1
|
Jiang C, Liu J, He S, Xu W, Huang R, Pan W, Li X, Dai X, Guo J, Zhang T, Inuzuka H, Wang P, Asara JM, Xiao J, Wei W. PRMT1 orchestrates with SAMTOR to govern mTORC1 methionine sensing via Arg-methylation of NPRL2. Cell Metab 2023; 35:2183-2199.e7. [PMID: 38006878 PMCID: PMC11192564 DOI: 10.1016/j.cmet.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Methionine is an essential branch of diverse nutrient inputs that dictate mTORC1 activation. In the absence of methionine, SAMTOR binds to GATOR1 and inhibits mTORC1 signaling. However, how mTORC1 is activated upon methionine stimulation remains largely elusive. Here, we report that PRMT1 senses methionine/SAM by utilizing SAM as a cofactor for an enzymatic activity-based regulation of mTORC1 signaling. Under methionine-sufficient conditions, elevated cytosolic SAM releases SAMTOR from GATOR1, which confers the association of PRMT1 with GATOR1. Subsequently, SAM-loaded PRMT1 methylates NPRL2, the catalytic subunit of GATOR1, thereby suppressing its GAP activity and leading to mTORC1 activation. Notably, genetic or pharmacological inhibition of PRMT1 impedes hepatic methionine sensing by mTORC1 and improves insulin sensitivity in aged mice, establishing the role of PRMT1-mediated methionine sensing at physiological levels. Thus, PRMT1 coordinates with SAMTOR to form the methionine-sensing apparatus of mTORC1 signaling.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Wei Xu
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Runzhi Huang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaolong Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - John M Asara
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jianru Xiao
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Berryhill CA, Hanquier JN, Doud EH, Cordeiro-Spinetti E, Dickson BM, Rothbart SB, Mosley AL, Cornett EM. Global lysine methylome profiling using systematically characterized affinity reagents. Sci Rep 2023; 13:377. [PMID: 36611042 PMCID: PMC9825382 DOI: 10.1038/s41598-022-27175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
Lysine methylation modulates the function of histone and non-histone proteins, and the enzymes that add or remove lysine methylation-lysine methyltransferases (KMTs) and lysine demethylases (KDMs), respectively-are frequently mutated and dysregulated in human diseases. Identification of lysine methylation sites proteome-wide has been a critical barrier to identifying the non-histone substrates of KMTs and KDMs and for studying functions of non-histone lysine methylation. Detection of lysine methylation by mass spectrometry (MS) typically relies on the enrichment of methylated peptides by pan-methyllysine antibodies. In this study, we use peptide microarrays to show that pan-methyllysine antibodies have sequence bias, and we evaluate how the differential selectivity of these reagents impacts the detection of methylated peptides in MS-based workflows. We discovered that most commercially available pan-Kme antibodies have an in vitro sequence bias, and multiple enrichment approaches provide the most comprehensive coverage of the lysine methylome. Overall, global lysine methylation proteomics with multiple characterized pan-methyllysine antibodies resulted in the detection of 5089 lysine methylation sites on 2751 proteins from two human cell lines, nearly doubling the number of reported lysine methylation sites in the human proteome.
Collapse
Affiliation(s)
- Christine A Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyne N Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
vanLieshout TL, Stouth DW, Hartel NG, Vasam G, Ng SY, Webb EK, Rebalka IA, Mikhail AI, Graham NA, Menzies KJ, Hawke TJ, Ljubicic V. The CARM1 transcriptome and arginine methylproteome mediate skeletal muscle integrative biology. Mol Metab 2022; 64:101555. [PMID: 35872306 PMCID: PMC9379683 DOI: 10.1016/j.molmet.2022.101555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle. METHODS We used transcriptomic, methylproteomic, molecular, functional, and integrative physiological approaches to determine the specific impact of CARM1 in muscle homeostasis. RESULTS Our data defines the occurrence of arginine methylation in skeletal muscle and demonstrates that this mark occurs on par with phosphorylation and ubiquitination. CARM1 skeletal muscle-specific knockout (mKO) mice displayed altered transcriptomic and arginine methylproteomic signatures with molecular and functional outcomes confirming remodeled skeletal muscle contractile and neuromuscular junction characteristics, which presaged decreased exercise tolerance. Moreover, CARM1 regulates AMPK-PGC-1α signalling during acute conditions of activity-induced muscle plasticity. CONCLUSIONS This study uncovers the broad impact of CARM1 in the maintenance and remodelling of skeletal muscle biology.
Collapse
Affiliation(s)
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Erin K Webb
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
5
|
Weirich S, Jeltsch A. Specificity Analysis of Protein Methyltransferases and Discovery of Novel Substrates Using SPOT Peptide Arrays. Methods Mol Biol 2022; 2529:313-325. [PMID: 35733022 DOI: 10.1007/978-1-0716-2481-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational methylation of amino acid side chains in proteins mainly occurs on lysine, arginine, glutamine, and histidine residues. It is introduced by different protein methyltransferases (PMTs) and regulates many aspects of protein function including stability, activity, localization, and protein/protein interactions. Although the biological effects of PMTs are mediated by their methylation substrates, the full substrate spectrum of most PMTs is not known. For many PMTs, their activity on a particular potential substrate depends, among other factors, on the peptide sequence containing the target residue for methylation. In this protocol, we describe the application of SPOT peptide arrays to investigate the substrate specificity of PMTs and identify novel substrates. Methylation of SPOT peptide arrays makes it possible to study the methylation of many different peptides in one experiment at reasonable costs and thereby provides detailed information about the specificity of the PMT under investigation. In these experiments, a known substrate sequence is used as template to design a SPOT peptide array containing peptides with single amino acid exchanges at all positions of the sequence. Methylation of the array with the PMT provides detailed preferences for each amino acid at each position in the substrate sequence, yielding a substrate sequence specificity profile. This information can then be used to identify novel potential PMT substrates by in silico data base searches. Methylation of novel substrate candidates can be validated in SPOT arrays at peptide level, followed by validation at protein level in vitro and in cells.
Collapse
Affiliation(s)
- Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
6
|
Wang L, Xu M, Hu H, Zhang L, Ye F, Jin J, Fang H, Chen J, Chen G, Broussy S, Vidal M, Lv Z, Liu WQ. A Cyclic Peptide Epitope of an Under-Explored VEGF-B Loop 1 Demonstrated In Vivo Anti-Angiogenic and Anti-Tumor Activities. Front Pharmacol 2021; 12:734544. [PMID: 34658874 PMCID: PMC8511632 DOI: 10.3389/fphar.2021.734544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Pathological angiogenesis is mainly initiated by the binding of abnormal expressed vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). Blocking the VEGF/VEGFR interaction is a clinically proven treatment in cancer. Our previous work by epitope scan had identified cyclic peptides, mimicking the loop 1 of VEGF-A, VEGF-B and placental growth factor (PlGF), inhibited effectively the VEGF/VEGFR interaction in ELISA. We described here the docking study of these peptides on VEGFR1 to identify their binding sites. The cellular anti-angiogenic activities were examined by inhibition of VEGF-A induced cell proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). The ability of these peptides to inhibit MAPK/ERK1/2 signaling pathway was examined as well. On chick embryo chorioallantoic membrane (CAM) model, a cyclic peptide named B-cL1 with most potent in vitro activity showed important in vivo anti-angiogenic effect. Finally, B-cL1 inhibited VEGF induced human gastric cancer SGC-7901 cells proliferation. It showed anti-tumoral effect on SGC-7901 xenografted BALB/c nude mouse model. The cyclic peptides B-cL1 constitutes an anti-angiogenic peptide drug lead for the design of new and more potent VEGFR antagonists in the treatment of angiogenesis related diseases.
Collapse
Affiliation(s)
- Lei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haofeng Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lun Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jia Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Jian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sylvain Broussy
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, Paris, France
| | - Michel Vidal
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, Paris, France.,Biologie du médicament, toxicologie, AP-HP, Hôpital Cochin, Paris, France
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, Paris, France
| |
Collapse
|
7
|
Maron MI, Lehman SM, Gayatri S, DeAngelo JD, Hegde S, Lorton BM, Sun Y, Bai DL, Sidoli S, Gupta V, Marunde MR, Bone JR, Sun ZW, Bedford MT, Shabanowitz J, Chen H, Hunt DF, Shechter D. Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases. iScience 2021; 24:102971. [PMID: 34505004 PMCID: PMC8417332 DOI: 10.1016/j.isci.2021.102971] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.
Collapse
Affiliation(s)
- Maxim I. Maron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie M. Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joseph D. DeAngelo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - James R. Bone
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Zu-Wen Sun
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongshan Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donald F. Hunt
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Kapell S, Jakobsson ME. Large-scale identification of protein histidine methylation in human cells. NAR Genom Bioinform 2021; 3:lqab045. [PMID: 34046594 PMCID: PMC8140740 DOI: 10.1093/nargab/lqab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Methylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale studies of the modification are hitherto absent. Here, we query ultra-comprehensive human proteome datasets to generate a resource of histidine methylation sites. In HeLa cells alone, we report 299 histidine methylation sites as well as 895 lysine methylation events. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.
Collapse
Affiliation(s)
- Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | |
Collapse
|
9
|
Hamey JJ, Rakow S, Bouchard C, Senst JM, Kolb P, Bauer UM, Wilkins MR, Hart-Smith G. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues. FEBS J 2021; 288:5668-5691. [PMID: 33764612 DOI: 10.1111/febs.15837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses the asymmetric dimethylation of arginines on numerous substrate proteins within the human cell. In particular, PRMT6 methylates histone H3 arginine 2 (H3R2) which affects both gene repression and activation. However, the substrate specificity of PRMT6 has not been comprehensively analysed. Here, we systematically characterise the substrate recognition motif of PRMT6, finding that it has broad specificity and recognises the RG motif. Working with a H3 tail peptide as a template, on which we made 204 amino acid substitutions, we use targeted mass spectrometry to measure their effect on PRMT6 in vitro activity. We first show that PRMT6 methylates R2 and R8 in the H3 peptide, although H3R8 is methylated with lower efficiency and is not an in vivo PRMT6 substrate. We then quantify the effect of 194 of these amino acid substitutions on methylation at both H3R2 and H3R8. In both cases, we find that PRMT6 tolerates essentially any amino acid substitution in the H3 peptide, but that positively charged and bulky residues are preferred near the target arginine. We show that PRMT6 also has preference for glycine, but only in the position immediately following the target arginine. This indicates that PRMT6 recognises the RG motif rather than the RGG motif. We further confirm this preference for the RG motif on another PRMT6 substrate, histone H4R3. This broad specificity and recognition of RG rather than RGG are distinctive among the PRMT family and has implications for the development of drugs to selectively target PRMT6. DATABASES: Panorama Public (https://panoramaweb.org/PRMT6motif.url); ProteomeXchange (PXD016711).
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Johanna M Senst
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
10
|
Combinations of histone post-translational modifications. Biochem J 2021; 478:511-532. [DOI: 10.1042/bcj20200170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Histones are essential proteins that package the eukaryotic genome into its physiological state of nucleosomes, chromatin, and chromosomes. Post-translational modifications (PTMs) of histones are crucial to both the dynamic and persistent regulation of the genome. Histone PTMs store and convey complex signals about the state of the genome. This is often achieved by multiple variable PTM sites, occupied or unoccupied, on the same histone molecule or nucleosome functioning in concert. These mechanisms are supported by the structures of ‘readers’ that transduce the signal from the presence or absence of PTMs in specific cellular contexts. We provide background on PTMs and their complexes, review the known combinatorial function of PTMs, and assess the value and limitations of common approaches to measure combinatorial PTMs. This review serves as both a reference and a path forward to investigate combinatorial PTM functions, discover new synergies, and gather additional evidence supporting that combinations of histone PTMs are the central currency of chromatin-mediated regulation of the genome.
Collapse
|
11
|
Musiani D, Massignani E, Cuomo A, Yadav A, Bonaldi T. Biochemical and Computational Approaches for the Large-Scale Analysis of Protein Arginine Methylation by Mass Spectrometry. Curr Protein Pept Sci 2021; 21:725-739. [PMID: 32338214 DOI: 10.2174/1389203721666200426232531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
The absence of efficient mass spectrometry-based approaches for the large-scale analysis of protein arginine methylation has hindered the understanding of its biological role, beyond the transcriptional regulation occurring through histone modification. In the last decade, however, several technological advances of both the biochemical methods for methylated polypeptide enrichment and the computational pipelines for MS data analysis have considerably boosted this research field, generating novel insights about the extent and role of this post-translational modification. Here, we offer an overview of state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods. The further optimization and systematic application of these analytical solutions will lead to ground-breaking discoveries on the role of protein methylation in biological processes.
Collapse
Affiliation(s)
- Daniele Musiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| |
Collapse
|
12
|
Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1). Biochem J 2021; 477:2971-2980. [PMID: 32716034 DOI: 10.1042/bcj20200534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Methylation of arginine residues occurs on a number of protein substrates, most notably the N-terminal tails of histones, and is catalyzed by a family of enzymes called the protein arginine methyltransferases (PRMTs). This modification can lead to transcriptional activation or repression of cancer-related genes. To date, a number of inhibitors, based on natural peptide substrates, have been developed for the PRMT family of enzymes. However, because peptides are easily degraded in vivo, the utility of these inhibitors as potential therapeutics is limited. The use of peptoids, which are peptide mimetics where the amino acid side chain is attached to the nitrogen in the amide backbone instead of the α-carbon, may circumvent the problems associated with peptide degradation. Given the structural similarities, peptoid scaffolds may provide enhanced stability, while preserving the mechanism of action. Herein, we have identified that peptoids based on natural peptide substrates are not catalyzed to the product by PRMT1, but instead are inhibitors of this enzyme. Reducing the length of the peptoid reduces inhibition and suggest the residues distal from the site of modification are important for binding. Furthermore, a positive charge on the N-terminus helps promote binding and improves inhibition. Selectivity among family members is likely possible based on inhibition being moderately selective for PRMT1 over PRMT5 and provides a scaffold that can be used to develop pharmaceuticals against this class of enzymes.
Collapse
|
13
|
Cheng D, Gao G, Di Lorenzo A, Jayne S, Hottiger MO, Richard S, Bedford MT. Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. J Biol Chem 2020; 295:17060-17070. [PMID: 33008887 PMCID: PMC7863876 DOI: 10.1074/jbc.ra120.014704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Indexed: 02/03/2023] Open
Abstract
CARM1 is a protein arginine methyltransferase (PRMT) that acts as a coactivator in a number of transcriptional programs. CARM1 orchestrates this coactivator activity in part by depositing the H3R17me2a histone mark in the vicinity of gene promoters that it regulates. However, the gross levels of H3R17me2a in CARM1 KO mice did not significantly decrease, indicating that other PRMT(s) may compensate for this loss. We thus performed a screen of type I PRMTs, which revealed that PRMT6 can also deposit the H3R17me2a mark in vitro CARM1 knockout mice are perinatally lethal and display a reduced fetal size, whereas PRMT6 null mice are viable, which permits the generation of double knockouts. Embryos that are null for both CARM1 and PRMT6 are noticeably smaller than CARM1 null embryos, providing in vivo evidence of redundancy. Mouse embryonic fibroblasts (MEFs) from the double knockout embryos display an absence of the H3R17me2a mark during mitosis and increased signs of DNA damage. Moreover, using the combination of CARM1 and PRMT6 inhibitors suppresses the cell proliferation of WT MEFs, suggesting a synergistic effect between CARM1 and PRMT6 inhibitions. These studies provide direct evidence that PRMT6 also deposits the H3R17me2a mark and acts redundantly with CARM1.
Collapse
Affiliation(s)
- Donghang Cheng
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Center, University of Leicester, Leicester, United Kingdom; Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Stephane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.
| |
Collapse
|
14
|
Stability of tuberous sclerosis complex 2 is controlled by methylation at R1457 and R1459. Sci Rep 2020; 10:21160. [PMID: 33273660 PMCID: PMC7713242 DOI: 10.1038/s41598-020-78274-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
Mutations in genes that encode components of tuberous sclerosis complex 2 (TSC2) are associated with tuberous sclerosis complex disease. TSC2 interacts with tuberous sclerosis complex 1 to form a complex that negatively regulates cell growth and proliferation via the inactivation of mechanistic target of rapamycin complex 1. The activity of TSC2 is mainly regulated via posttranslational modifications such as phosphorylation. However, the control of TSC2 activity is not entirely achieved by phosphorylation. In this study, we show that TSC2 is methylated at R1457 and R1459 by protein arginine methyltransferase 1 (PRMT1). Methylation of these two residues can affect the phosphorylation status through protein kinase B (Akt) of TSC2 at T1462 and is essential for TSC2 stability. Taken together, these findings indicate that novel posttranslational modifications are important for the regulation of TSC2 stability through PRMT1-mediated methylation.
Collapse
|
15
|
CARM1 Regulates AMPK Signaling in Skeletal Muscle. iScience 2020; 23:101755. [PMID: 33241200 PMCID: PMC7672286 DOI: 10.1016/j.isci.2020.101755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an emerging mediator of skeletal muscle plasticity. We employed genetic, physiologic, and pharmacologic approaches to determine whether CARM1 regulates the master neuromuscular phenotypic modifier AMP-activated protein kinase (AMPK). CARM1 skeletal muscle-specific knockout (mKO) mice displayed reduced muscle mass and dysregulated autophagic and atrophic processes downstream of AMPK. We observed altered interactions between CARM1 and AMPK and its network, including forkhead box protein O1, during muscle disuse. CARM1 methylated AMPK during the early stages of muscle inactivity, whereas CARM1 mKO mitigated progression of denervation-induced atrophy and was accompanied by attenuated phosphorylation of AMPK targets such as unc-51 like autophagy-activating kinase 1Ser555. Lower acetyl-coenzyme A corboxylaseSer79 phosphorylation, as well as reduced peroxisome proliferator-activated receptor-γ coactivator-1α, was also observed in mKO animals following acute administration of the direct AMPK activator MK-8722. Our study suggests that targeting CARM1-AMPK interplay may have broad impacts on neuromuscular health and disease. Role of the arginine methyltransferase CARM1 in muscle biology remains undefined Skeletal muscle-specific removal of CARM1 alters autophagic and atrophic processes CARM1 methylates AMPK and mediates AMPK signaling during neurogenic muscle disuse Targeted pharmacological AMPK stimulation is impacted by CARM1 in skeletal muscle
Collapse
|
16
|
Robinson AE, Binek A, Venkatraman V, Searle BC, Holewinski RJ, Rosenberger G, Parker SJ, Basisty N, Xie X, Lund PJ, Saxena G, Mato JM, Garcia BA, Schilling B, Lu SC, Van Eyk JE. Lysine and Arginine Protein Post-translational Modifications by Enhanced DIA Libraries: Quantification in Murine Liver Disease. J Proteome Res 2020; 19:4163-4178. [PMID: 32966080 DOI: 10.1021/acs.jproteome.0c00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteoforms containing post-translational modifications (PTMs) represent a degree of functional diversity only harnessed through analytically precise simultaneous quantification of multiple PTMs. Here we present a method to accurately differentiate an unmodified peptide from its PTM-containing counterpart through data-independent acquisition-mass spectrometry, leveraging small precursor mass windows to physically separate modified peptidoforms from each other during MS2 acquisition. We utilize a lysine and arginine PTM-enriched peptide assay library and site localization algorithm to simultaneously localize and quantify seven PTMs including mono-, di-, and trimethylation, acetylation, and succinylation in addition to total protein quantification in a single MS run without the need to enrich experimental samples. To evaluate biological relevance, this method was applied to liver lysate from differentially methylated nonalcoholic steatohepatitis (NASH) mouse models. We report that altered methylation and acetylation together with total protein changes drive the novel hypothesis of a regulatory function of PTMs in protein synthesis and mRNA stability in NASH.
Collapse
Affiliation(s)
- Aaron E Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Brian C Searle
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - George Rosenberger
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Peder J Lund
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | | | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
17
|
Kupai A, Vaughan RM, Dickson BM, Rothbart SB. A Degenerate Peptide Library Approach to Reveal Sequence Determinants of Methyllysine-Driven Protein Interactions. Front Cell Dev Biol 2020; 8:241. [PMID: 32328492 PMCID: PMC7160673 DOI: 10.3389/fcell.2020.00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022] Open
Abstract
Lysine methylation facilitates protein-protein interactions through the activity of methyllysine (Kme) “reader” proteins. Functions of Kme readers have historically been studied in the context of histone interactions, where readers aid in chromatin-templated processes such as transcription, DNA replication and repair. However, there is growing evidence that Kme readers also function through interactions with non-histone proteins. To facilitate expanded study of Kme reader activities, we developed a high-throughput binding assay to reveal the sequence determinants of Kme-driven protein interactions. The assay queries a degenerate methylated lysine-oriented peptide library (Kme-OPL) to identify the key residues that modulate reader binding. The assay recapitulated methyl order and amino acid sequence preferences associated with histone Kme readers. The assay also revealed methylated sequences that bound Kme readers with higher affinity than histones. Proteome-wide scoring was applied to assay results to help prioritize future study of Kme reader interactions. The platform was also used to design sequences that directed specificity among closely related reader domains, an application which may have utility in the development of peptidomimetic inhibitors. Furthermore, we used the platform to identify binding determinants of site-specific histone Kme antibodies and surprisingly revealed that only a few amino acids drove epitope recognition. Collectively, these studies introduce and validate a rapid, unbiased, and high-throughput binding assay for Kme readers, and we envision its use as a resource for expanding the study of Kme-driven protein interactions.
Collapse
Affiliation(s)
- Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
18
|
Rakow S, Pullamsetti SS, Bauer UM, Bouchard C. Assaying epigenome functions of PRMTs and their substrates. Methods 2019; 175:53-65. [PMID: 31542509 DOI: 10.1016/j.ymeth.2019.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Among the widespread and increasing number of identified post-translational modifications (PTMs), arginine methylation is catalyzed by the protein arginine methyltransferases (PRMTs) and regulates fundamental processes in cells, such as gene regulation, RNA processing, translation, and signal transduction. As epigenetic regulators, PRMTs play key roles in pluripotency, differentiation, proliferation, survival, and apoptosis, which are essential biological programs leading to development, adult homeostasis but also pathological conditions including cancer. A full understanding of the molecular mechanisms that underlie PRMT-mediated gene regulation requires the genome wide mapping of each player, i.e., PRMTs, their substrates and epigenetic marks, methyl-marks readers as well as interaction partners, in a thorough and unambiguous manner. However, despite the tremendous advances in high throughput sequencing technologies and the numerous efforts from the scientific community, the epigenomic profiling of PRMTs as well as their histone and non-histone substrates still remains a big challenge owing to obvious limitations in tools and methodologies. This review will summarize the present knowledge about the genome wide mapping of PRMTs and their substrates as well as the technical approaches currently in use. The limitations and pitfalls of the technical tools along with conventional approaches will be then discussed in detail. Finally, potential new strategies for chromatin profiling of PRMTs and histone substrates will be proposed and described.
Collapse
Affiliation(s)
- Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
19
|
Cornett EM, Dickson BM, Krajewski K, Spellmon N, Umstead A, Vaughan RM, Shaw KM, Versluis PP, Cowles MW, Brunzelle J, Yang Z, Vega IE, Sun ZW, Rothbart SB. A functional proteomics platform to reveal the sequence determinants of lysine methyltransferase substrate selectivity. SCIENCE ADVANCES 2018; 4:eaav2623. [PMID: 30498785 PMCID: PMC6261651 DOI: 10.1126/sciadv.aav2623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 05/09/2023]
Abstract
Lysine methylation is a key regulator of histone protein function. Beyond histones, few connections have been made to the enzymes responsible for the deposition of these posttranslational modifications. Here, we debut a high-throughput functional proteomics platform that maps the sequence determinants of lysine methyltransferase (KMT) substrate selectivity without a priori knowledge of a substrate or target proteome. We demonstrate the predictive power of this approach for identifying KMT substrates, generating scaffolds for inhibitor design, and predicting the impact of missense mutations on lysine methylation signaling. By comparing KMT selectivity profiles to available lysine methylome datasets, we reveal a disconnect between preferred KMT substrates and the ability to detect these motifs using standard mass spectrometry pipelines. Collectively, our studies validate the use of this platform for guiding the study of lysine methylation signaling and suggest that substantial gaps exist in proteome-wide curation of lysine methylomes.
Collapse
Affiliation(s)
- Evan M. Cornett
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bradley M. Dickson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas Spellmon
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Andrew Umstead
- Department of Translational Science and Molecular Medicine and Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Robert M. Vaughan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Kevin M. Shaw
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Philip P. Versluis
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Joseph Brunzelle
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zhe Yang
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Irving E. Vega
- Department of Translational Science and Molecular Medicine and Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Zu-Wen Sun
- EpiCypher Inc., Research Triangle Park, NC 27709, USA
| | - Scott B. Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Corresponding author.
| |
Collapse
|
20
|
Inhibiting Arginine Methylation as a Tool to Investigate Cross-Talk with Methylation and Acetylation Post-Translational Modifications in a Glioblastoma Cell Line. Proteomes 2018; 6:proteomes6040044. [PMID: 30347783 PMCID: PMC6313862 DOI: 10.3390/proteomes6040044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastomas (GBM) are the most common grade 4 brain tumours; patients have very poor prognosis with an average survival of 15 months after diagnosis. Novel research lines have begun to explore aberrant protein arginine methylation (ArgMe) as a possible therapeutic target in GBM and ArgMe inhibitors are currently in clinical trials. Enzymes known as protein arginine methyltransferases (PRMT1-9) can lead to mono- or di-ArgMe, and in the latter case symmetric or asymmetric dimethylation (SDMA and ADMA, respectively). Using the most common GBM cell line, we have profiled the expression of PRMTs, used ArgMe inhibitors as tools to investigate post-translational modifications cross-talk and measured the effect of ArgMe inhibitors on cell viability. We have identified novel SDMA events upon inhibition of ADMA in GBM cells and spheroids. We have observed cross-talk between ADMA and lysine acetylation in GBM cells and platelets. Treatment of GBM cells with furamidine, a PRMT1 inhibitor, reduces cell viability in 2D and 3D models. These data provide new molecular understanding of a disease with unmet clinical needs.
Collapse
|
21
|
Cheng D, Vemulapalli V, Lu Y, Shen J, Aoyagi S, Fry CJ, Yang Y, Foulds CE, Stossi F, Treviño LS, Mancini MA, O'Malley BW, Walker CL, Boyer TG, Bedford MT. CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci Alliance 2018; 1:e201800117. [PMID: 30456381 PMCID: PMC6238599 DOI: 10.26508/lsa.201800117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
CARM1 methylates MED12 at arginine 1899 to generate a TDRD3 binding site, which in turn regulates the ability of mediator to interact with activating ncRNAs and modulate gene expression. The coactivator-associated arginine methyltransferase (CARM1) functions as a regulator of transcription by methylating a diverse array of substrates. To broaden our understanding of CARM1's mechanistic actions, we sought to identify additional substrates for this enzyme. To do this, we generated CARM1 substrate motif antibodies, and used immunoprecipitation coupled with mass spectrometry to identify cellular targets of CARM1, including mediator complex subunit 12 (MED12) and the lysine methyltransferase KMT2D. Both of these proteins are implicated in enhancer function. We identified the major CARM1-mediated MED12 methylation site as arginine 1899 (R1899), which interacts with the Tudor domain–containing effector molecule, TDRD3. Chromatin immunoprecipitation–seq studies revealed that CARM1 and the methyl mark it deposits are tightly associated with ERα-specific enhancers and positively modulate transcription of estrogen-regulated genes. In addition, we showed that the methylation of MED12, at the R1899 site, and the recruitment of TDRD3 by this methylated motif are critical for the ability of MED12 to interact with activating noncoding RNAs.
Collapse
Affiliation(s)
- Donghang Cheng
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | - Vidyasiri Vemulapalli
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | | | | | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lindsey S Treviño
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cheryl L Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| |
Collapse
|
22
|
Hamey JJ, Separovich RJ, Wilkins MR. MT-MAMS: Protein Methyltransferase Motif Analysis by Mass Spectrometry. J Proteome Res 2018; 17:3485-3491. [DOI: 10.1021/acs.jproteome.8b00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joshua J. Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Ryan J. Separovich
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| |
Collapse
|
23
|
Wang C, Jiang H, Jin J, Xie Y, Chen Z, Zhang H, Lian F, Liu YC, Zhang C, Ding H, Chen S, Zhang N, Zhang Y, Jiang H, Chen K, Ye F, Yao Z, Luo C. Development of Potent Type I Protein Arginine Methyltransferase (PRMT) Inhibitors of Leukemia Cell Proliferation. J Med Chem 2017; 60:8888-8905. [PMID: 29019697 DOI: 10.1021/acs.jmedchem.7b01134] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein Arginine Methyltransferases (PRMTs) are crucial players in diverse biological processes, and dysregulation of PRMTs has been linked to various human diseases, especially cancer. Therefore, small molecules targeting PRMTs have profound impact for both academic functional studies and clinical disease treatment. Here, we report the discovery of N1-(2-((2-chlorophenyl)thio)benzyl)-N1-methylethane-1,2-diamine (28d, DCPR049_12), a highly potent inhibitor of type I PRMTs that has good selectivity against a panel of other methyltransferases. Compound 28d effectively inhibits cell proliferation in several leukemia cell lines and reduces the cellular asymmetric arginine dimethylation levels. Serving as an effective inhibitor, 28d demonstrates the mechanism of cell killing in both cell cycle arrest and apoptotic effect as well as downregulation of the pivotal mixed lineage leukemia (MLL) fusion target genes such as HOXA9 and MEIS1, which reflects the critical roles of type I PRMTs in MLL leukemia. These studies present 28d as a valuable inhibitor to investigate the role of type I PRMTs in cancer and other diseases.
Collapse
Affiliation(s)
- Chen Wang
- College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou 310018, China.,Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Hao Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Yiqian Xie
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhifeng Chen
- School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China
| | - Hao Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Fulin Lian
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd. , #5 Building, 998, Halei Road, Shanghai 201203, China
| | - Chenhua Zhang
- Shanghai ChemPartner Co., Ltd. , #5 Building, 998, Halei Road, Shanghai 201203, China
| | - Hong Ding
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Naixia Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Zhiyi Yao
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 210032, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
24
|
Shishkova E, Zeng H, Liu F, Kwiecien NW, Hebert AS, Coon JJ, Xu W. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun 2017; 8:15571. [PMID: 28537268 PMCID: PMC5458078 DOI: 10.1038/ncomms15571] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) introduce arginine methylation, a post-translational modification with the increasingly eminent role in normal physiology and disease. PRMT4 or coactivator-associated arginine methyltransferase 1 (CARM1) is a propitious target for cancer therapy; however, few CARM1 substrates are known, and its mechanism of substrate recognition is poorly understood. Here we employed a quantitative mass spectrometry approach to globally profile CARM1 substrates in breast cancer cell lines. We identified >130 CARM1 protein substrates and validated in vitro >90% of sites they encompass. Bioinformatics analyses reveal enrichment of proline-containing motifs, in which both methylation sites and their proximal sequences are frequently targeted by somatic mutations in cancer. Finally, we demonstrate that the N-terminus of CARM1 is involved in substrate recognition and nearly indispensable for substrate methylation. We propose that development of CARM1-specific inhibitors should focus on its N-terminus and predict that other PRMTs may employ similar mechanism for substrate recognition.
Collapse
Affiliation(s)
- Evgenia Shishkova
- The Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Nicholas W. Kwiecien
- The Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Alexander S. Hebert
- The Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Joshua J. Coon
- The Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
- The Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|