1
|
Sharma R, Yang WCD. Perspective and prospects of in situ transmission/scanning transmission electron microscopy. Microscopy (Oxf) 2024; 73:79-100. [PMID: 38006307 DOI: 10.1093/jmicro/dfad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure-chemistry-property relationship over the past couple of decades. The challenges for realizing 'a lab-in-gap', i.e. gap between the objective lens pole pieces, or 'a lab-on-chip', to be used to carry out experiments are being met through continuous instrumental developments. Commercially available TEM columns and sample holder, that have been modified for in situ experimentation, have contributed to uncover structural and chemical changes occurring in the sample when subjected to external stimulus such as temperature, pressure, radiation (photon, ions and electrons), environment (gas, liquid and magnetic or electrical field) or a combination thereof. Whereas atomic resolution images and spectroscopy data are being collected routinely using TEM/STEM, temporal resolution is limited to millisecond. On the other hand, better than femtosecond temporal resolution can be achieved using an ultrafast electron microscopy or dynamic TEM, but the spatial resolution is limited to sub-nanometers. In either case, in situ experiments generate large datasets that need to be transferred, stored and analyzed. The advent of artificial intelligence, especially machine learning platforms, is proving crucial to deal with this big data problem. Further developments are still needed in order to fully exploit our capability to understand, measure and control chemical and/or physical processes. We present the current state of instrumental and computational capabilities and discuss future possibilities.
Collapse
Affiliation(s)
- Renu Sharma
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Wei-Chang David Yang
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
2
|
Sharma R, Yang WCD. Hybrid Electron Microscope for Multimodal in situ Measurements. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1942-1943. [PMID: 37612970 DOI: 10.1093/micmic/ozad067.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Renu Sharma
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Wei-Chang David Yang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
3
|
Krijnen K, Keelor JD, Böhm S, Ellis SR, Köster C, Höhndorf J, Heeren RMA, Anthony IGM. A Multimodal SIMS/MALDI Mass Spectrometry Imaging Source with Secondary Electron Imaging Capabilities for Use with timsTOF Instruments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:720-727. [PMID: 36891615 PMCID: PMC10080675 DOI: 10.1021/jasms.2c00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Mass spectrometry imaging (MSI) is a surface analysis technique that produces chemical images and is commonly used for biological and biomedical research. Multimodal imaging combines multiple imaging modes in order to get a more comprehensive view of a sample. Multimodal MSI images are often acquired using multiple MSI instruments, which leads to issues regarding image registration and increases the chance of sample damage or degradation during sample transfer. These problems can be solved by using a single instrument that can image in multiple modes. In order to improve the efficiency of multimodal imaging and investigate complementary modes of MSI, we have modified a prototype Bruker timsTOF fleX by adding secondary ion mass spectrometry (SIMS) and secondary electron (SE) imaging capabilities while preserving the ability to perform matrix-assisted laser desorption/ionization (MALDI). We show multimodal images collected on this instrument that required only trivial registration and were acquired without sample transfer between imaging trials. Furthermore, we characterize the performance of SIMS, SE, and MALDI imaging and compare the performance of the modified instrument to a commercial timsTOF fleX.
Collapse
Affiliation(s)
- Kasper Krijnen
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joel D. Keelor
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sebastian Böhm
- Bruker
Daltonics GmbH & Co KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Shane R. Ellis
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Claus Köster
- Bruker
Daltonics GmbH & Co KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Jens Höhndorf
- Bruker
Daltonics GmbH & Co KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ian G. M. Anthony
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Borodinov N, Banerjee P, Cho SH, Milliron DJ, Ovchinnikova OS, Vasudevan RK, Hachtel JA. Enhancing hyperspectral EELS analysis of complex plasmonic nanostructures with pan-sharpening. J Chem Phys 2021; 154:014202. [PMID: 33412885 DOI: 10.1063/5.0031324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoscale hyperspectral techniques-such as electron energy loss spectroscopy (EELS)-are critical to understand the optical response in plasmonic nanostructures, but as systems become increasingly complex, the required sampling density and acquisition times become prohibitive for instrumental and specimen stability. As a result, there has been a recent push for new experimental methodologies that can provide comprehensive information about a complex system, while significantly reducing the duration of the experiment. Here, we present a pan-sharpening approach to hyperspectral EELS analysis, where we acquire two datasets from the same region (one with high spatial resolution and one with high spectral fidelity) and combine them to achieve a single dataset with the beneficial properties of both. This work outlines a straightforward, reproducible pathway to reduced experiment times and higher signal-to-noise ratios, while retaining the relevant physical parameters of the plasmonic response, and is generally applicable to a wide range of spectroscopy modalities.
Collapse
Affiliation(s)
- Nikolay Borodinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Progna Banerjee
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Shin Hum Cho
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Olga S Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
5
|
Lorenz M, Wagner R, Jesse S, Marsh JM, Mamak M, Proksch R, Ovchinnikova OS. Nanoscale Mass Spectrometry Multimodal Imaging via Tip-Enhanced Photothermal Desorption. ACS NANO 2020; 14:16791-16802. [PMID: 33232114 DOI: 10.1021/acsnano.0c05019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Materials ranging from adhesives, pharmaceuticals, lubricants, and personal care products are traditionally studied using macroscopic characterization techniques. However, their functionality is in reality defined by details of chemical organization on often noncrystalline matter with characteristic length scales on the order of microns to nanometers. Additionally, these materials are traditionally difficult to analyze using standard vacuum-based approaches that provide nanoscale chemical characterization due to their volatile and beam-sensitive nature. Therefore, approaches that operate under ambient conditions need to be developed that allow probing of nanoscale chemical phenomena and correlated functionality. Here, we demonstrate a tool for probing and visualizing local chemical environments and correlating them to material structure and functionality using advanced multimodal chemical imaging on a combined atomic force microscopy (AFM) and mass spectrometry (MS) system using tip-enhanced photothermal desorption with atmospheric pressure chemical ionization (APCI). We demonstrate enhanced performance metrics of the technique for correlated imaging and point sampling and illustrate the applicability for the analysis of trace chemicals on a human hair, additives in adhesives on paper, and pharmaceuticals samples notoriously difficult to analyze in a vacuum environment. Overall, this approach of correlating local chemical environments to structure and functionality is key to advancing research in many fields ranging from biology, to medicine, to material science.
Collapse
Affiliation(s)
- Matthias Lorenz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ryan Wagner
- Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Marc Mamak
- Procter & Gamble Company, Cincinnati, Ohio 45202, United States
| | - Roger Proksch
- Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Olga S Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Mousley M, Möller W, Philipp P, Hlawacek G, Wirtz T, Eswara S. Structural and chemical evolution of Au-silica core-shell nanoparticles during 20 keV helium ion irradiation: a comparison between experiment and simulation. Sci Rep 2020; 10:12058. [PMID: 32694558 PMCID: PMC7374165 DOI: 10.1038/s41598-020-68955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022] Open
Abstract
Au-silica core–shell nanoparticles have been irradiated with 20 keV He+ ions up to a maximum fluence of 4.7 × 1017 ions/cm2. The nanoscale structural and crystallographic evolution induced by He+ ion irradiation was followed at various stages using Transmission Electron Microscopy (TEM). During irradiation satellite Au clusters are formed around the main Au core, which remained crystalline even after the maximum He+ ion fluence. The spherical silica shell deformed into a hemisphere due to He+ ion irradiation. Three dimensional Monte-Carlo simulations, based on the binary collision approximation, have been performed on stacked infinite layers and an individual particle. The stacked layers results show that the He+ beam interacts with most of the nanoparticle and Au migrates in the direction of beam incidence agreeing with experimental findings. The individual particle results match the experiment in terms of the volume which is sputtered away however additional mechanisms, not included in the simulations, are present in the experiment during the satellite formation and silica shell deformation. These results show the ability for 20 keV He+ ions to be used for the modification of nanostructures. Furthermore, these results contribute to a quantitative understanding of the dynamic evolution of materials observed using microscopy techniques based on He+ ions.
Collapse
Affiliation(s)
- M Mousley
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, 4422, Belvaux, Luxembourg.
| | - W Möller
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328, Dresden, Germany
| | - P Philipp
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, 4422, Belvaux, Luxembourg
| | - G Hlawacek
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328, Dresden, Germany
| | - T Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, 4422, Belvaux, Luxembourg
| | - S Eswara
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, 4422, Belvaux, Luxembourg
| |
Collapse
|
7
|
Gu L, Wang N, Tang X, Changela HG. Application of FIB-SEM Techniques for the Advanced Characterization of Earth and Planetary Materials. SCANNING 2020; 2020:8406917. [PMID: 32774588 PMCID: PMC7397446 DOI: 10.1155/2020/8406917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 05/12/2023]
Abstract
Advanced microanalytical techniques such as high-resolution transmission electron microscopy (HRTEM), atom probe tomography (APT), and synchrotron-based scanning transmission X-ray microscopy (STXM) enable one to characterize the structure and chemical and isotopic compositions of natural materials down towards the atomic scale. Dual focused ion beam-scanning electron microscopy (FIB-SEM) is a powerful tool for site-specific sample preparation and subsequent analysis by TEM, APT, and STXM to the highest energy and spatial resolutions. FIB-SEM also works as a stand-alone technique for three-dimensional (3D) tomography. In this review, we will outline the principles and challenges when using FIB-SEM for the advanced characterization of natural materials in the Earth and Planetary Sciences. More specifically, we aim to highlight the state-of-the-art applications of FIB-SEM using examples including (a) traditional FIB ultrathin sample preparation of small particles in the study of space weathering of lunar soil grains, (b) migration of Pb isotopes in zircons by FIB-based APT, (c) coordinated synchrotron-based STXM characterization of extraterrestrial organic material in carbonaceous chondrite, and finally (d) FIB-based 3D tomography of oil shale pores by slice and view methods. Dual beam FIB-SEM is a powerful analytical platform, the scope of which, for technological development and adaptation, is vast and exciting in the field of Earth and Planetary Sciences. For example, dual beam FIB-SEM will be a vital technique for the characterization of fine-grained asteroid and lunar samples returned to the Earth in the near future.
Collapse
Affiliation(s)
- Lixin Gu
- Electron Microscopy Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 10029, China
| | - Nian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Tang
- Electron Microscopy Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 10029, China
| | - H. G. Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 10029, China
- Qian Xuesen Laboratory of Space Technology, Chinese Academy of Space Technology, Beijing, China
- Department of Earth & Planetary Science, University of New Mexico, New Mexico, USA
| |
Collapse
|
8
|
Belianinov A, Ievlev AV, Lorenz M, Borodinov N, Doughty B, Kalinin SV, Fernández FM, Ovchinnikova OS. Correlated Materials Characterization via Multimodal Chemical and Functional Imaging. ACS NANO 2018; 12:11798-11818. [PMID: 30422627 PMCID: PMC9850281 DOI: 10.1021/acsnano.8b07292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multimodal chemical imaging simultaneously offers high-resolution chemical and physical information with nanoscale and, in select cases, atomic resolution. By coupling modalities that collect physical and chemical information, we can address scientific problems in biological systems, battery and fuel cell research, catalysis, pharmaceuticals, photovoltaics, medicine, and many others. The combined systems enable the local correlation of material properties with chemical makeup, making fundamental questions of how chemistry and structure drive functionality approachable. In this Review, we present recent progress and offer a perspective for chemical imaging used to characterize a variety of samples by a number of platforms. Specifically, we present cases of infrared and Raman spectroscopies combined with scanning probe microscopy; optical microscopy and mass spectrometry; nonlinear optical microscopy; and, finally, ion, electron, and probe microscopies with mass spectrometry. We also discuss the challenges associated with the use of data originated by the combinatorial hardware, analysis, and machine learning as well as processing tools necessary for the interpretation of multidimensional data acquired from multimodal studies.
Collapse
Affiliation(s)
- Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anton V. Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthias Lorenz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikolay Borodinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sergei V. Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for Biochemistry and Bioscience, Atlanta, Georgia 30332, United States
| | - Olga S. Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Corresponding Author:
| |
Collapse
|
9
|
Eswara S, Audinot JN, El Adib B, Guennou M, Wirtz T, Philipp P. Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1951-1963. [PMID: 30116687 PMCID: PMC6071685 DOI: 10.3762/bjnano.9.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/27/2018] [Indexed: 06/01/2023]
Abstract
The mechanical, structural, electronic and magnetic properties of carbon nanotubes can be modified by electron or ion irradiation. In this work we used 25 keV He+ and Ne+ ion irradiation to study the influence of fluence and sample thickness on the irradiation-induced damage of multiwalled carbon nanotubes (MWCNTs). The irradiated areas have been characterised by correlative Raman spectroscopy and TEM imaging. In order to preclude the Raman contribution coming from the amorphous carbon support of typical TEM grids, a new methodology involving Raman inactive Au TEM grids was developed. The experimental results have been compared to SDTRIMSP simulations. Due to the small thickness of the MWCNTs, sputtering has been observed for the top and bottom side of the samples. Depending on thickness and ion species, the sputter yield is significantly higher for the bottom than the top side. For He+ and Ne+ irradiation, damage formation evolves differently, with a change in the trend of the ratio of D to G peak in the Raman spectra being observed for He+ but not for Ne+. This can be attributed to differences in stopping power and sputter behaviour.
Collapse
Affiliation(s)
- Santhana Eswara
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Nicolas Audinot
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Brahime El Adib
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Maël Guennou
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Patrick Philipp
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
10
|
Vollnhals F, Audinot JN, Wirtz T, Mercier-Bonin M, Fourquaux I, Schroeppel B, Kraushaar U, Lev-Ram V, Ellisman MH, Eswara S. Correlative Microscopy Combining Secondary Ion Mass Spectrometry and Electron Microscopy: Comparison of Intensity-Hue-Saturation and Laplacian Pyramid Methods for Image Fusion. Anal Chem 2017; 89:10702-10710. [PMID: 28901122 DOI: 10.1021/acs.analchem.7b01256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Correlative microscopy combining various imaging modalities offers powerful insights into obtaining a comprehensive understanding of physical, chemical, and biological phenomena. In this article, we investigate two approaches for image fusion in the context of combining the inherently lower-resolution chemical images obtained using secondary ion mass spectrometry (SIMS) with the high-resolution ultrastructural images obtained using electron microscopy (EM). We evaluate the image fusion methods with three different case studies selected to broadly represent the typical samples in life science research: (i) histology (unlabeled tissue), (ii) nanotoxicology, and (iii) metabolism (isotopically labeled tissue). We show that the intensity-hue-saturation fusion method often applied for EM-sharpening can result in serious image artifacts, especially in cases where different contrast mechanisms interplay. Here, we introduce and demonstrate Laplacian pyramid fusion as a powerful and more robust alternative method for image fusion. Both physical and technical aspects of correlative image overlay and image fusion specific to SIMS-based correlative microscopy are discussed in detail alongside the advantages, limitations, and the potential artifacts. Quantitative metrics to evaluate the results of image fusion are also discussed.
Collapse
Affiliation(s)
- Florian Vollnhals
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Institute of Science and Technology (LIST) , 4422 Belvaux, Luxembourg
| | - Jean-Nicolas Audinot
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Institute of Science and Technology (LIST) , 4422 Belvaux, Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Institute of Science and Technology (LIST) , 4422 Belvaux, Luxembourg
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS , 31027 Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, Faculté de Médecine de Rangueil , 31062 Toulouse, France
| | - Birgit Schroeppel
- NMI Natural and Medical Sciences Institute at the University of Tübingen , 72770 Reutlingen, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen , 72770 Reutlingen, Germany
| | | | | | - Santhana Eswara
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Institute of Science and Technology (LIST) , 4422 Belvaux, Luxembourg
| |
Collapse
|
11
|
Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat Commun 2017. [PMCID: PMC5579442 DOI: 10.1038/ncomms15806] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries. In situ TEM is a powerful tool that helps to understand energy storage behaviors of various materials. This review summarizes the critical discoveries, enabled by in situ TEM, in rechargeable ion batteries, and foresees its bright future for extensive applications.
Collapse
|
12
|
Dowsett D, Wirtz T. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles. Anal Chem 2017; 89:8957-8965. [PMID: 28771307 DOI: 10.1021/acs.analchem.7b01481] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.
Collapse
Affiliation(s)
- D Dowsett
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - T Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| |
Collapse
|
13
|
Börrnert F. Thoughts about next-generation (S)TEM instruments in science. Micron 2016; 90:1-5. [DOI: 10.1016/j.micron.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|