibited dysregulation of metabolism, revealing increased body weight and abdominal fat, decreased expression of adiponectin in white adipose tissue, glucose intolerance, and impaired insulin sensitivity. Western diet exposure increased hepatic triglycerides and cholesterol alongside hepatic steatosis, categorizing nonalcoholic fatty liver disease. Moreover, a Western diet negatively affected vascular function, revealing hypertension, impaired endothelium-dependent vasorelaxation, aortic remodeling, and increased reactive oxygen species (ROS) production. Aortic protein expression of TLR4 and its downstream proteins were markedly increased in the Western diet-fed group in association with elevated serum levels of free fatty acids. In vitro experiments were conducted to test whether free fatty acids contribute to vascular ROS overproduction via the TLR4 signaling pathway. Cultured endothelial cells were stimulated with palmitate in the presence of TAK-242, a TLR4 signaling inhibitor. Palmitate-induced overgeneration of ROS in endothelial cells was abolished in the presence of TAK-242. Our data show that a Western diet induced endothelial dysfunction in female rats and suggest that endothelial TLR4 signaling may play a key role in abolishing female cardiovascular protection. NEW & NOTEWORTHY A Western diet induced elevated levels of free fatty acids, produced nonalcoholic fatty liver disease, and provoked endothelial dysfunction in female rats in association with Toll-like receptor 4 signaling-mediated vascular reactive oxygen species production. Limited consumption of a Western diet in premenopausal women may decrease their risk of cardiovascular complications.
Collapse
Affiliation(s)
- Benjamin Kramer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão , Sao Luis , Brazil
| | - Youhua Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão , Sao Luis , Brazil
| | - A Martin Gerdes
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Maria Alicia Carrillo-Sepulveda
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
6
|
Park CY, Jang CH, Lee DY, Cho HT, Kim YJ, Park YH, Imm JY. Changes in hepatic gene expression and serum metabolites after oral administration of overdosed vitamin-E-loaded nanoemulsion in rats. Food Chem Toxicol 2017; 109:421-427. [PMID: 28923436 DOI: 10.1016/j.fct.2017.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/24/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Vitamin-E-loaded nanoemulsion (Vit E-NE) was produced, and the effects of repeated oral administration of Vit E-NE (2 g/kg/day) for five days on hepatic gene expression and serum metabolites were investigated in rats. The mean particle diameter and zeta potential of Vit E-NE was 112 nm and 56 mV, respectively. Vit E-NE administered rats showed significantly higher triglyceride content than of standard diet (control) or Vit E control emulsion (Vit E-CE) group but no toxicity symptoms were found in blood biochemical analysis. Next generation sequencing analysis of rat liver revealed that several genes related to energy and xenobiotic metabolism (CYP1A1 and glutathione S-transferase) were significantly altered. Serum metabolites (B-hydroxybutyrate and palmitoleic acid) indicating ketone body production and activation of stearoyl-CoAdesaturase were significantly increased by administration of Vit E-NE. The results of this study suggest that excessive consumption of edible nano-sized food ingredients can possibly cause adverse effects.
Collapse
Affiliation(s)
- Chae Young Park
- Department of Foods and Nutrition, Kookmin University, Seoul, South Korea
| | - Chul Ho Jang
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, South Korea
| | - Do Yup Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, South Korea
| | - Hyung Taek Cho
- Department of Food & Biotechnology, Korea University, Sejong, South Korea
| | - Young Jun Kim
- Department of Food & Biotechnology, Korea University, Sejong, South Korea
| | - Yoo Heon Park
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Ilsan, South Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul, South Korea.
| |
Collapse
|
7
|
Schulze RJ, Sathyanarayan A, Mashek DG. Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28642194 DOI: 10.1016/j.bbalip.2017.06.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). While the field of lipophagy research is relatively young, an expansion of research in this area over the past several years has greatly advanced our understanding of lipophagy. Since its original characterization in fasted liver, the contribution of lipophagy is now recognized in various organisms, cell types, metabolic states and disease models. Moreover, recent studies provide exciting new insights into the underlying mechanisms of lipophagy induction as well as the consequences of lipophagy on cell metabolism and signaling. This review summarizes recent work focusing on LDs and lipophagy as well as highlighting challenges and future directions of research as our understanding of lipophagy continues to grow and evolve. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Ryan J Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, MN, United States
| | - Aishwarya Sathyanarayan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
8
|
Park PJ, Cho JY, Cho EG. Specific visible radiation facilitates lipolysis in mature 3T3-L1 adipocytes via rhodopsin-dependent β3-adrenergic signaling. Eur J Cell Biol 2017; 96:301-311. [PMID: 28483278 DOI: 10.1016/j.ejcb.2017.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 01/25/2023] Open
Abstract
The regulation of fat metabolism is important for maintaining functional and structural tissue homeostasis in biological systems. Reducing excessive lipids has been an important concern due to the concomitant health risks caused by metabolic disorders such as obesity, adiposity and dyslipidemia. A recent study revealed that unlike conventional care regimens (e.g., diet or medicine), low-energy visible radiation (VR) regulates lipid levels via autophagy-dependent hormone-sensitive lipase (HSL) phosphorylation in differentiated human adipose-derived stem cells. To clarify the underlying cellular and molecular mechanisms, we first verified the photoreceptor and photoreceptor-dependent signal cascade in nonvisual 3T3-L1 adipocytes. For a better understanding of the concomitant phenomena that result from VR exposure, mature 3T3-L1 adipocytes were exposed to four different wavelengths of VR (410, 505, 590 and 660nm) in this study. The results confirmed that specific VR wavelengths, especially 505nm than 590nm, increase intracellular cyclic adenosine monophosphate (cAMP) levels and decrease lipid droplets. Interestingly, the mRNA and protein levels of the Opn2 (rhodopsin) photoreceptor increased after VR exposure in mature 3T3-L1 adipocytes. Subsequent treatment of mature 3T3-L1 adipocytes at a specific VR wavelength induced rhodopsin- and β3-adrenergic receptor (AR)-dependent lipolytic responses that consequently led to increases in intracellular cAMP and phosphorylated HSL protein levels. Our study indicates that photoreceptors are expressed and exert individual functions in nonvisual cells, such as adipocytes. We suggest that the VR-induced photoreceptor system could be a potential therapeutic target for the regulation of lipid homeostasis in a non-invasive manner.
Collapse
Affiliation(s)
- Phil June Park
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, 1920, Yonggu-daero Giheung-gu, Yongin-si, Gyeonggi-do 17074, Republic of Korea; Department of Genetic Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, 1920, Yonggu-daero Giheung-gu, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| |
Collapse
|