1
|
Tae IH, Ryu TY, Kang Y, Lee J, Kim K, Lee JM, Kim HW, Ko JH, Kim DS, Son MY, Cho HS. Negative regulation of SH2B3 by SMYD5 controls epithelial-mesenchymal transition in lung cancer. Mol Cells 2024; 47:100067. [PMID: 38723947 PMCID: PMC11143772 DOI: 10.1016/j.mocell.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The main cause of death in lung cancer patients is metastasis. Thus, efforts to suppress micrometastasis or distant metastasis in lung cancer, identify therapeutic targets and develop related drugs are ongoing. In this study, we identified SET and MYND domain-containing protein 5 (SMYD5) as a novel metastasis regulator in lung cancer and found that SMYD5 was overexpressed in lung cancer based on both RNA-sequencing analysis results derived from the TCGA portal and immunohistochemical analysis results; knockdown of SMYD5 inhibited cell migration and invasion by changing epithelial-mesenchymal transition markers and MMP9 expression in NCI-H1299 and H1703 cell lines. Additionally, SMYD5 knockdown increased Src homology 2-b3 expression by decreasing the level of H4K20 trimethylation. Furthermore, in an in vitro epithelial-mesenchymal transition system using TGF-β treatment, SMYD5 knockdown resulted in reduced cell migration and invasion in the highly invasive NCI-H1299 and H1703 cell lines. Based on these findings, we propose that SMYD5 could serve as a potential therapeutic target for lung cancer treatment and that cotreatment with an SMYD5 inhibitor and chemotherapy may enhance the therapeutic effect of lung cancer treatment.
Collapse
Affiliation(s)
- In Hwan Tae
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae Young Ryu
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yunsang Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jinkwon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kwanho Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Min Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hee-Won Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung Heon Ko
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
3
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Hickenlooper SM, Davis K, Szulik MW, Sheikh H, Miller M, Valdez S, Bia R, Franklin S. Histone H4K20 Trimethylation Is Decreased in Murine Models of Heart Disease. ACS OMEGA 2022; 7:30710-30719. [PMID: 36092581 PMCID: PMC9453978 DOI: 10.1021/acsomega.2c00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Heart disease is the leading cause of death in the developed world, and its comorbidities such as hypertension, diabetes, and heart failure are accompanied by major transcriptomic changes in the heart. During cardiac dysfunction, which leads to heart failure, there are global epigenetic alterations to chromatin that occur concomitantly with morphological changes in the heart in response to acute and chronic stress. These epigenetic alterations include the reversible methylation of lysine residues on histone proteins. Lysine methylations on histones H3K4 and H3K9 were among the first methylated lysine residues identified and have been linked to gene activation and silencing, respectively. However, much less is known regarding other methylated histone residues, including histone H4K20. Trimethylation of histone H4K20 has been shown to repress gene expression; however, this modification has never been examined in the heart. Here, we utilized immunoblotting and mass spectrometry to quantify histone H4K20 trimethylation in three models of cardiac dysfunction. Our results show that lysine methylation at this site is differentially regulated in the cardiomyocyte, leading to increased H4K20 trimethylation during acute hypertrophic stress in cell models and decreased H4K20 trimethylation during sustained ischemic injury and cardiac dysfunction in animal models. In addition, we examined publicly available data sets to analyze enzymes that regulate H4K20 methylation and identified two demethylases (KDM7B and KDM7C) and two methyltransferases (KMT5A and SMYD5) that were all differentially expressed in heart failure patients. This is the first study to examine histone H4K20 trimethylation in the heart and to determine how this post-translational modification is differentially regulated in multiple models of cardiac disease.
Collapse
Affiliation(s)
- Samuel M. Hickenlooper
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kathryn Davis
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marta W. Szulik
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hanin Sheikh
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mickey Miller
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Steven Valdez
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan Bia
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah Franklin
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
- Division
of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| |
Collapse
|
6
|
SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun 2022; 13:3190. [PMID: 35680905 PMCID: PMC9184575 DOI: 10.1038/s41467-022-30940-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Histone marks, carriers of epigenetic information, regulate gene expression. In mammalian cells, H3K36me3 is mainly catalyzed by SETD2 at gene body regions. Here, we find that in addition to gene body regions, H3K36me3 is enriched at promoters in primary cells. Through screening, we identify SMYD5, which is recruited to chromatin by RNA polymerase II, as a methyltransferase catalyzing H3K36me3 at promoters. The enzymatic activity of SMYD5 is dependent on its C-terminal glutamic acid-rich domain. Overexpression of full-length Smyd5, but not the C-terminal domain-truncated Smyd5, restores H3K36me3 at promoters in Smyd5 knockout cells. Furthermore, elevated Smyd5 expression contributes to tumorigenesis in liver hepatocellular carcinoma. Together, our findings identify SMYD5 as the H3K36me3 methyltransferase at promoters that regulates gene expression, providing insights into the localization and function of H3K36me3.
Collapse
|
7
|
Hou Y, Sun X, Gheinani PT, Guan X, Sharma S, Zhou Y, Jin C, Yang Z, Naren AP, Yin J, Denning TL, Gewirtz AT, Liu Y, Xie Z, Li C. Epithelial SMYD5 Exaggerates IBD by Down-regulating Mitochondrial Functions via Post-Translational Control of PGC-1α Stability. Cell Mol Gastroenterol Hepatol 2022; 14:375-403. [PMID: 35643234 PMCID: PMC9249919 DOI: 10.1016/j.jcmgh.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The expression and role of methyltransferase SET and MYND domain-containing protein 5 (SMYD5) in inflammatory bowel disease (IBD) is completely unknown. Here, we investigated the role and underlying mechanism of epithelial SMYD5 in IBD pathogenesis and progression. METHODS The expression levels of SMYD5 and the mitochondrial transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) were examined by Western blot, immunofluorescence staining, and immunohistochemistry in intestinal epithelial cells (IECs) and in colon tissues from human IBD patients and colitic mice. Mice with Smyd5 conditional knockout in IECs and littermate controls were subjected to dextran sulfate sodium-induced colitis and the disease severity was assessed. SMYD5-regulated mitochondrial biogenesis was examined by quantitative reverse-transcription polymerase chain reaction and transmission electron microscopy, and the mitochondrial oxygen consumption rate was measured in a Seahorse Analyzer system (Agilent, Santa Clara, CA). SMYD5 and PGC-1α interaction was determined by co-immunoprecipitation assay. PGC-1α degradation and turnover (half-life) were analyzed by cycloheximide chase assay. SMYD5-mediated PGC-1α methylation was assessed via in vitro methylation assay followed by mass spectrometry for identification of methylated lysine residues. RESULTS Up-regulated SMYD5 and down-regulated PGC-1α were observed in intestinal epithelia from IBD patients and colitic mice. Smyd5 depletion in IECs protected mice from dextran sulfate sodium-induced colitis. SMYD5 was critically involved in regulating mitochondrial biology such as mitochondrial biogenesis, respiration, and apoptosis. Mechanistically, SMYD5 regulates mitochondrial functions in a PGC-1α-dependent manner. Furthermore, SMYD5 mediates lysine methylation of PGC-1α and subsequently facilitates its ubiquitination and degradation. CONCLUSIONS SMYD5 attenuates mitochondrial functions in IECs and promotes IBD progression by enhancing PGC-1α degradation in a methylation-dependent manner. Strategies to decrease SMYD5 expression and/or increase PGC-1α expression in IECs might be a promising therapeutic approach to treat IBD patients.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | | | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Yu Zhou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, Georgia
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jun Yin
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Timothy L Denning
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yuan Liu
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
8
|
Aljazi MB, Gao Y, Wu Y, He J. SMYD5 is a histone H3-specific methyltransferase mediating mono-methylation of histone H3 lysine 36 and 37. Biochem Biophys Res Commun 2022; 599:142-147. [PMID: 35182940 PMCID: PMC8896656 DOI: 10.1016/j.bbrc.2022.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Although post-translational modifications (-PTMs) of some histone H3 lysine residues are well studied, the PTMs of histone H3 lysine 37 in mammalian cells remain largely unknown. In this study, we provide evidence to show that SMYD family member 5 (SMYD5) is a histone H3-specfic methyltransferase that catalyzes mono-methylation of H3 lysine 36 and 37 (H3K36/K37me1) in vitro. The site-mutagenesis analysis shows that a species-conserved histidine in its catalytic SET domain is required for its histone methyltransferase activity. Genetic deletion of Smyd5 in murine embryonic stem cells (mESCs) partially reduces the global histone H3K37me1 level in cells, suggesting SMYD5 is one of histone methyltransferases catalyzing histone H3K37me1 in vivo. Hence, our study reveals that SMYD5 is a histone H3-specific methyltransferase that mediates histone H3K36/K37me1, which provides a biochemical basis for further studying its functions in mammalian cells.
Collapse
Affiliation(s)
- Mohammad B Aljazi
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuen Gao
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yan Wu
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin He
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
SMYD5 acts as a potential biomarker for hepatocellular carcinoma. Exp Cell Res 2022; 414:113076. [PMID: 35218722 DOI: 10.1016/j.yexcr.2022.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022]
Abstract
Determining the prognosis of patients remains a challenge due to the phenotypic and molecular diversities of hepatocellular carcinomas (HCC). We aimed to evaluate the role of SMYD5 in HCC. Wilcoxon signed-rank test and logistic regression analyzed the relationship between clinical pathologic features and SMYD5. We found that increased expression of SMYD5 in HCC was closely associated with high histologic grade, stage, T stage and nodal stage. Kaplan-Meier method, Cox regression, univariate analysis and multivariate analysis detected overall survival of TCGA-HCC patients. It turned out that high expression of SMYD5 predicted a worse prognosis in HCC. Gene Set Enrichment Analysis (GSEA) was applied via TCGA data set, which indicated that complement and coagulation cascades, fatty acid metabolism, primary bile acid biosynthesis, drug metabolism cytochrome P450, PPAR signaling pathway and retinol metabolism were differentially enriched in SMYD5 high expression phenotype. Interestingly, we proved that SMYD5 upregulation in HCC cells was induced by promoter hypo-methylation. Moreover, functional experiments demonstrated that SMYD5 silencing abrogated cell proliferation, migration and invasion and enhanced paclitaxel sensitivity in HCC. All findings implied that SMYD5 might be an underlying biomarker for prognosis and treatment of HCC.
Collapse
|
10
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
11
|
Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol 2021; 9:jdb9040040. [PMID: 34698193 PMCID: PMC8544412 DOI: 10.3390/jdb9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Heart disease is the leading cause of death in the United States and worldwide. Understanding the molecular mechanisms of cardiac development and regeneration will improve diagnostic and therapeutic interventions against heart disease. In this direction, zebrafish is an excellent model because several processes of zebrafish heart development are largely conserved in humans, and zebrafish has several advantages as a model organism. Zebrafish transcriptomic profiles undergo alterations during different stages of cardiac development and regeneration which are revealed by RNA-sequencing. ChIP-sequencing has detected genome-wide occupancy of histone post-translational modifications that epigenetically regulate gene expression and identified a locus with enhancer-like characteristics. ATAC-sequencing has identified active enhancers in cardiac progenitor cells during early developmental stages which overlap with occupancy of histone modifications of active transcription as determined by ChIP-sequencing. CRISPR-mediated editing of the zebrafish genome shows how chromatin modifiers and DNA-binding proteins regulate heart development, in association with crucial signaling pathways. Hence, more studies in this direction are essential to improve human health because they answer fundamental questions on cardiac development and regeneration, their differences, and why zebrafish hearts regenerate upon injury, unlike humans. This review focuses on some of the latest studies using state-of-the-art technology enabled by the elegant yet simple zebrafish.
Collapse
|
12
|
Jin X, Liu W, Miao J, Tai Z, Li L, Guan P, Liu JX. Copper ions impair zebrafish skeletal myofibrillogenesis via epigenetic regulation. FASEB J 2021; 35:e21686. [PMID: 34101239 DOI: 10.1096/fj.202100183r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Unbalanced copper (Cu2+ ) homeostasis is associated with the developmental defects of vertebrate myogenesis, but the underlying molecular mechanisms remain elusive. In this study, it was found that Cu2+ stressed zebrafish embryos and larvae showed reduced locomotor speed as well as loose and decreased myofibrils in skeletal muscle, coupled with the downregulated expression of muscle fiber markers mylpfa and smyhc1l and the irregular arrangement of myofibril and sarcomere. Meanwhile, the Cu2+ stressed zebrafish embryos and larvae also showed significant reduction in the expression of H3K4 methyltransferase smyd1b transcripts and H3K4me3 protein as well as in the binding enrichment of H3K4me3 on gene mylpfa promoter in skeletal muscle cells, suggesting that smyd1b-H3K4me3 axis mediates the Cu2+ -induced myofibrils specification defects. Additionally, whole genome DNA methylation sequencing unveiled that the gene smyd5 exhibited significant promoter hyper-methylation and increased expression in Cu2+ stressed embryos, and the ectopic expression of smyd5 in zebrafish embryos also induced the myofibrils specification defects as those observed in Cu2+ stressed embryos. Moreover, Cu2+ was shown to suppress myofibrils specification and smyd1b promoter transcriptional activity directly independent of the integral function of copper transporter cox17 and atp7b. All these data may shed light on the linkage of unbalanced copper homeostasis with specific gene promoter methylation and epigenetic histone protein modification as well as the resultant signaling transduction and the myofibrillogenesis defects.
Collapse
Affiliation(s)
- XiaoDong Jin
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jing Miao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Liu D, Wang X, Shi E, Wang L, Nie M, Li L, Jiang Q, Kong P, Shi S, Wang C, Yan S, Qin Z, Zhao S. Comprehensive Analysis of the Value of SMYD Family Members in the Prognosis and Immune Infiltration of Malignant Digestive System Tumors. Front Genet 2021; 12:699910. [PMID: 34335697 PMCID: PMC8322783 DOI: 10.3389/fgene.2021.699910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Background The SET and MYND domain-containing (SMYD) gene family comprises a set of genes encoding lysine methyltransferases. This study aimed to clarify the relationship between the expression levels of SMYD family members and the prognosis and immune infiltration of malignant tumors of the digestive system. Methods The Oncomine, Ualcan, Kaplan–Meier Plotter, cBioPortal, Metascape, and TIMER databases and tools were used to analyze the correlation of SMYD family mRNA expression, clinical stage, TP53 mutation status, prognostic value, gene mutation, and immune infiltration in patients with esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD). Results In ESCA, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/3 with the clinical stage, that of SMYD2/3/4/5 with TP53 mutation status, that of SMYD2/4/5 with overall survival (OS), and that of SMYD1/2/3/4 with relapse-free survival (RFS). In LIHC, the mRNA expression of SMYD1/2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/4/5 with the clinical stage, that of SMYD3/5 with TP53 mutation status, that of SMYD2/3/4/5 with OS, and that of SMYD3/5 with RFS. In STAD, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD1/4 with the clinical stage, that of SMYD1/2/3/5 with TP53 mutation status, that of SMYD1/3/4 with OS, and that of SMYD1/3 with RFS. Furthermore, the function of SMYD family mutation-related genes in ESCA, LIHC, and STAD patients was mainly related to pathways, such as mitochondrial gene expression, mitochondrial matrix, and mitochondrial translation. The expression of SMYD family genes was significantly correlated with the infiltration of six immune cell types and eight types of immune check sites. Conclusion SMYD family genes are differentially expressed and frequently mutated in malignant tumors of the digestive system (ESCA, LIHC, and gastric cancer). They are potential markers for prognostic prediction and have important significance in immunity and targeted therapy.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xuyao Wang
- Department of Pharmacy, Harbin Second Hospital, Harbin, China
| | - Enhong Shi
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Liru Wang
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Minghao Nie
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Long Li
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Jiang
- Department of General Surgery, Harbin 242 Hospital of AVIC, Harbin, China
| | - Pengyu Kong
- Department of Orthopedics, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sen Yan
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Qin
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhao
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
14
|
Fittipaldi R, Floris P, Proserpio V, Cotelli F, Beltrame M, Caretti G. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021; 10:cells10051233. [PMID: 34069776 PMCID: PMC8157265 DOI: 10.3390/cells10051233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
SMYD3 (SET and MYND domain containing protein 3) is a methylase over-expressed in cancer cells and involved in oncogenesis. While several studies uncovered key functions for SMYD3 in cancer models, the SMYD3 role in physiological conditions has not been fully elucidated yet. Here, we dissect the role of SMYD3 at early stages of development, employing mouse embryonic stem cells (ESCs) and zebrafish as model systems. We report that SMYD3 depletion promotes the induction of the mesodermal pattern during in vitro differentiation of ESCs and is linked to an upregulation of cardiovascular lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of mesendodermal markers during zebrafish gastrulation. Overall, our study reveals that SMYD3 modulates levels of mesendodermal markers, both in development and in embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Raffaella Fittipaldi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Pamela Floris
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Valentina Proserpio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Correspondence: ; Tel.: +39-025-031-5002
| |
Collapse
|
15
|
Albuquerque A, Óvilo C, Núñez Y, Benítez R, López-Garcia A, García F, Félix MDR, Laranjo M, Charneca R, Martins JM. Transcriptomic Profiling of Skeletal Muscle Reveals Candidate Genes Influencing Muscle Growth and Associated Lipid Composition in Portuguese Local Pig Breeds. Animals (Basel) 2021; 11:ani11051423. [PMID: 34065673 PMCID: PMC8156922 DOI: 10.3390/ani11051423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Screening and interpretation of differentially expressed genes and associated biological pathways was conducted among experimental groups with divergent phenotypes providing valuable information about the metabolic events occurring and identification of candidate genes with major regulation roles. This comparative transcriptomic analysis includes the first RNA-seq analysis of the Longissimus lumborum muscle tissue from two Portuguese autochthonous pig breeds with different genetic backgrounds, Alentejano and Bísaro. Moreover, a complementary candidate gene approach was employed to analyse, by real time qPCR, the expression profile of relevant genes involved in lipid metabolism, and therefore with potential impacts on meat composition. This study contributes to explaining the biological basis of phenotypical differences occurring between breeds, particularly the ones related to meat quality traits that affect consumer interest. Abstract Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.
Collapse
Affiliation(s)
- André Albuquerque
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
- Correspondence: (A.A.); (J.M.M.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Adrián López-Garcia
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Fabián García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Maria do Rosário Félix
- MED & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Rui Charneca
- MED & Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - José Manuel Martins
- MED & Departamento de Zootecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence: (A.A.); (J.M.M.)
| |
Collapse
|
16
|
Zhang Y, Hayden S, Spellmon N, Xue W, Martin K, Muzzarelli K, Kovari L, Yang Z. Sperm chromatin-condensing protamine enhances SMYD5 thermal stability. Biochem Biophys Res Commun 2021; 550:1-7. [PMID: 33676231 DOI: 10.1016/j.bbrc.2021.02.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
Studying thermal stability of proteins not only provides insight into protein structure but also is instrumental in identifying previously unknown interaction partners. We develop a machine learning strategy that combines orthogonal partial least squares regression and stability screening of Silver Bullets Bio library to identify biologically active molecules that enhance protein stability. This strategy proves effective in extracting the stability-enhancing molecules for SMYD5, a histone lysine methyltransferase that regulates chromosome integrity. Protamine, a histone substitute in chromatin condensation during spermatogenesis, is identified as the most influential molecule to enhance SMYD5 thermal stability. We find that the C-terminal poly-glutamic acid tract (poly-E) and a 30-residue insertion in MYND domain (M-insertion), which are unique to SMYD5, regulate the structural stability. However, protamine plays a dominant role in SMYD5 stability, and in the presence of protamine, the poly-E tract or M-insertion loses its ability to affect the stability. The stability-enhancing effect of protamine is SMYD5 specific, and for SMYD2, a closely related homolog, protamine exhibits opposite, destabilizing effects. We find that both SMYD5 and SMYD2 interact with protamine, where SMYD5 interaction is independent of the poly-E tract and M-insertion. Protamine not only helps provide insight into the structure-stability relationships of SMYD5, but also suggests a potential functional link of SMYD5 to spermatogenesis. SMYD5 is a ubiquitously expressed gene with the highest expression in testis, especially in the seminiferous ducts that contain germ cells. Thus, our study opens up avenues that could help delineate major mechanisms underlying chromatin dynamics during spermatogenesis.
Collapse
Affiliation(s)
- Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephanie Hayden
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicholas Spellmon
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wen Xue
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kaitlyn Martin
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kendall Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ladislau Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
17
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
18
|
Mayfield RD, Zhu L, Smith TA, Tiwari GR, Tucker HO. The SMYD1 and skNAC transcription factors contribute to neurodegenerative diseases. Brain Behav Immun Health 2020; 9:100129. [PMID: 34589886 PMCID: PMC8474399 DOI: 10.1016/j.bbih.2020.100129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
SMYD1 and the skNAC isoform of the NAC transcription factor have both previously been characterized as transcription factors in hematopoiesis and cardiac/skeletal muscle. Here we report that comparative analysis of genes deregulated by SMYD1 or skNAC knockdown in differentiating C2C12 myoblasts identified transcripts characteristic of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's Diseases (AD, PD, and HD). This led us to determine whether SMYD1 and skNAC function together or independently within the brain. Based on meta-analyses and direct experimentation, we observed SMYD1 and skNAC expression within cortical striata of human brains, mouse brains and transgenic mouse models of these diseases. We observed some of these features in mouse myoblasts induced to differentiate into neurons. Finally, several defining features of Alzheimer's pathology, including the brain-specific, axon-enriched microtubule-associated protein, Tau, are deregulated upon SMYD1 loss.
Collapse
Affiliation(s)
- R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Li Zhu
- Department of Pathology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Tyler A. Smith
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| |
Collapse
|
19
|
Corvalan AZ, Coller HA. Methylation of histone 4's lysine 20: a critical analysis of the state of the field. Physiol Genomics 2020; 53:22-32. [PMID: 33197229 DOI: 10.1152/physiolgenomics.00128.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin is a highly dynamic structure whose plasticity is achieved through multiple processes including the posttranslational modification of histone tails. Histone modifications function through the recruitment of nonhistone proteins to chromatin and thus have the potential to influence many fundamental biological processes. Here, we focus on the function and regulation of lysine 20 of histone H4 (H4K20) methylation in multiple biological processes including DNA repair, cell cycle regulation, and DNA replication. The purpose of this review is to highlight recent studies that elucidate the functions associated with each of the methylation states of H4K20, their modifying enzymes, and their protein readers. Based on our current knowledge of H4K20 methylation, we critically analyze the data supporting these functions and outline questions for future research.
Collapse
Affiliation(s)
- Adriana Z Corvalan
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| | - Hilary A Coller
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| |
Collapse
|
20
|
Cavalieri V. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front Cell Dev Biol 2020; 8:456. [PMID: 32582716 PMCID: PMC7289917 DOI: 10.3389/fcell.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental epigenetics. In this review, I focus on the dynamic roles recently emerged for histone post-translational modifications (PTMs), histone modifying enzymes, histone variants and histone themselves in the coordination between the precise execution of transcriptional programs and developmental progression in zebrafish. In particular, I first outline a synopsis of the current state of knowledge in this field during early embryogenesis. Then, I present a survey of histone-based epigenetic mechanisms occurring throughout morphogenesis, with a stronger emphasis on cardiac formation. Undoubtedly, the issues addressed in this review take on particular importance in the emerging field of comparative biology of epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| |
Collapse
|
21
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
22
|
Bai HJ, Zhang P, Ma L, Liang H, Wei G, Yang HT. SMYD2 Drives Mesendodermal Differentiation of Human Embryonic Stem Cells Through Mediating the Transcriptional Activation of Key Mesendodermal Genes. Stem Cells 2019; 37:1401-1415. [PMID: 31348575 DOI: 10.1002/stem.3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
Abstract
Histone methyltransferases play a critical role in early human development, whereas their roles and precise mechanisms are less understood. SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase induced during early differentiation of human embryonic stem cells (hESCs), but little is known about its function in undifferentiated hESCs and in their early lineage fate decision as well as underlying mechanisms. Here, we explored the role of SMYD2 in the self-renewal and mesendodermal lineage commitment of hESCs. We demonstrated that the expression of SMYD2 was significantly enhanced during mesendodermal but not neuroectodermal differentiation of hESCs. SMYD2 knockout (SMYD2-/- ) did not affect self-renewal and early neuroectodermal differentiation of hESCs, whereas it blocked the mesendodermal lineage commitment. This phenotype was rescued by reintroduction of SMYD2 into the SMYD2-/- hESCs. Mechanistically, the bindings of SMYD2 at the promoter regions of critical mesendodermal transcription factor genes, namely, brachyury (T), eomesodermin (EOMES), mix paired-like homeobox (MIXL1), and goosecoid homeobox (GSC) were significantly enhanced during mesendodermal differentiation of SMYD2+/+ hESCs but totally suppressed in SMYD2-/- ones. Concomitantly, such a suppression was associated with the remarkable reduction of methylation at histone 3 lysine 4 and lysine 36 but not at histone 4 lysine 20 globally and specifically on the promoter regions of mesendodermal genes, namely, T, EOMES, MIXL1, and GSC. These results reveal that the histone methyltransferase SMYD2 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation, but it promotes the mesendodermal differentiation of hESCs through the epigenetic control of critical genes to mesendodermal lineage commitment. Stem Cells 2019;37:1401-1415.
Collapse
Affiliation(s)
- Hua-Jun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Li Ma
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Yao R, Zou H, Liao W. Prospect of Circular RNA in Hepatocellular Carcinoma: A Novel Potential Biomarker and Therapeutic Target. Front Oncol 2018; 8:332. [PMID: 30191143 PMCID: PMC6115511 DOI: 10.3389/fonc.2018.00332] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
CircRNA, a kind of tissue specific and covalently closed circular non-coding RNA is very abundant in eukaryocyte. Generally, circRNA is generated by back-splicing of protein-coding genes' pre-mRNA. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Due to the characteristics of poor prognosis and high recurrence, the pathogenesis of HCC is highly concerned by researchers worldwide. Recent studies demonstrated that numerous circRNAs were differentially expressed in HCC tissues and normal liver tissues, which is closely related with the development and prognosis of HCC. However, the mechanism of circRNA in HCC remains unclear. In this review, we summarized the abnormal expressions of circRNAs in HCC, discussed its role, and potential mechanisms, and tried to explore the prospective values of circRNA in the diagnosis, therapy, and prognosis of HCC.
Collapse
Affiliation(s)
- Renzhi Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haifan Zou
- Department of Science Experiment Center, Guilin Medical University, Guilin, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
24
|
Xiao D, Wang H, Hao L, Guo X, Ma X, Qian Y, Chen H, Ma J, Zhang J, Sheng W, Shou W, Huang G, Ma D. The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish. PLoS Genet 2018; 14:e1007578. [PMID: 30110327 PMCID: PMC6110521 DOI: 10.1371/journal.pgen.1007578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/27/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts. SMYD4 belongs to a SET and MYND domain-containing lysine methyltransferase. In zebrafish, smyd4 is ubiquitously expressed in early embryos and becomes enriched in the developing heart at 48 hours post-fertilization (hpf). We generated a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated a strong defect in cardiomyocyte proliferation, which led to a severe cardiac malformation, including left-right looping defects and hypoplastic ventricles. More importantly, two rare genetic variants of SMYD4 were enriched in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was highly pathogenic. Using mass spectrometric analysis, SMYD4 was shown to specifically interact with histone deacetylase 1 (HDAC1) via its MYND domain. Altered di- and tri-methylation of histone 3 lysine 4 (H3K4me2 and H3K4me3) and acetylation of histone 3 in smyd4L544Efs*1 mutants suggested that smyd4 plays an important role in epigenetic regulation. Transcriptome and pathway analyses demonstrated that the expression levels of 3,856 genes were significantly altered, which included cardiac contractile genes, key signaling pathways in cardiac development, the endoplasmic reticulum-mediated protein processing pathway, and several important metabolic pathways. Taken together, our data suggests that smyd4 is a key epigenetic regulator of cardiac development.
Collapse
Affiliation(s)
- Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Weinian Shou
- Cardiovascular Developmental Biology Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail: (WS); (GH); (DM)
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| |
Collapse
|
25
|
Abstract
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Avery Sum-Yu Wong
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Yin Tam
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Samuel Yung-Kin Tsui
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Dittman Lai-Shun Chung
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Guangdong 510530, China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
26
|
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. CURRENT OPINION IN PHYSIOLOGY 2017; 1:140-152. [PMID: 29435515 DOI: 10.1016/j.cophys.2017.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein methylation plays a pivotal role in the regulation of various cellular processes including chromatin remodeling and gene expression. SET and MYND domain-containing proteins (Smyd) are a special class of lysine methyltransferases whose catalytic SET domain is split by an MYND domain. The hallmark feature of this family was thought to be the methylation of histone H3 (on lysine 4). However, several studies suggest that the role of the Smyd family is dynamic, targeting unique histone residues associated with both transcriptional activation and repression. Smyd proteins also methylate several non-histone proteins to regulate various cellular processes. Although we are only beginning to understand their specific molecular functions and role in chromatin remodeling, recent studies have advanced our understanding of this relatively uncharacterized family, highlighting their involvement in development, cell growth and differentiation and during disease in various animal models. This review summarizes our current knowledge of the structure, function and methylation targets of the Smyd family and provides a compilation of data emphasizing their prominent role in cardiac and skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Christopher Tracy
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Junco S Warren
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Marta Szulik
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Li Wang
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - June Garcia
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Kristi Russell
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Mickey Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
27
|
Fu L, Yao T, Chen Q, Mo X, Hu Y, Guo J. Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 2017; 8:58405-58416. [PMID: 28938566 PMCID: PMC5601662 DOI: 10.18632/oncotarget.16881] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) have been emerged as an indispensable part of endogenous RNA network. However, the expression significance of circRNAs in hepatocellular carcinoma (HCC) is rarely revealed. The aim of this study was to determine the circRNA expression profile in HCC, and to investigate their clinical significances and relevant mechanisms for cancer progression. The global circRNA expression profile in HCC was measured by circRNA microarray. Levels of one representative circRNAs, hsa_circ_0004018, were confirmed by real-time reverse transcription-polymerase chain reaction. The expression levels of hsa_circ_0004018 in HCC were significantly lower compared with para-tumorous tissue (P<0.001). Our data further showed that lower expression of hsa_circ_0004018 was correlated with serum alpha-fetoprotein (AFP) level, tumor diameters, differentiation, Barcelona Clinic Liver Cancer stage and Tumor-node-metastasis stage. More importantly, we detected liver tissues from chronic hepatitis, cirrhosis and HCC patients; and found that hsa_circ_0004018 harbored HCC-stage-specific expression features in diverse chronic liver diseases (P<0.001). The area under receiver operating characteristic curve was up to 0.848 (95% CI=0.803–0.894, P<0.001). The sensitivity and specificity were 0.716 and 0.815, respectively. Finally, hsa_circ_0004018 might be involved in cancer-related pathways via interactions with miRNAs.
Collapse
Affiliation(s)
- Liyun Fu
- Department of Hepatology, Ningbo No. 2 Hospital and The Affiliated Hospital, Medical School of Ningbo University, Ningbo 315010, China
| | - Ting Yao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Qingqing Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaoyan Mo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Yaoren Hu
- Department of Hepatology, Ningbo No. 2 Hospital and The Affiliated Hospital, Medical School of Ningbo University, Ningbo 315010, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
28
|
Iwanami N, Hess I, Schorpp M, Boehm T. Studying the adaptive immune system in zebrafish by transplantation of hematopoietic precursor cells. Methods Cell Biol 2016; 138:151-161. [PMID: 28129842 DOI: 10.1016/bs.mcb.2016.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, transplantation has been a major experimental procedure to study the development and function of hematopoietic and immune systems. Here, we describe the use of a zebrafish strain lacking definitive hematopoiesis (cmybI181N) for interspecific analysis of hematopoietic and immune cell development. Without conditioning prior to transplantation, allogeneic and xenogeneic hematopoietic progenitor cells stably engraft in adult zebrafish homozygous for the cmyb mutation. This unique animal model can be used to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development.
Collapse
Affiliation(s)
- N Iwanami
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - I Hess
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - M Schorpp
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - T Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|