1
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Arranz R, Chichón FJ, Cuervo A, Conesa JJ. 3D Cryo-Correlative Methods to Study Virus Structure and Dynamics Within Cells. Subcell Biochem 2024; 105:299-327. [PMID: 39738950 DOI: 10.1007/978-3-031-65187-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Understanding the dynamic processes involving virus structural components within host cells is crucial for comprehending viral infection, as viruses rely entirely on host cells for replication. Viral infection involves various intracellular stages, including cell entry, genome uncoating, replication, transcription and translation, assembly of new virus particles in a complex morphogenetic process, and the release of new virions from the host cell. These events are dynamic and scarce and can be obscured by other cellular processes, necessitating novel approaches for their in situ characterization. Among these methods, correlative microscopy integrates the labeling, localization, and functional characterization of events of interest through visible light microscopy, complemented by the structural insights provided by high-resolution imaging techniques. This correlative approach enables a comprehensive exploration of subcellular events within the cellular context, including those related to viral morphogenesis. This chapter provides an introduction to correlative three-dimensional imaging methods, specifically designed to study viral morphogenesis and other intracellular stages of the viral cycle under conditions closely resembling their native environment. The integration of whole-cell imaging and high-resolution structural biology techniques is emphasized as essential for unraveling the mechanisms by which viruses generate and disseminate their progeny.
Collapse
Affiliation(s)
- Rocío Arranz
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Francisco Javier Chichón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Lewis HC, Kelnhofer-Millevolte LE, Brinkley MR, Arbach HE, Arnold EA, Sanders S, Bosse JB, Ramachandran S, Avgousti DC. HSV-1 exploits host heterochromatin for nuclear egress. J Cell Biol 2023; 222:e202304106. [PMID: 37516914 PMCID: PMC10373338 DOI: 10.1083/jcb.202304106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/31/2023] Open
Abstract
Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress.
Collapse
Affiliation(s)
- Hannah C Lewis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laurel E Kelnhofer-Millevolte
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- UW Medical Scientist Training Program , Seattle, WA, USA
| | - Mia R Brinkley
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hannah E Arbach
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Edward A Arnold
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Microbiology Graduate Program, University of Washington , Seattle, WA, USA
| | - Saskia Sanders
- Institute of Virology, Hannover Medical School , Hannover, Germany
- Leibniz Institute of Virology (LIV) , Hamburg, Germany
- Centre for Structural Systems Biology , Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School , Hannover, Germany
| | - Jens B Bosse
- Institute of Virology, Hannover Medical School , Hannover, Germany
- Leibniz Institute of Virology (LIV) , Hamburg, Germany
- Centre for Structural Systems Biology , Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School , Hannover, Germany
| | - Srinivas Ramachandran
- RNA Bioscience Initiative, University of Colorado School of Medicine , Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
4
|
Leclerc S, Kunnas K, Ekman A, Pereiro E, Fahy K, Larabell C, Aho V, Weinhardt V, Vihinen-Ranta M. Mitochondrial Reorganization in Herpesvirus-Infected Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1153-1154. [PMID: 37613604 DOI: 10.1093/micmic/ozad067.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- S Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - K Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - A Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - E Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | - K Fahy
- SiriusXT Limited, Dublin, Ireland
| | - C Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - V Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - V Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - M Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
5
|
Loconte V, Chen J, Vanslembrouck B, Ekman AA, McDermott G, Le Gros MA, Larabell CA. Soft X-ray tomograms provide a structural basis for whole-cell modeling. FASEB J 2023; 37:e22681. [PMID: 36519968 PMCID: PMC10107707 DOI: 10.1096/fj.202200253r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Developing in silico models that accurately reflect a whole, functional cell is an ongoing challenge in biology. Current efforts bring together mathematical models, probabilistic models, visual representations, and data to create a multi-scale description of cellular processes. A realistic whole-cell model requires imaging data since it provides spatial constraints and other critical cellular characteristics that are still impossible to obtain by calculation alone. This review introduces Soft X-ray Tomography (SXT) as a powerful imaging technique to visualize and quantify the mesoscopic (~25 nm spatial scale) organelle landscape in whole cells. SXT generates three-dimensional reconstructions of cellular ultrastructure and provides a measured structural framework for whole-cell modeling. Combining SXT with data from disparate technologies at varying spatial resolutions provides further biochemical details and constraints for modeling cellular mechanisms. We conclude, based on the results discussed here, that SXT provides a foundational dataset for a broad spectrum of whole-cell modeling experiments.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Jian‐Hua Chen
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Bieke Vanslembrouck
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Axel A. Ekman
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Gerry McDermott
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Mark A. Le Gros
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Carolyn A. Larabell
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| |
Collapse
|
6
|
Jadhav AC, Kounatidis I. Correlative Cryo-imaging Using Soft X-Ray Tomography for the Study of Virus Biology in Cells and Tissues. Subcell Biochem 2023; 106:169-196. [PMID: 38159227 DOI: 10.1007/978-3-031-40086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are obligate intracellular pathogens that depend on their host cell machinery and metabolism for their replicative life cycle. Virus entry, replication, and assembly are dynamic processes that lead to the reorganisation of host cell components. Therefore, a complete understanding of the viral processes requires their study in the cellular context where advanced imaging has been proven valuable in providing the necessary information. Among the available imaging techniques, soft X-ray tomography (SXT) at cryogenic temperatures can provide three-dimensional mapping to 25 nm resolution and is ideally suited to visualise the internal organisation of virus-infected cells. In this chapter, the principles and practices of synchrotron-based cryo-soft X-ray tomography (cryo-SXT) in virus research are presented. The potential of the cryo-SXT in correlative microscopy platforms is also demonstrated through working examples of reovirus and hepatitis research at Beamline B24 (Diamond Light Source Synchrotron, UK) and BL09-Mistral beamline (ALBA Synchrotron, Spain), respectively.
Collapse
Affiliation(s)
- Archana C Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
7
|
Chen JH, Vanslembrouck B, Ekman A, Aho V, Larabell CA, Le Gros MA, Vihinen-Ranta M, Weinhardt V. Soft X-ray Tomography Reveals HSV-1-Induced Remodeling of Human B Cells. Viruses 2022; 14:2651. [PMID: 36560654 PMCID: PMC9781670 DOI: 10.3390/v14122651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Nahas KL, Connor V, Scherer KM, Kaminski CF, Harkiolaki M, Crump CM, Graham SC. Near-native state imaging by cryo-soft-X-ray tomography reveals remodelling of multiple cellular organelles during HSV-1 infection. PLoS Pathog 2022; 18:e1010629. [PMID: 35797345 PMCID: PMC9262197 DOI: 10.1371/journal.ppat.1010629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles.
Collapse
Affiliation(s)
- Kamal L. Nahas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Beamline B24, Diamond Light Source, Didcot, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Aho V, Salminen S, Mattola S, Gupta A, Flomm F, Sodeik B, Bosse JB, Vihinen-Ranta M. Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane. PLoS Pathog 2021; 17:e1010132. [PMID: 34910768 PMCID: PMC8673650 DOI: 10.1371/journal.ppat.1010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus capsids are assembled and packaged in the nucleus and move by diffusion through the nucleoplasm to the nuclear envelope for egress. Analyzing their motion provides conclusions not only on capsid transport but also on the properties of the nuclear environment during infection. We utilized live-cell imaging and single-particle tracking to characterize capsid motion relative to the host chromatin. The data indicate that as the chromatin was marginalized toward the nuclear envelope it presented a restrictive barrier to the capsids. However, later in infection this barrier became more permissive and the probability of capsids to enter the chromatin increased. Thus, although chromatin marginalization initially restricted capsid transport to the nuclear envelope, a structural reorganization of the chromatin counteracted that to promote capsid transport later. Analyses of capsid motion revealed that it was subdiffusive, and that the diffusion coefficients were lower in the chromatin than in regions lacking chromatin. In addition, the diffusion coefficient in both regions increased during infection. Throughout the infection, the capsids were never enriched at the nuclear envelope, which suggests that instead of nuclear export the transport through the chromatin is the rate-limiting step for the nuclear egress of capsids. This provides motivation for further studies by validating the importance of intranuclear transport to the life cycle of HSV-1.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Salla Mattola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Felix Flomm
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jens B. Bosse
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Loconte V, Chen JH, Cortese M, Ekman A, Le Gros MA, Larabell C, Bartenschlager R, Weinhardt V. Using soft X-ray tomography for rapid whole-cell quantitative imaging of SARS-CoV-2-infected cells. CELL REPORTS METHODS 2021; 1:100117. [PMID: 34729550 PMCID: PMC8552653 DOI: 10.1016/j.crmeth.2021.100117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
High-resolution and rapid imaging of host cell ultrastructure can generate insights toward viral disease mechanism, for example for a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Here, we employ full-rotation soft X-ray tomography (SXT) to examine organelle remodeling induced by SARS-CoV-2 at the whole-cell level with high spatial resolution and throughput. Most of the current SXT systems suffer from a restricted field of view due to use of flat sample supports and artifacts due to missing data. In this approach using cylindrical sample holders, a full-rotation tomogram of human lung epithelial cells is performed in less than 10 min. We demonstrate the potential of SXT imaging by visualizing aggregates of SARS-CoV-2 virions and virus-induced intracellular alterations. This rapid whole-cell imaging approach allows us to visualize the spatiotemporal changes of cellular organelles upon viral infection in a quantitative manner.
Collapse
Affiliation(s)
- Valentina Loconte
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
12
|
Bayguinov PO, Fisher MR, Fitzpatrick JAJ. Assaying three-dimensional cellular architecture using X-ray tomographic and correlated imaging approaches. J Biol Chem 2020; 295:15782-15793. [PMID: 32938716 PMCID: PMC7667966 DOI: 10.1074/jbc.rev120.009633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.
Collapse
Affiliation(s)
- Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA; Departments of Cell Biology and Physiology and Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
13
|
Kounatidis I, Stanifer ML, Phillips MA, Paul-Gilloteaux P, Heiligenstein X, Wang H, Okolo CA, Fish TM, Spink MC, Stuart DI, Davis I, Boulant S, Grimes JM, Dobbie IM, Harkiolaki M. 3D Correlative Cryo-Structured Illumination Fluorescence and Soft X-ray Microscopy Elucidates Reovirus Intracellular Release Pathway. Cell 2020; 182:515-530.e17. [PMID: 32610083 PMCID: PMC7391008 DOI: 10.1016/j.cell.2020.05.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.
Collapse
Affiliation(s)
- Ilias Kounatidis
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael A Phillips
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Perrine Paul-Gilloteaux
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS3556, Nantes, France
| | | | - Hongchang Wang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Chidinma A Okolo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Thomas M Fish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Matthew C Spink
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - David I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Ilan Davis
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jonathan M Grimes
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
14
|
Kong X, Wei G, Chen N, Zhao S, Shen Y, Zhang J, Li Y, Zeng X, Wu X. Dynamic chromatin accessibility profiling reveals changes in host genome organization in response to baculovirus infection. PLoS Pathog 2020; 16:e1008633. [PMID: 32511266 PMCID: PMC7326278 DOI: 10.1371/journal.ppat.1008633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
DNA viruses can hijack and manipulate the host chromatin state to facilitate their infection. Multiple lines of evidences reveal that DNA virus infection results in the host chromatin relocation, yet there is little known about the effects of viral infection on the architecture of host chromatin. Here, a combination of epigenomic, transcriptomic and biochemical assays were conducted to investigate the temporal dynamics of chromatin accessibility in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The high-quality ATAC-seq data indicated that progressive chromatin remodeling took place following BmNPV infection. Viral infection resulted in a more open chromatin architecture, along with the marginalization of host genome and nucleosome disassembly. Moreover, our results revealed that chromatin accessibility in uninfected cells was regulated by euchromatic modifications, whereas the viral-induced highly accessible chromatin regions were originally associated with facultative heterochromatic modification. Overall, our findings illustrate for the first time the organization and accessibility of host chromatin in BmNPV-infected cells, which lay the foundation for future studies on epigenomic regulation mediated by DNA viruses. As a well-studied arthropod-specific double-stranded DNA virus, Bombyx mori nucleopolyhedrovirus (BmNPV) is a representative member of baculoviruses. BmNPV infection results in significant host chromatin marginalization, which has also been found in most DNA viruses. However, the effects of baculovirus infection on the organization and accessibility of host chromatin are poorly understood. Here, by using ATAC-seq, we show that DNA virus BmNPV infection gradually remodels the accessibility of host chromatin. ATAC-seq data reveal that the marginalized host chromatin is a more accessible architecture along with the depletion of multi-nucleosome depositions. Moreover, our findings suggest the increased accessibility regions are regulated by the facultative heterochromatic modification. Overall, we provide a novel understanding of molecular mechanisms by which baculovirus and DNA viruses alter the organization of host chromatin in epigenomic regulation.
Collapse
Affiliation(s)
- Xiangshuo Kong
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Nan Chen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shudi Zhao
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunwang Shen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjia Zhang
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Li
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqun Zeng
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
15
|
Aho V, Mäntylä E, Ekman A, Hakanen S, Mattola S, Chen JH, Weinhardt V, Ruokolainen V, Sodeik B, Larabell C, Vihinen-Ranta M. Quantitative Microscopy Reveals Stepwise Alteration of Chromatin Structure during Herpesvirus Infection. Viruses 2019; 11:v11100935. [PMID: 31614678 PMCID: PMC6832731 DOI: 10.3390/v11100935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
During lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope. Our data demonstrated a gradual increase in chromatin marginalization, and the kinetics of chromatin smoothening around the viral replication compartments correlated with their expansion. We also observed a gradual transfer of capsids to the nuclear envelope. Later in the infection, random walk modeling indicated a gradually faster transport of capsids to the nuclear envelope that correlated with an increase in the interchromatin channels in the nuclear periphery. Our study reveals a stepwise and time-dependent mechanism of herpesvirus nuclear egress, in which progeny viral capsids approach the egress sites at the nuclear envelope via interchromatin spaces.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Elina Mäntylä
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
- Correspondence:
| |
Collapse
|
16
|
Weinhardt V, Chen JH, Ekman A, McDermott G, Le Gros MA, Larabell C. Imaging cell morphology and physiology using X-rays. Biochem Soc Trans 2019; 47:489-508. [PMID: 30952801 PMCID: PMC6716605 DOI: 10.1042/bst20180036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Morphometric measurements, such as quantifying cell shape, characterizing sub-cellular organization, and probing cell-cell interactions, are fundamental in cell biology and clinical medicine. Until quite recently, the main source of morphometric data on cells has been light- and electron-based microscope images. However, many technological advances have propelled X-ray microscopy into becoming another source of high-quality morphometric information. Here, we review the status of X-ray microscopy as a quantitative biological imaging modality. We also describe the combination of X-ray microscopy data with information from other modalities to generate polychromatic views of biological systems. For example, the amalgamation of molecular localization data, from fluorescence microscopy or spectromicroscopy, with structural information from X-ray tomography. This combination of data from the same specimen generates a more complete picture of the system than that can be obtained by a single microscopy method. Such multimodal combinations greatly enhance our understanding of biology by combining physiological and morphological data to create models that more accurately reflect the complexities of life.
Collapse
Affiliation(s)
- Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Gerry McDermott
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Mark A Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
17
|
Beyond the NEC: Modulation of Herpes Simplex Virus Nuclear Egress by Viral and Cellular Components. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-0112-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Epstein-Barr Virus-Induced Nodules on Viral Replication Compartments Contain RNA Processing Proteins and a Viral Long Noncoding RNA. J Virol 2018; 92:JVI.01254-18. [PMID: 30068640 DOI: 10.1128/jvi.01254-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022] Open
Abstract
Profound alterations in host cell nuclear architecture accompany the lytic phase of Epstein-Barr virus (EBV) infection. Viral replication compartments assemble, host chromatin marginalizes to the nuclear periphery, cytoplasmic poly(A)-binding protein translocates to the nucleus, and polyadenylated mRNAs are sequestered within the nucleus. Virus-induced changes to nuclear architecture that contribute to viral host shutoff (VHS) must accommodate selective processing and export of viral mRNAs. Here we describe additional previously unrecognized nuclear alterations during EBV lytic infection in which viral and cellular factors that function in pre-mRNA processing and mRNA export are redistributed. Early during lytic infection, before formation of viral replication compartments, two cellular pre-mRNA splicing factors, SC35 and SON, were dispersed from interchromatin granule clusters, and three mRNA export factors, Y14, ALY, and NXF1, were depleted from the nucleus. During late lytic infection, virus-induced nodular structures (VINORCs) formed at the periphery of viral replication compartments. VINORCs were composed of viral (BMLF1 and BGLF5) and cellular (SC35, SON, SRp20, and NXF1) proteins that mediate pre-mRNA processing and mRNA export. BHLF1 long noncoding RNA was invariably found in VINORCs. VINORCs did not contain other nodular nuclear cellular proteins (PML or coilin), nor did they contain viral proteins (BRLF1 or BMRF1) found exclusively within replication compartments. VINORCs are novel EBV-induced nuclear structures. We propose that EBV-induced dispersal and depletion of pre-mRNA processing and mRNA export factors during early lytic infection contribute to VHS; subsequent relocalization of these pre-mRNA processing and mRNA export proteins to VINORCs and viral replication compartments facilitates selective processing and export of viral mRNAs.IMPORTANCE In order to make protein, mRNA transcribed from DNA in the nucleus must enter the cytoplasm. Nuclear export of mRNA requires correct processing of mRNAs by enzymes that function in splicing and nuclear export. During the Epstein-Barr virus (EBV) lytic cycle, nuclear export of cellular mRNAs is blocked, yet export of viral mRNAs is facilitated. Here we report the dispersal and dramatic reorganization of cellular (SC35, SON, SRp20, Y14, ALY, and NXF1) and viral (BMLF1 and BGLF5) proteins that play key roles in pre-mRNA processing and export of mRNA. These virus-induced nuclear changes culminate in formation of VINORCs, novel nodular structures composed of viral and cellular RNA splicing and export factors. VINORCs localize to the periphery of viral replication compartments, where viral mRNAs reside. These EBV-induced changes in nuclear organization may contribute to blockade of nuclear export of host mRNA, while enabling selective processing and export of viral mRNA.
Collapse
|
19
|
Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerg Top Life Sci 2018; 2:81-92. [PMID: 33525785 PMCID: PMC7289011 DOI: 10.1042/etls20170086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Cryo-soft X-ray tomography is an imaging technique that addresses the need for mesoscale imaging of cellular ultrastructure of relatively thick samples without the need for staining or chemical modification. It allows the imaging of cellular ultrastructure to a resolution of 25–40 nm and can be used in correlation with other imaging modalities, such as electron tomography and fluorescence microscopy, to further enhance the information content derived from biological samples. An overview of the technique, discussion of sample suitability and information about sample preparation, data collection and data analysis is presented here. Recent developments and future outlook are also discussed.
Collapse
|
20
|
Bailer SM. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane. Cells 2017; 6:cells6040046. [PMID: 29186822 PMCID: PMC5755504 DOI: 10.3390/cells6040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/29/2023] Open
Abstract
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Collapse
Affiliation(s)
- Susanne M. Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart 70174, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany;
| |
Collapse
|
21
|
Flomm F, Bosse JB. Potential mechanisms facilitating herpesvirus-induced nuclear remodeling: how are herpesvirus capsids able to leave the nucleus? Future Virol 2017. [DOI: 10.2217/fvl-2017-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpesviruses replicate their DNA, assemble and package their capsids in the host nucleus. How capsids transverse the nuclear space to reach nuclear egress sites at the inner nuclear membrane has been a matter of some debate. We recently showed that HSV-1 and pseudorabies virus rely on the large-scale remodeling of host chromatin to allow intranuclear capsids to cross the nucleoplasm by diffusion. Which molecular pathways induce large-scale chromatin remodeling is currently not known. In this perspective, we propose a four-step speculative model that bridges the gap between known virus–host interactions and large-scale chromatin remodeling. We hope that this hypothetical framework will be used as a basis to elucidate how herpesviruses remodel the host nucleus and enable capsids to escape the nucleus.
Collapse
Affiliation(s)
- Felix Flomm
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Jens Bernhard Bosse
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
- Institute for Biochemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
22
|
Abstract
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes simplex virus 1-sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.
Collapse
|
23
|
Lye MF, Wilkie AR, Filman DJ, Hogle JM, Coen DM. Getting to and through the inner nuclear membrane during herpesvirus nuclear egress. Curr Opin Cell Biol 2017; 46:9-16. [PMID: 28086162 DOI: 10.1016/j.ceb.2016.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Abstract
Herpesviruses, like most DNA viruses, replicate and package their genomes into capsids in the host cell nucleus. Capsids then transit to the cytoplasm in a fascinating process called nuclear egress, which includes several unusual steps: Movement of capsids from the nuclear interior to the periphery, disruption of the nuclear lamina, capsid budding through the inner nuclear membrane, and fusion of enveloped particles with the outer nuclear membrane. Here, we review recent advances and emerging questions relating to herpesvirus nuclear egress, emphasizing controversies regarding mechanisms for capsid trafficking to the nuclear periphery, and implications of recent structures of the two-subunit, viral nuclear egress complex for the process, particularly at the step of budding through the inner nuclear membrane.
Collapse
Affiliation(s)
- Ming F Lye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - Adrian R Wilkie
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States.
| |
Collapse
|
24
|
Artusi S, Perrone R, Lago S, Raffa P, Di Iorio E, Palù G, Richter SN. Visualization of DNA G-quadruplexes in herpes simplex virus 1-infected cells. Nucleic Acids Res 2016; 44:10343-10353. [PMID: 27794039 PMCID: PMC5137459 DOI: 10.1093/nar/gkw968] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
We have previously shown that clusters of guanine quadruplex (G4) structures can form in the human herpes simplex-1 (HSV-1) genome. Here we used immunofluorescence and immune-electron microscopy with a G4-specific monoclonal antibody to visualize G4 structures in HSV-1 infected cells. We found that G4 formation and localization within the cells was virus cycle dependent: viral G4s peaked at the time of viral DNA replication in the cell nucleus, moved to the nuclear membrane at the time of virus nuclear egress and were later found in HSV-1 immature virions released from the cell nucleus. Colocalization of G4s with ICP8, a viral DNA processing protein, was observed in viral replication compartments. G4s were lost upon treatment with DNAse and inhibitors of HSV-1 DNA replication. The notable increase in G4s upon HSV-1 infection suggests a key role of these structures in the HSV-1 biology and indicates new targets to control both the lytic and latent infection.
Collapse
Affiliation(s)
- Sara Artusi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Rosalba Perrone
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Sara Lago
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Paolo Raffa
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| |
Collapse
|
25
|
Darrow MC, Zhang Y, Cinquin BP, Smith EA, Boudreau R, Rochat RH, Schmid MF, Xia Y, Larabell CA, Chiu W. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J Cell Sci 2016; 129:3511-7. [PMID: 27505892 DOI: 10.1242/jcs.189225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Sickle cell disease is a destructive genetic disorder characterized by the formation of fibrils of deoxygenated hemoglobin, leading to the red blood cell (RBC) morphology changes that underlie the clinical manifestations of this disease. Using cryogenic soft X-ray tomography (SXT), we characterized the morphology of sickled RBCs in terms of volume and the number of protrusions per cell. We were able to identify statistically a relationship between the number of protrusions and the volume of the cell, which is known to correlate to the severity of sickling. This structural polymorphism allows for the classification of the stages of the sickling process. Recent studies have shown that elevated sphingosine kinase 1 (Sphk1)-mediated sphingosine 1-phosphate production contributes to sickling. Here, we further demonstrate that compound 5C, an inhibitor of Sphk1, has anti-sickling properties. Additionally, the variation in cellular morphology upon treatment suggests that this drug acts to delay the sickling process. SXT is an effective tool that can be used to identify the morphology of the sickling process and assess the effectiveness of potential therapeutics.
Collapse
Affiliation(s)
- Michele C Darrow
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bertrand P Cinquin
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elizabeth A Smith
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rosanne Boudreau
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan H Rochat
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA University of Texas at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA Department of Nephrology, The First Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Carolyn A Larabell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|