1
|
Maire R, Plati A, Smallenburg F, Foffi G. Non-equilibrium coexistence between a fluid and a hotter or colder crystal of granular hard disks. J Chem Phys 2025; 162:124901. [PMID: 40125686 DOI: 10.1063/5.0250643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Non-equilibrium phase coexistence is commonly observed in both biological and artificial systems, yet understanding it remains a significant challenge. Unlike equilibrium systems, where free energy provides a unifying framework, the absence of such a quantity in non-equilibrium settings complicates their theoretical understanding. Granular materials, driven out of equilibrium by energy dissipation during collisions, serve as an ideal platform to investigate these systems, offering insights into the parallels and distinctions between equilibrium and non-equilibrium phase behavior. For example, the coexisting dense phase is typically colder than the dilute phase, a result usually attributed to greater dissipation in denser regions. In this article, we demonstrate that this is not always the case. Using a simple numerical granular model, we show that a hot solid and a cold liquid can coexist in granular systems. This counterintuitive phenomenon arises because the collision frequency can be lower in the solid phase than in the liquid phase, consistent with equilibrium results for hard-disk systems. We further demonstrate that kinetic theory can be extended to accurately predict phase temperatures even at very high packing fractions, including within the solid phase. Our results highlight the importance of collisional dynamics and energy exchange in determining phase behavior in granular materials, offering new insights into non-equilibrium phase coexistence and the complex physics underlying granular systems.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - F Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - G Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
2
|
Geometry-controlled phase transition in vibrated granular media. Sci Rep 2022; 12:14989. [PMID: 36056168 PMCID: PMC9440227 DOI: 10.1038/s41598-022-18965-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
We report experiments on the dynamics of vibrated particles constrained in a two-dimensional vertical container, motivated by the following question: how to get the most out of a given external vibration to maximize internal disorder (e.g. to blend particles) and agitation (e.g. to absorb vibrations)? Granular media are analogs to classical thermodynamic systems, where the injection of energy can be achieved by shaking them: fluidization arises by tuning either the amplitude or the frequency of the oscillations. Alternatively, we explore what happens when another feature, the container geometry, is modified while keeping constant the energy injection. Our method consists in modifying the container base into a V-shape to break the symmetries of the inner particulate arrangement. The lattice contains a compact hexagonal solid-like crystalline phase coexisting with a loose amorphous fluid-like phase, at any thermal agitation. We show that both the solid-to-fluid volume fraction and the granular temperature depend not only on the external vibration but also on the number of topological defects triggered by the asymmetry of the container. The former relies on the statistics of the energy fluctuations and the latter is consistent with a two-dimensional melting transition described by the KTHNY theory.
Collapse
|
3
|
Noirhomme M, Cazaubiel A, Falcon E, Fischer D, Garrabos Y, Lecoutre-Chabot C, Mawet S, Opsomer E, Palencia F, Pillitteri S, Vandewalle N. Particle Dynamics at the Onset of the Granular Gas-Liquid Transition. PHYSICAL REVIEW LETTERS 2021; 126:128002. [PMID: 33834798 DOI: 10.1103/physrevlett.126.128002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
We study experimentally the dynamical behavior of few large tracer particles placed in a quasi-2D granular "gas" made of many small beads in a low-gravity environment. Multiple inelastic collisions transfer momentum from the uniaxially driven gas to the tracers whose velocity distributions are studied through particle tracking. Analyzing these distributions for an increasing system density reveals that translational energy equipartition is reached at the onset of the gas-liquid granular transition corresponding to the emergence of local clusters. The dynamics of a few tracer particles thus appears as a simple and accurate tool to detect this transition. A model is proposed for describing accurately the formation of local heterogeneities.
Collapse
Affiliation(s)
- M Noirhomme
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - A Cazaubiel
- Université de Paris, Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75013 Paris, France
| | - E Falcon
- Université de Paris, Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75013 Paris, France
| | - D Fischer
- Institute of Physics, Otto von Guericke University, D-39106 Magdeburg, Germany
| | - Y Garrabos
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - C Lecoutre-Chabot
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - S Mawet
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - E Opsomer
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - F Palencia
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - S Pillitteri
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - N Vandewalle
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
4
|
Opsomer E, Merminod S, Schockmel J, Vandewalle N, Berhanu M, Falcon E. Patterns in magnetic granular media at the crossover from two to three dimensions. Phys Rev E 2020; 102:042907. [PMID: 33212698 DOI: 10.1103/physreve.102.042907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/04/2020] [Indexed: 11/07/2022]
Abstract
We perform three-dimensional particle-based simulations of confined, vibrated, and magnetizable beads to study the effect of cell geometry on pattern selection. For quasi-two-dimensional systems, we reproduce previously observed macroscopic patterns such as hexagonal crystals and labyrinthine structures. For systems at the crossover from two to three dimensions, labyrinthine branches shorten and are replaced by triplets of beads forming upright triangles which self-organize into a herringbone pattern. This transition is associated with increases in both translational and orientational orders.
Collapse
Affiliation(s)
- Eric Opsomer
- Université de Liège, GRASP, CESAM, B-4000 Liège, Belgium
| | - Simon Merminod
- Université de Paris, Université Paris Diderot, MSC, UMR7057 CNRS, F-75013 Paris, France
| | | | | | - Michael Berhanu
- Université de Paris, Université Paris Diderot, MSC, UMR7057 CNRS, F-75013 Paris, France
| | - Eric Falcon
- Université de Paris, Université Paris Diderot, MSC, UMR7057 CNRS, F-75013 Paris, France
| |
Collapse
|
5
|
Clewett JPD, Bowley RM, Swift MR. Reduced Thermodynamic Description of Phase Separation in a Quasi-One-Dimensional Granular Gas. PHYSICAL REVIEW LETTERS 2019; 123:118001. [PMID: 31573237 DOI: 10.1103/physrevlett.123.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/05/2019] [Indexed: 06/10/2023]
Abstract
We describe simulations of a quasi-one-dimensional, vibrated granular gas which exhibits an apparent phase separation into a liquidlike phase and a gaslike phase. In thermal equilibrium, such a phase separation in one dimension is prohibited by entropic considerations. We propose that the granular gas minimizes a function of the conserved mechanical variables alone: the particle number and volume. Simulations in small cells can be used to extract the equation of state and predict the coexisting pressure and densities, as confirmation of the minimization principle. Fluctuations in the system manifest themselves as persistent density waves but they do not destroy the phase-separated state.
Collapse
Affiliation(s)
- James P D Clewett
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - R M Bowley
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael R Swift
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
6
|
Rodenburg J, Paliwal S, de Jager M, Bolhuis PG, Dijkstra M, van Roij R. Ratchet-induced variations in bulk states of an active ideal gas. J Chem Phys 2018; 149:174910. [DOI: 10.1063/1.5048698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeroen Rodenburg
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Siddharth Paliwal
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein de Jager
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Peter G. Bolhuis
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
7
|
Paliwal S, Prymidis V, Filion L, Dijkstra M. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles. J Chem Phys 2017; 147:084902. [DOI: 10.1063/1.4989764] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Siddharth Paliwal
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Vasileios Prymidis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Laura Filion
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
8
|
Herminghaus S, Mazza MG. Phase separation in driven granular gases: exploring the elusive character of nonequilibrium steady states. SOFT MATTER 2017; 13:898-910. [PMID: 28102416 DOI: 10.1039/c6sm02224c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The emergence of patterns and phase separation in many-body systems far from thermal equilibrium is discussed using the example of driven granular gases. It is shown that phase separation follows a similar mechanism as in the systems of active Brownian particles. Depending on the quantities chosen for observation, it may or may not be easy to find functionals analogous to the free energy in equilibrium statistical physics. We argue that although such functionals can always be derived from the dynamics, it is of only limited value for predicting relevant aspects of the nonequilibrium steady state of the system. Consequently, although there is indeed a 'principle' governing the selection of collective nonequilibrium steady states (and the corresponding large deviation functional can be identified), it is not generally useful for predicting the behaviour of the system.
Collapse
Affiliation(s)
- S Herminghaus
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37073 Göttingen, Germany.
| | | |
Collapse
|