1
|
Tao Y, Lei L, Wang S, Zhang X, Yin Y, Zheng Y. SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in Streptococcus pneumoniae D39. Front Microbiol 2025; 15:1513884. [PMID: 39831115 PMCID: PMC11739294 DOI: 10.3389/fmicb.2024.1513884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Streptococcus pneumoniae capsular polysaccharide (CPS) is a crucial virulence factor for this pathogenic bacterium and is partially under transcriptional control. In this study, we used electrophoretic mobility shift assays and DNA enzyme footprinting to identified the hypothetical protein SPD_0410 as a negative regulator of cps locus. Our results showed that the D39Δspd0410 mutant strain exhibited significantly elevated CPS levels compared to the parental strain D39s. SPD_0410 directly binds at two specific sites on the cps promoter. The regulatory effect of SPD_0410 on CPS was weakened after the mutation of specific binding sites in the promoter. RNAseq analysis revealed that the deletion of spd0410 led to alterations in glucose metabolism. However, the altered glucose levels appeared to eliminate the regulation of CPS synthesis by SPD_0410. Deleting the spd0410 gene resulted in higher invasion and phagocytic resistance of bacteria and in vivo mouse experiments confirmed that D39Δspd0410 caused more severe systemic disease than the parental strain D39s. Our results indicated that SPD_0410 negatively regulates the synthesis of S. pneumoniae capsules and can directly alter pneumococcal virulence.
Collapse
Affiliation(s)
- Ye Tao
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Li Lei
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shuhui Wang
- Dujiangyan People’s Hospital, Chengdu, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuqiang Zheng
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
2
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
3
|
Rueff AS, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun 2023; 14:7454. [PMID: 37978173 PMCID: PMC10656556 DOI: 10.1038/s41467-023-43241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation. In this study, we use synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference (CRISPRi) together with live cell imaging and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Zikou E, Dovrolis N, Dimosthenopoulos C, Gazouli M, Makrilakis K. The Effect of Probiotic Supplements on Metabolic Parameters of People with Type 2 Diabetes in Greece-A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 15:4663. [PMID: 37960315 PMCID: PMC10647535 DOI: 10.3390/nu15214663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The role of probiotic supplementation in type 2 diabetes (T2D) treatment is controversial. The present study aimed to assess the effects of a multi-strain probiotic supplement (LactoLevureR (containing Lactobacillus acidophilus, Lactobacillus plantarum, Bifidobacterium lactis, and Saccharomyces boulardii)) over 6 months, primarily on glycemic control as well as on lipid levels and alterations in the gut microbiome, among individuals with T2D residing in Greece. A total of 91 adults with T2D (mean age [±SD] 65.12 ± 10.92 years, 62.6% males) were randomized to receive the probiotic supplement or a matching placebo capsule, once daily, for 6 months. Blood chemistries and anthropometric parameters were conducted every 3 months, and stool samples were collected at baseline and at 6 months. Significant reductions in HbA1c, fasting blood glucose, and total cholesterol were observed in participants treated with the probiotic supplement (n = 46) compared to the controls (n = 45), even after adjustment for a greater decrease in adiposity (waist circumference). Although there were no statistically significant differences in the diversity of the gut microbiome (α and β diversity), the administration of probiotics did influence several genera, metabolites, and key enzymes associated with diabetes. Overall, the administration of the multi-strain probiotic LactoLevureR over a 6-month period in individuals with T2D was well-tolerated and had a positive impact on metabolic parameters, alongside improvements in indices of adiposity.
Collapse
Affiliation(s)
- Eva Zikou
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, 11527 Athens, Greece; (E.Z.); (C.D.)
| | - Nikolas Dovrolis
- Department of Basic Medical Sciences, Laboratory of Biology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.D.); (M.G.)
| | - Charilaos Dimosthenopoulos
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, 11527 Athens, Greece; (E.Z.); (C.D.)
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.D.); (M.G.)
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, 11527 Athens, Greece; (E.Z.); (C.D.)
| |
Collapse
|
5
|
Zhu J, Abruzzo AR, Wu C, Bee GCW, Pironti A, Putzel G, Aggarwal SD, Eichner H, Weiser JN. Effects of Capsular Polysaccharide amount on Pneumococcal-Host interactions. PLoS Pathog 2023; 19:e1011509. [PMID: 37540710 PMCID: PMC10431664 DOI: 10.1371/journal.ppat.1011509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 06/24/2023] [Indexed: 08/06/2023] Open
Abstract
Among the many oral streptococci, Streptococcus pneumoniae (Spn) stands out for the capacity of encapsulated strains to cause invasive infection. Spread beyond upper airways, however, is a biological dead end for the organism, raising the question of the benefits of expending energy to coat its surface in a thick layer of capsular polysaccharide (CPS). In this study, we compare mutants of two serotypes expressing different amounts of CPS and test these in murine models of colonization, invasion infection and transmission. Our analysis of the effect of CPS amount shows that Spn expresses a capsule of sufficient thickness to shield its surface from the deposition of complement and binding of antibody to underlying epitopes. While effective shielding is permissive for invasive infection, its primary contribution to the organism appears to be in the dynamics of colonization. A thicker capsule increases bacterial retention in the nasopharynx, the first event in colonization, and also impedes IL-17-dependent clearance during late colonization. Enhanced colonization is associated with increased opportunity for host-to-host transmission. Additionally, we document substantial differences in CPS amount among clinical isolates of three common serotypes. Together, our findings show that CPS amount is highly variable among Spn and could be an independent determinant affecting host interactions.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Annie R. Abruzzo
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Cindy Wu
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Surya D. Aggarwal
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Hannes Eichner
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, and Clinical Microbiology, Bioclinicum, Karolinska University Hospital Solna, Solna, Sweden
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
6
|
Rueff AS, van Raaphorst R, Aggarwal S, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Rewiring capsule production by CRISPRi-based genetic oscillators demonstrates a functional role of phenotypic variation in pneumococcal-host interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543575. [PMID: 37398107 PMCID: PMC10312626 DOI: 10.1101/2023.06.03.543575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence1-8, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes9-14, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation15-20. In this study, we used synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference together with live cell microscopy and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Surya Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Present address: Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Kant S, Sun Y, Pancholi V. StkP- and PhpP-Mediated Posttranslational Modifications Modulate the S. pneumoniae Metabolism, Polysaccharide Capsule, and Virulence. Infect Immun 2023; 91:e0029622. [PMID: 36877045 PMCID: PMC10112228 DOI: 10.1128/iai.00296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Pneumococcal Ser/Thr kinase (StkP) and its cognate phosphatase (PhpP) play a crucial role in bacterial cytokinesis. However, their individual and reciprocal metabolic and virulence regulation-related functions have yet to be adequately investigated in encapsulated pneumococci. Here, we demonstrate that the encapsulated pneumococcal strain D39-derived D39ΔPhpP and D39ΔStkP mutants displayed differential cell division defects and growth patterns when grown in chemically defined media supplemented with glucose or nonglucose sugars as the sole carbon source. Microscopic and biochemical analyses supported by RNA-seq-based global transcriptomic analyses of these mutants revealed significantly down- and upregulated polysaccharide capsule formation and cps2 genes in D39ΔPhpP and D39ΔStkP mutants, respectively. While StkP and PhpP individually regulated several unique genes, they also participated in sharing the regulation of the same set of differentially regulated genes. Cps2 genes were reciprocally regulated in part by the StkP/PhpP-mediated reversible phosphorylation but independent of the MapZ-regulated cell division process. StkP-mediated dose-dependent phosphorylation of CcpA proportionately inhibited CcpA-binding to Pcps2A, supporting increased cps2 gene expression and capsule formation in D39ΔStkP. While the attenuation of the D39ΔPhpP mutant in two mouse infection models corroborated with several downregulated capsules-, virulence-, and phosphotransferase systems (PTS)-related genes, the D39ΔStkP mutant with increased amounts of polysaccharide capsules displayed significantly decreased virulence in mice compared to the D39 wild-type, but more virulence compared to D39ΔPhpP. NanoString technology-based inflammation-related gene expression and Meso Scale Discovery-based multiplex chemokine analysis of human lung cells cocultured with these mutants confirmed their distinct virulence phenotypes. StkP and PhpP may, therefore, serve as critical therapeutic targets.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Youcheng Sun
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
8
|
Fredriksen S, Ruijten SDE, Murray GGR, Juanpere-Borràs M, van Baarlen P, Boekhorst J, Wells JM. Transcriptomics in serum and culture medium reveal shared and differential gene regulation in pathogenic and commensal Streptococcus suis. Microb Genom 2023; 9:mgen000992. [PMID: 37103997 PMCID: PMC10210958 DOI: 10.1099/mgen.0.000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 04/28/2023] Open
Abstract
Streptococcus suis colonizes the upper respiratory tract of healthy pigs at high abundance but can also cause opportunistic respiratory and systemic disease. Disease-associated S. suis reference strains are well studied, but less is known about commensal lineages. It is not known what mechanisms enable some S. suis lineages to cause disease while others persist as commensal colonizers, or to what extent gene expression in disease-associated and commensal lineages diverge. In this study we compared the transcriptomes of 21 S. suis strains grown in active porcine serum and Todd-Hewitt yeast broth. These strains included both commensal and pathogenic strains, including several strains of sequence type (ST) 1, which is responsible for most cases of human disease and is considered to be the most pathogenic S. suis lineage. We sampled the strains during their exponential growth phase and mapped RNA sequencing reads to the corresponding strain genomes. We found that the transcriptomes of pathogenic and commensal strains with large genomic divergence were unexpectedly conserved when grown in active porcine serum, but that regulation and expression of key pathways varied. Notably, we observed strong variation of expression across media of genes involved in capsule production in pathogens, and of the agmatine deiminase system in commensals. ST1 strains displayed large differences in gene expression between the two media compared to strains from other clades. Their capacity to regulate gene expression across different environmental conditions may be key to their success as zoonotic pathogens.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Suzanne D. E. Ruijten
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Maria Juanpere-Borràs
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Peter van Baarlen
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Jos Boekhorst
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Jerry M. Wells
- Host–Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Niu K, Meng Y, Liu M, Ma Z, Lin H, Zhou H, Fan H. Phosphorylation of GntR reduces Streptococcus suis oxidative stress resistance and virulence by inhibiting NADH oxidase transcription. PLoS Pathog 2023; 19:e1011227. [PMID: 36913374 PMCID: PMC10010549 DOI: 10.1371/journal.ppat.1011227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.
Collapse
Affiliation(s)
- Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Glanville DG, Gazioglu O, Marra M, Tokars VL, Kushnir T, Habtom M, Croucher NJ, Nebenzahl YM, Mondragón A, Yesilkaya H, Ulijasz AT. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog 2023; 19:e1011035. [PMID: 36719895 PMCID: PMC9888711 DOI: 10.1371/journal.ppat.1011035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cis-regulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen's serotype-specific disease outcomes.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Michela Marra
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Valerie L. Tokars
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Sir Michael Uren Hub, Imperial College London, London, United Kingdom
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
11
|
Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses. PLoS Pathog 2022; 18:e1010516. [PMID: 35731836 PMCID: PMC9216600 DOI: 10.1371/journal.ppat.1010516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Synthesis of the capsular polysaccharide, a major virulence factor for many pathogenic bacteria, is required for bacterial survival within the infected host. In Streptococcus pneumoniae, Wze, an autophosphorylating tyrosine kinase, and Wzd, a membrane protein required for Wze autophosphorylation, co-localize at the division septum and guarantee the presence of capsule at this subcellular location. To determine how bacteria regulate capsule synthesis, we studied pneumococcal proteins that interact with Wzd and Wze using bacterial two hybrid assays and fluorescence microscopy. We found that Wzd interacts with Wzg, the putative ligase that attaches capsule to the bacterial cell wall, and recruits it to the septal area. This interaction required residue V56 of Wzd and both the transmembrane regions and DNA-PPF domain of Wzg. When compared to the wild type, Wzd null pneumococci lack capsule at midcell, bind the peptidoglycan hydrolase LytA better and are more susceptible to LytA-induced lysis, and are less virulent in a zebrafish embryo infection model. In this manuscript, we propose that the Wzd/Wze pair guarantees full encapsulation of pneumococcal bacteria by recruiting Wzg to the division septum, ensuring that capsule attachment is coordinated with peptidoglycan synthesis. Impairing the encapsulation process, at localized subcellular sites, may facilitate elimination of bacteria by strategies that target the pneumococcal peptidoglycan.
Collapse
|
12
|
Xu X, Yan Y, Huang J, Zhang Z, Wang Z, Wu M, Liang H. Regulation of uric acid and glyoxylate metabolism by UgmR protein in Pseudomonas aeruginosa. Environ Microbiol 2022; 24:3242-3255. [PMID: 35702827 DOI: 10.1111/1462-2920.16088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has evolved several systems to adapt to complex environments. The GntR family proteins play important roles in the regulation of metabolic processes and bacterial pathogenesis. In this study, we uncovered that the gene clusters of PA1513-PA1518 and PA1498-PA1502 in P. aeruginosa are required for uric acid and glyoxylate metabolism, respectively. We also identified a GntR family regulator UgmR that is involved in regulation of uric acid and glyoxylate metabolism. Promoter activity measurement and biochemical assays revealed that the UgmR directly represses the transcriptional activity of PA1513-PA1518 and PA1498-PA1502, and this inhibition was relieved by the addition of uric acid. Importantly, further experiments showed that UgmR also participates in the glyoxylate shunt. Collectively, these findings contribute to a better understanding of the UgmR factor involved in uric acid and glyoxylate metabolism, which provide insights into the complex metabolic pathways in P. aeruginosa. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuejie Xu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Yunfang Yan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Jiadai Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Zihao Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China.,College of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Sengupta K, Hivarkar SS, Palevich N, Chaudhary PP, Dhakephalkar PK, Dagar SS. Genomic architecture of three newly isolated unclassified Butyrivibrio species elucidate their potential role in the rumen ecosystem. Genomics 2022; 114:110281. [DOI: 10.1016/j.ygeno.2022.110281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
|
14
|
Abeywickrama TD, Perera IC. In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis. BIOLOGY 2021; 10:biology10121241. [PMID: 34943156 PMCID: PMC8698889 DOI: 10.3390/biology10121241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary In an era where the world faces new diseases and pathogens, another emerging challenge is neglected pathogens becoming more notorious. Transcriptional regulators play a vital role in the pathogenesis and survival of these pathogens. Hence, characterizing transcriptional regulators, either in vitro or in silico, is of great importance. Here, we present the first structural characterization of a GntR/HutC regulator in Mycobacterium tuberculosis via in silico methods. We have suggested its possible role and potential as a drug target as well as identified possible drug leads that can be used for further improvements. Abstract Mycobacterium tuberculosis is a well-known pathogen due to the emergence of drug resistance associated with it, where transcriptional regulators play a key role in infection, colonization and persistence. The genome of M. tuberculosis encodes many transcriptional regulators, and here we report an in-depth in silico characterization of a GntR regulator: MoyR, a possible monooxygenase regulator. Homology modelling provided a reliable structure for MoyR, showing homology with a HutC regulator DasR from Streptomyces coelicolor. In silico physicochemical analysis revealed that MoyR is a cytoplasmic protein with higher thermal stability and higher pI. Four highly probable binding pockets were determined in MoyR and the druggability was higher in the orthosteric binding site consisting of three conserved critical residues: TYR179, ARG223 and GLU234. Two highly conserved leucine residues were identified in the effector-binding region of MoyR and other HutC homologues, suggesting that these two residues can be crucial for structure stability and oligomerization. Virtual screening of drug leads resulted in four drug-like compounds with greater affinity to MoyR with potential inhibitory effects for MoyR. Our findings support that this regulator protein can be valuable as a therapeutic target that can be used for developing drug leads.
Collapse
|
15
|
Arends DW, Miellet WR, Langereis JD, Ederveen THA, van der Gaast–de Jongh CE, van Scherpenzeel M, Knol MJ, van Sorge NM, Lefeber DJ, Trzciński K, Sanders EAM, Dorfmueller HC, Bootsma HJ, de Jonge MI. Examining the Distribution and Impact of Single-Nucleotide Polymorphisms in the Capsular Locus of Streptococcus pneumoniae Serotype 19A. Infect Immun 2021; 89:e0024621. [PMID: 34251291 PMCID: PMC8519296 DOI: 10.1128/iai.00246-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae serotype 19A prevalence has increased after the implementation of the PCV7 and PCV10 vaccines. In this study, we have provided, with high accuracy, the genetic diversity of the 19A serotype in a cohort of Dutch invasive pneumococcal disease patients and asymptomatic carriers obtained in the period from 2004 to 2016. The whole genomes of the 338 pneumococcal isolates in this cohort were sequenced and their capsule (cps) loci compared to examine their diversity and determine the impact on the production of capsular polysaccharide (CPS) sugar precursors and CPS shedding. We discovered 79 types with a unique cps locus sequence. Most variation was observed in the rmlB and rmlD genes of the TDP-Rha synthesis pathway and in the wzg gene, which is of unknown function. Interestingly, gene variation in the cps locus was conserved in multiple alleles. Using RmlB and RmlD protein models, we predict that enzymatic function is not affected by the single-nucleotide polymorphisms as identified. To determine if RmlB and RmlD function was affected, we analyzed nucleotide sugar levels using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS). CPS precursors differed between 19A cps locus subtypes, including TDP-Rha, but no clear correlation was observed. Also, significant differences in multiple nucleotide sugar levels were observed between phylogenetically branched groups. Because of indications of a role for Wzg in capsule shedding, we analyzed if this was affected. No clear indication of a direct role in shedding was found. We thus describe genotypic variety in rmlB, rmlD, and wzg in serotype 19A in the Netherlands, for which we have not discovered an associated phenotype.
Collapse
Affiliation(s)
- D. W. Arends
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W. R. Miellet
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - J. D. Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T. H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C. E. van der Gaast–de Jongh
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. van Scherpenzeel
- GlycoMScan, Oss, The Netherlands
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. J. Knol
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - N. M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - D. J. Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K. Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. A. M. Sanders
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H. C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. J. Bootsma
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - M. I. de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Xiao S, Suo W, Zhang J, Zhang X, Yin Y, Guo X, Zheng Y. Mga Spn is a negative regulator of capsule and phosphorylcholine biosynthesis and influences the virulence of Streptococcus pneumoniae D39. Virulence 2021; 12:2366-2381. [PMID: 34506260 PMCID: PMC8437459 DOI: 10.1080/21505594.2021.1972539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global transcriptional regulators are prevalent in gram-positive pathogens. The transcriptional regulators of the Mga/AtxA family regulate target gene expression by directly binding to the promoter regions, that results in the coordinated expression of virulence factors. The spd_1587 gene of Streptococcus pneumoniae strain D39 encodes MgaSpn, which shares sequence similarity with global transcriptional regulators of the Mga/AtxA family. In this study, we demonstrated that MgaSpn regulates the biosynthesis of the capsule and phosphorylcholine, which play key roles in disease severity in S. pneumoniae infections. MgaSpn directly binds to the cps and lic1 promoters and affects the biosynthesis of the capsule and phosphorylcholine. MgaSpn binds to two specific sites on the promoter of cps, one of which contains the −35 box of the promoter, with high affinity. Consistently, low-molecular-weight capsule components were observed in the mgaSpn-null mutant strain. Moreover, we found that phosphorylcholine content was notably increased in the unencapsulated mgaSpn mutant strain. The mgaSpn null mutant caused more severe systemic disease than the parental strain D39. These findings indicate that the pneumococcal MgaSpn protein can inhibit capsule and phosphorylcholine production, thereby affecting the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Shengnan Xiao
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Weicai Suo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| |
Collapse
|
17
|
Inactivation of Transcriptional Regulator FabT Influences Colony Phase Variation of Streptococcus pneumoniae. mBio 2021; 12:e0130421. [PMID: 34399624 PMCID: PMC8406281 DOI: 10.1128/mbio.01304-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that can alter its cell surface phenotype in response to the host environment. We demonstrated that the transcriptional regulator FabT is an indirect regulator of capsular polysaccharide, an important virulence factor of Streptococcus pneumoniae. Transcriptome analysis between the wild-type D39s and D39ΔfabT mutant strains unexpectedly identified a differentially expressed gene encoding a site-specific recombinase, PsrA. PsrA catalyzes the inversion of 3 homologous hsdS genes in a type I restriction-modification (RM) system SpnD39III locus and is responsible for the reversible switch of phase variation. Our study demonstrated that upregulation of PsrA in a D39ΔfabT mutant correlated with an increased ratio of transparent (T) phase variants. Inactivation of the invertase PsrA led to uniform opaque (O) variants. Direct quantification of allelic variants of hsdS derivatives and inversions of inverted repeats indicated that the recombinase PsrA fully catalyzes the inversion mediated by IR1 and IR3, and FabT mediated the recombination of the hsdS alleles in PsrA-dependent and PsrA-independent manners. In addition, compared to D39s, the ΔfabT mutant exhibited reduced nasopharyngeal colonization and was more resistant to phagocytosis and less adhesive to epithelial cells. These results indicated that phase variation in the ΔfabT mutant also affects other cell surface components involved in host interactions.
Collapse
|
18
|
Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol Rev 2021; 45:6284802. [PMID: 34037759 PMCID: PMC8632737 DOI: 10.1093/femsre/fuab028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Manganese (Mn2+) is an essential trace element within organisms spanning the entire tree of life. In this review, we provide an overview of Mn2+ transport and the regulation of its homeostasis in bacteria, with a focus on its functions beyond being a cofactor for enzymes. Crucial differences in Mn2+ homeostasis exist between bacterial species that can be characterized to have an iron- or manganese-centric metabolism. Highly iron-centric species require minimal Mn2+ and mostly use it as a mechanism to cope with oxidative stress. As a consequence, tight regulation of Mn2+ uptake is required, while organisms that use both Fe2+ and Mn2+ need other layers of regulation for maintaining homeostasis. We will focus in detail on manganese-centric bacterial species, in particular lactobacilli, that require little to no Fe2+ and use Mn2+ for a wider variety of functions. These organisms can accumulate extraordinarily high amounts of Mn2+ intracellularly, enabling the nonenzymatic use of Mn2+ for decomposition of reactive oxygen species while simultaneously functioning as a mechanism of competitive exclusion. We further discuss how Mn2+ accumulation can provide both beneficial and pathogenic bacteria with advantages in thriving in their niches.
Collapse
Affiliation(s)
- Elleke F Bosma
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | - Martin H Rau
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | | | - Solvej Siedler
- Corresponding author: Boege Allé 10-12, 2970 Hoersholm, Denmark. Tel: +45 52 18 08 25; E-mail:
| |
Collapse
|
19
|
Hirschmann S, Gómez-Mejia A, Mäder U, Karsunke J, Driesch D, Rohde M, Häussler S, Burchhardt G, Hammerschmidt S. The Two-Component System 09 Regulates Pneumococcal Carbohydrate Metabolism and Capsule Expression. Microorganisms 2021; 9:microorganisms9030468. [PMID: 33668344 PMCID: PMC7996280 DOI: 10.3390/microorganisms9030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julia Karsunke
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
- Correspondence:
| |
Collapse
|
20
|
Han D, Shi R, Yan Q, Shi Y, Ma J, Jiang Z. Global transcriptomic analysis of functional oligosaccharide metabolism in Pediococcus pentosaceus. Appl Microbiol Biotechnol 2021; 105:1601-1614. [PMID: 33511444 DOI: 10.1007/s00253-021-11120-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
Lactic acid bacteria (LAB) are important in food fermentation and may enhance overall host health. Previous studies to explore LAB metabolism mainly focused on the genera Lacticaseibacillus and Lactococcus. Pediococcus pentosaceus, historically recognized as an important food fermentation bacterial strain, can produce bacteriocins and occasionally demonstrated probiotic functionalities. This study thoroughly surveyed the growth kinetic of three P. pentosaceus isolates in various culture formulations, especially in fructooligosaccharide (FOS), xylooligosaccharide (XOS), or konjac mannooligosaccharide (KMOS) conditions. Results showed that P. pentosaceus effectively metabolized KMOS, the culture of which led to 23.6-fold population increase. However, FOS and XOS were less metabolized by P. pentosaceus. On functional oligosaccharide cultures, P. pentosaceus could result in higher population proliferation, more acidified fermentation environment, and higher glycoside hydrolysis activities in the culture. RNA-Seq analysis classified 1572 out of 1708 putative genes as mRNA-coding genes. The dataset also revealed that the three functional oligosaccharides led to extensive global functional gene regulations. Phosphate conservation and utilization efficiency enhancement may serve as a leading transcriptional regulation direction in functional oligosaccharide metabolisms. In summary, these discovered metabolic characteristics could be employed to support future studies. KEY POINTS: • Konjac mannooligosaccharides effectively promoted P. pentosaceus proliferation. • Functional genes were highly regulated in functional oligosaccharide utilization. • Phosphate conservation was an important transcriptional regulation direction.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Shi
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, China
| | - Yuqin Shi
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junwen Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
21
|
Durmort C, Ercoli G, Ramos-Sevillano E, Chimalapati S, Haigh RD, De Ste Croix M, Gould K, Hinds J, Guerardel Y, Vernet T, Oggioni M, Brown JS. Deletion of the Zinc Transporter Lipoprotein AdcAII Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System. mBio 2020; 11:e00445-20. [PMID: 32234814 PMCID: PMC7157770 DOI: 10.1128/mbio.00445-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated ΔadcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the ΔadcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated ΔadcAII strains. However, transformation of ΔadcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated ΔadcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of ΔadcAII Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype.IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the ΔadcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and ΔadcAII, further investigation of which could further characterize mechanisms of capsule regulation.
Collapse
Affiliation(s)
- Claire Durmort
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Suneeta Chimalapati
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Richard D Haigh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Katherine Gould
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Thierry Vernet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Marco Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
22
|
Abstract
Capsular polysaccharide is a key factor underlying the virulence of Streptococcus pneumoniae in human diseases. Thus, a deep understanding of capsular polysaccharide synthesis is essential for uncovering the pathogenesis of S. pneumoniae infection. In this study, we show that protein SPD_1495 interacts with phosphorylated ComE to negatively regulate the formation of capsular polysaccharide. Deletion of spd1495 increased capsular polysaccharide synthesis and thereby enhanced bacterial virulence. These findings further reveal the synthesis mechanism of capsular polysaccharide and provide new insight into the biology of this clinically important bacterium. Streptococcus pneumoniae, a Gram-positive human pathogen, causes a series of serious diseases in humans. SPD_1495 from S. pneumoniae is annotated as a hypothetical ABC sugar-binding protein in the NCBI database, but there are few reports on detailed biological functions of SPD_1495. To fully study the influence of SPD_1495 on bacterial virulence in S. pneumoniae, we constructed a deletion mutant (D39Δspd1495) and an overexpressing strain (D39spd1495+). Comparative analysis of iTRAQ-based quantitative proteomic data of the wild-type D39 strain (D39-WT) and D39Δspd1495 showed that several differentially expressed proteins that participate in capsular polysaccharide synthesis, such as Cps2M, Cps2C, Cps2L, Cps2T, Cps2E, and Cps2D, were markedly upregulated in D39Δspd1495. Subsequent transmission electron microscopy and uronic acid detection assay confirmed that capsular polysaccharide synthesis was enhanced in D39Δspd1495 compared to that in D39-WT. Moreover, knockout of spd1495 resulted in increased capsular polysaccharide synthesis, as well as increased bacterial virulence, as confirmed by the animal study. Through a coimmunoprecipitation assay, surface plasmon resonance, and electrophoretic mobility shift assay, we found that SPD_1495 negatively regulated cps promoter expression by interacting with phosphorylated ComE, a negative transcriptional regulator for capsular polysaccharide formation. Overall, this study suggested that SPD_1495 negatively regulates capsular polysaccharide formation and thereby enhances bacterial virulence in the host. These findings also provide valuable insights into understanding the biology of this clinically important bacterium. IMPORTANCE Capsular polysaccharide is a key factor underlying the virulence of Streptococcus pneumoniae in human diseases. Thus, a deep understanding of capsular polysaccharide synthesis is essential for uncovering the pathogenesis of S. pneumoniae infection. In this study, we show that protein SPD_1495 interacts with phosphorylated ComE to negatively regulate the formation of capsular polysaccharide. Deletion of spd1495 increased capsular polysaccharide synthesis and thereby enhanced bacterial virulence. These findings further reveal the synthesis mechanism of capsular polysaccharide and provide new insight into the biology of this clinically important bacterium.
Collapse
|
23
|
Ghosh P, Shah M, Ravichandran S, Park SS, Iqbal H, Choi S, Kim KK, Rhee DK. Pneumococcal VncR Strain-Specifically Regulates Capsule Polysaccharide Synthesis. Front Microbiol 2019; 10:2279. [PMID: 31632380 PMCID: PMC6781885 DOI: 10.3389/fmicb.2019.02279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Capsular polysaccharides (CPS), a major virulence factor in Streptococcus pneumoniae, become thicker during blood invasion while not during asymptomatic nasopharyngeal colonization. However, the underlying mechanism controlling this differential pneumococcal CPS regulation remain unclear. Here, we show how VncR, the response regulator of the vancomycin resistance locus (vncRS operon), regulates CPS expression in vncR mutants in three serotype (type 2, 3, and 6B) backgrounds upon exposure to serum lactoferrin (LF). Comparative analysis of CPS levels in the wild type (WT) of three strains and their isogenic vncR mutants after LF exposure revealed a strain-specific alteration in CPS production. Consistently, VncR-mediated strain-specific CPS production is correlated with pneumococcal virulence, in vivo. Electrophoretic mobility-shift assay and co-immunoprecipitation revealed an interaction between VncR and the cps promoter (cpsp) in the presence of serum. In addition, in silico analysis uncovered this protein-DNA interaction, suggesting that VncR binds with the cpsp, and recognizes the strain-specific significance of the tandem repeats in cpsp. Taken together, the interaction of VncR and cpsp after serum exposure plays an essential role in regulating differential strain-specific CPS production, which subsequently determines strain-specific systemic virulence. This study highlights how host protein LF contributes to pneumococcal VncR-mediated CPS production. As CPS plays a significant role in immune evasion, these findings suggest that drugs designed to interrupt the VncR-mediated CPS production could help to combat pneumococcal infections.
Collapse
Affiliation(s)
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Subramaniyam Ravichandran
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hamid Iqbal
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Dong Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
24
|
Identification of a GntR family regulator BusR Tha and its regulatory mechanism in the glycine betaine ABC transport system of Tetragenococcus halophilus. Extremophiles 2019; 23:451-460. [PMID: 31053934 DOI: 10.1007/s00792-019-01096-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Glycine betaine is one of the most effective compatible solutes of the halophilic lactic acid bacterium Tetragenococcus halophilus, the transportation of which is essential for its survival under salinity stress condition. In the current study, we attempted to define a glycine betaine ABC transporter system of T. halophilus, busATha, which plays an important role in adapting to salinity condition. The expression of busATha enhanced the growth of the recombinant strain under high salinity. BusRTha, a transcription regulator that represses the expression of busATha, was characterized, and the repression was abrogated under high salinity. The binding of the regulator was demonstrated through electrophoretic mobility shift assays, and the binding sites were characterized as 5'-AAA(T/G)TGAC(C/A)(G/A)T(C/A)C-3'. This is the first studied transcription regulator of T. halophilus, and our findings provide insights into the molecular mechanism of halophilic life and tools for further application of halophiles as chassis in industrial biotechnology.
Collapse
|
25
|
Paton JC, Trappetti C. Streptococcus pneumoniae Capsular Polysaccharide. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0019-2018. [PMID: 30977464 PMCID: PMC11590643 DOI: 10.1128/microbiolspec.gpp3-0019-2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.
Collapse
Affiliation(s)
- James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
26
|
Li Z, Xiang Z, Zeng J, Li Y, Li J. A GntR Family Transcription Factor in Streptococcus mutans Regulates Biofilm Formation and Expression of Multiple Sugar Transporter Genes. Front Microbiol 2019; 9:3224. [PMID: 30692967 PMCID: PMC6340165 DOI: 10.3389/fmicb.2018.03224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
GntR family transcription factors have been implicated in the regulation of carbohydrate transport and metabolism in many bacteria. However, the function of this transcription factor family is poorly studied in Streptococcus mutans, which is a commensal bacterium in the human oral cavity and a well-known cariogenic pathogen. One of the most important virulence traits of S. mutans is its ability to transport and metabolize carbohydrates. In this study, we identified a GntR transcription factor in S. mutans named StsR (Sugar Transporter Systems Regulator). The deletion of the stsR gene in S. mutans caused a decrease in both the formation of biofilm and the production of extracellular polysaccharides (EPS) at early stage. Global gene expression profiling revealed that the expression levels of 188 genes were changed in the stsR mutant, which could be clustered with the sugar PTS and ABC transporters. Furthermore, StsR protein was purified and its conserved DNA binding motif was determined using electrophoretic mobility shift assays (EMSA) and DNase I footprinting assays. Collectively, the results of this research indicate that StsR is an important transcription factor in S. mutans that regulates the expression of sugar transporter genes, production of EPS and formation of biofilm.
Collapse
Affiliation(s)
- Zongbo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenting Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Morais V, Dee V, Suárez N. Purification of Capsular Polysaccharides of Streptococcus pneumoniae: Traditional and New Methods. Front Bioeng Biotechnol 2018; 6:145. [PMID: 30370268 PMCID: PMC6194195 DOI: 10.3389/fbioe.2018.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Pneumonia caused by Streptococcus pneumoniae is a major bacterial disease responsible for many deaths worldwide each year and is particularly dangerous in children under 5 years old and adults over 50. The capsular polysaccharide (CPS) constitutes the outermost layer of the bacterial cell and is the main virulence factor. Regardless of whether pharmaceutical agents are composed of CPS alone or protein-conjugated CPS, CPS purification is essential for the development of vaccines against S. pneumoniae. These vaccines are effective and safe but remain quite expensive. This review describes the methods currently available for CPS purification. Advances in CPS purification methods are aimed at improvements in quality and yield and, above all, process simplification.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Valerie Dee
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Norma Suárez
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
28
|
Dennis EA, Coats MT, Griffin S, Pang B, Briles DE, Crain MJ, Swords WE. Hyperencapsulated mucoid pneumococcal isolates from patients with cystic fibrosis have increased biofilm density and persistence in vivo. Pathog Dis 2018; 76:5110111. [PMID: 30265307 DOI: 10.1093/femspd/fty073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mucoid bacteria, predominately Pseudomonas aeruginosa, are commonly associated with decline in pulmonary function in children with cystic fibrosis (CF), and are thought to persist at least in part due to a greater propensity toward forming biofilms. We isolated a higher frequency of mucoid Streptococcus pneumoniae (Sp) expressing high levels of capsular polysaccharides from sputa from children with CF, compared to those without CF. We compared biofilm formation and maturation by mucoid and non-mucoid isolates of Sp collected from children with and without CF. Non-mucoid Sp serotype 19A and 19F isolates had significantly higher levels of biofilm initiation and adherence to CF epithelial cells than did serotype 3 isolates. However, strains expressing high levels of capsule had significantly greater biofilm maturation, as evidenced by increased density and thickness in static and continuous flow assays via confocal microscopy. Finally, using a serotype 3 Sp strain, we showed that highly encapsulated mucoid phase variants predominate during late adherence and better colonize CFTR-/- as compared to wild-type mice in respiratory infection studies. These findings indicate that overexpression of capsule can enhance the development of mature pneumococcal biofilms in vitro, and may contribute to pneumococcal colonization in CF lung disease.
Collapse
Affiliation(s)
- Evida A Dennis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35233, USA
| | - Mamie T Coats
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104-5732, USA
| | - Sarah Griffin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35233, USA
| | - Bing Pang
- Department of Microbiology and Immunology, Wake Forest University Baptist Medical Center, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35233, USA.,Division of Infections Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marilyn J Crain
- Division of Infections Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - W Edward Swords
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
29
|
Adenylate kinase potentiates the capsular polysaccharide by modulating Cps2D in Streptococcus pneumoniae D39. Exp Mol Med 2018; 50:1-14. [PMID: 30185778 PMCID: PMC6123713 DOI: 10.1038/s12276-018-0141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae is a polysaccharide-encapsulated bacterium. The capsule thickens during blood invasion compared with the thinner capsules observed in asymptomatic nasopharyngeal colonization. However, the underlying mechanism regulating differential CPS expression remains unclear. CPS synthesis requires energy that is supplied by ATP. Previously, we demonstrated a correlation between ATP levels and adenylate kinase in S. pneumoniae (SpAdK). A dose-dependent induction of SpAdK in serum was also reported. To meet medical needs, this study aimed to elucidate the role of SpAdK in the regulation of CPS production. CPS levels in S. pneumoniae type 2 (D39) increased proportionally with SpAdK levels, but they were not related to pneumococcal autolysis. Moreover, increased SpAdK levels resulted in increased total tyrosine kinase Cps2D levels and phosphorylated Cps2D, which is a regulator of CPS synthesis in the D39 strain. Our results also indicated that the SpAdK and Cps2D proteins interact in the presence of Mg-ATP. In addition, in silico analysis uncovered the mechanism behind this protein–protein interaction, suggesting that SpAdK binds with the Cps2D dimer. This established the importance of the ATP-binding domain of Cps2D. Taken together, the biophysical interaction between SpAdK and Cps2D plays an important role in enhancing Cps2D phosphorylation, which results in increased CPS synthesis. A physical interaction between two key enzymes explains how the bacterium responsible for causing pneumococcal disease thickens its external capsule during infection of the bloodstream. A team led by Dong-Kwon Rhee from Sungkyunkwan University in Suwon, South Korea, studied strains of Streptococcus pneumoniae expressing varying levels of an enzyme that helps maintain the proper balance of cellular energy. They found that this enzyme stimulated the production of sugar chains that coat the outside of the bacterial capsule by binding and activating an intermediary enzyme involved in the synthesis of these sugar chains. Since the capsule is critical in warding off the human immune response, the findings suggest that drugs designed to disrupt the enzyme-mediated induction of capsule formation could help prevent or treat pneumococcal disease.
Collapse
|
30
|
Shen M, Yao R, Yue H, Zhang J, Chen M, Zhang W, Liu D, Wu K. Serotype prevalence and antibiotic susceptibility patterns of pneumococcal isolates in Zunyi city, China. Saudi Med J 2018; 38:1243-1249. [PMID: 29209675 PMCID: PMC5787637 DOI: 10.15537/smj.2017.12.21090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the serotype distribution and antimicrobial susceptibility of pneumococci isolated from inpatients of all ages suspected of having bacterial infections. METHODS In this retrospective study, pneumococcal isolates were consecutively collected from the Third Affiliated Hospital of Zunyi Medical University, in Zunyi city, China, between January 2014 and December 2016. Pneumococci were identified using routine microbiological assays. We performed antimicrobial susceptibility analyses using the bacteria identification/susceptibility system VITEK2 and E-tests. Capsular types of all isolates were determined by multiplex polymerase chain reaction. RESULTS We identified 778 pneumococcal isolates. Serotypes 19F, 6A/6B, 19A, 23F, and 15B/15C were the most prevalent strains, accounting for 71.5% (556/778) of all isolates. Data show that 409 (70.4%) isolates could be covered by the PCV13 vaccine in children less than 2 years old. Irrespective of serotypes, 747 (96%) isolates were sensitive to penicillin, while 720 to 778 (90% to 100%) isolates were not susceptible to erythromycin, tetracycline, and trimethoprim/sulfamethoxazole. For isolates resistant to penicillin, ceftriaxone, cefotaxime, and meropenem, 22 to 39 (70% to 81.25%) strains belonged to PCV13 serotypes. CONCLUSION We found a substantial increase in the annual number of pneumococcal isolates since 2014. The theoretical impact of PCV13 was high in children less than 2 years old, and penicillin might be effective against pneumococcal infections in this region.
Collapse
Affiliation(s)
- Meijing Shen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ye W, Zhang J, Shu Z, Yin Y, Zhang X, Wu K. Pneumococcal LytR Protein Is Required for the Surface Attachment of Both Capsular Polysaccharide and Teichoic Acids: Essential for Pneumococcal Virulence. Front Microbiol 2018; 9:1199. [PMID: 29951042 PMCID: PMC6008509 DOI: 10.3389/fmicb.2018.01199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
The LytR-Cps-Psr family proteins are commonly present in Gram-positive bacteria, which have been shown to implicate in anchoring cell wall-related glycopolymers to the peptidoglycan. Here, we report the cellular function of SPD_1741 (LytR) in Streptococcus pneumoniae and its role in virulence of pneumococci. Pneumococcal ΔlytR mutants have been successfully constructed by replacing the lytR gene with erm cassette. The role of LytR in pneumococcal growth was determined by growth experiments, and surface accessibility of the LytR protein was analyzed using flow cytometry. Transmission electron microscopy (TEM) and immunoblotting were used to reveal the changes in capsular polysaccharide (CPS). Dot blot and ELISA were used to quantify the amount of teichoic acids (TAs). The contribution of LytR on bacterial virulence was assessed using in vitro phagocytosis assays and infection experiments. Compared to the wild-type strain, the ΔlytR mutant showed a defect in growth which merely grew to a maximal OD620 of 0.2 in the liquid medium. The growth of the ΔlytR mutant could be restored by addition of recombinant ΔTM-LytR protein in culture medium in a dose-dependent manner. TEM results showed that the D39ΔlytR mutant was impaired in the surface attachment of CPS. Deletion of lytR gene also impaired the retention of TAs on the surface of pneumococci. The reduction of CPS and TAs on the pneumocccal cells were confirmed using Dot blot and ELISA assays. Compared to wild-type D39, the ΔlytR mutant was more susceptible to the phagocytosis. Animal studies showed that the ability to colonize the nasophaynx and virulence of pneumococci were affected by impairment of the lytR gene. Collectively, these results suggest that pneumococcal LytR is involved in anchoring both the CPS and TAs to cell wall, which is important for virulence of pneumococci.
Collapse
Affiliation(s)
- Weijie Ye
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhaoche Shu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Kaifeng Wu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
32
|
Nakanaga K, Ogura Y, Toyoda A, Yoshida M, Fukano H, Fujiwara N, Miyamoto Y, Nakata N, Kazumi Y, Maeda S, Ooka T, Goto M, Tanigawa K, Mitarai S, Suzuki K, Ishii N, Ato M, Hayashi T, Hoshino Y. Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes it non-pathogenic. Sci Rep 2018; 8:8218. [PMID: 29844323 PMCID: PMC5974349 DOI: 10.1038/s41598-018-26425-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a WHO-defined neglected tropical disease. All Japanese BU causative isolates have shown distinct differences from the prototype and are categorized as M. ulcerans subspecies shinshuense. During repeated sub-culture, we found that some M. shinshuense colonies were non-pigmented whereas others were pigmented. Whole genome sequence analysis revealed that non-pigmented colonies did not harbor a giant plasmid, which encodes elements needed for mycolactone toxin biosynthesis. Moreover, mycolactone was not detected in sterile filtrates of non-pigmented colonies. Mice inoculated with suspensions of pigmented colonies died within 5 weeks whereas those infected with suspensions of non-pigmented colonies had significantly prolonged survival (>8 weeks). This study suggests that mycolactone is a critical M. shinshuense virulence factor and that the lack of a mycolactone-producing giant plasmid makes the strain non-pathogenic. We made an avirulent mycolactone-deletion mutant strain directly from the virulent original.
Collapse
Affiliation(s)
- Kazue Nakanaga
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Kazumi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shinji Maeda
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- School of Pharmacy, Hokkaido Pharmaceutical University, Sapporo, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Kazunari Tanigawa
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Satoshi Mitarai
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Koichi Suzuki
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
33
|
Carvalho SM, Kloosterman TG, Manzoor I, Caldas J, Vinga S, Martinussen J, Saraiva LM, Kuipers OP, Neves AR. Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39. Front Microbiol 2018; 9:321. [PMID: 29599757 PMCID: PMC5863508 DOI: 10.3389/fmicb.2018.00321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae. In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the -10 box of capsule operon promoter (Pcps). By directed mutagenesis we showed that the point mutation in Pcps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased Pcps activity and capsule amounts. Importantly, Pcps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA. In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - José Caldas
- Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento (INESC-ID), Lisbon, Portugal
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jan Martinussen
- DTU Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ana R Neves
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
34
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
35
|
Rossi E, Motta S, Aliverti A, Cossu F, Gourlay L, Mauri P, Landini P. Cellulose production is coupled to sensing of the pyrimidine biosynthetic pathway via c-di-GMP production by the DgcQ protein of Escherichia coli. Environ Microbiol 2017; 19:4551-4563. [PMID: 28892259 DOI: 10.1111/1462-2920.13918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 01/28/2023]
Abstract
Production of cellulose, a stress response-mediated process in enterobacteria, is modulated in Escherichia coli by the activity of the two pyrimidine nucleotide biosynthetic pathways, namely, the de novo biosynthetic pathway and the salvage pathway, which relies on the environmental availability of pyrimidine nitrogenous bases. We had previously reported that prevalence of the salvage over the de novo pathway triggers cellulose production via synthesis of the second messenger c-di-GMP by the DgcQ (YedQ) diguanylate cyclase. In this work, we show that DgcQ enzymatic activity is enhanced by UTP, whilst being inhibited by N-carbamoyl-aspartate, an intermediate of the de novo pathway. Thus, direct allosteric control by these ligands allows full DgcQ activity exclusively in cells actively synthesizing pyrimidine nucleotides via the salvage pathway. Inhibition of DgcQ activity by N-carbamoyl-aspartate appears to be favoured by protein-protein interaction between DgcQ and PyrB, a subunit of aspartate transcarbamylase, which synthesizes N-carbamoyl-aspartate. Our results suggest that availability of pyrimidine bases might be sensed, somehow paradoxically, as an environmental stress by E. coli. We hypothesize that this link might have evolved since stress events, leading to extensive DNA/RNA degradation or lysis of neighbouring cells, can result in increased pyrimidine concentrations and activation of the salvage pathway.
Collapse
Affiliation(s)
- Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Motta
- Institute of Biomedical Technologies, National Research Council, Milan, Segrate, Italy
| | | | - Federica Cossu
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Louise Gourlay
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research Council, Milan, Segrate, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
Abstract
The capsular polysaccharide (CPS) of Streptococcus pneumoniae is characterized by its diversity, as it has over 95 known serotypes, and the variation in its thickness as it surrounds an organism. While within-host effects of CPS have been studied in detail, there is no information about its contribution to host-to-host transmission. In this study, we used an infant mouse model of intralitter transmission, together with isogenic capsule switch and cps promoter switch constructs, to explore the effects of CPS type and amount. The determining factor in the transmission rate in this model is the number of pneumococci shed in nasal secretions by colonized hosts. Two of seven capsule switch constructs showed reduced shedding. These constructs were unimpaired in colonization and expressed capsules similar in size to those of the wild-type strain. A cps promoter switch mutant expressing ~50% of wild-type amounts of CPS also displayed reduced shedding without a defect in colonization. Since shedding from the mucosal surface may require escape from mucus entrapment, a mucin-binding assay was used to compare capsule switch and cps promoter switch mutants. The CPS type or amount constructs that shed poorly were bound more robustly by immobilized mucin. These capsule switch and cps promoter switch constructs with increased mucin-binding affinity and reduced shedding also had lower rates of pup-to-pup transmission. Our results demonstrate that CPS type and amount affect transmission dynamics and may contribute to the marked differences in prevalence among pneumococcal types.IMPORTANCEStreptococcus pneumoniae, a leading cause of morbidity and mortality, is readily transmitted, especially among young children. Its structurally and antigenically diverse capsular polysaccharide is the target of currently licensed pneumococcal vaccines. Epidemiology studies show that only a subset of the >95 distinct serotypes are prevalent in the human population, suggesting that certain capsular polysaccharide types might be more likely to be transmitted within the community. Herein, we used an infant mouse model to show that both capsule type and amount are important determinants in the spread of pneumococci from host to host. Transmission rates correlate with those capsule types that are better at escaping mucus entrapment, a key step in exiting the host upper respiratory tract. Hence, our study provides a better mechanistic understanding of why certain pneumococcal serotypes are more common in the human population.
Collapse
|
37
|
Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumoniae. Sci Rep 2017; 7:2715. [PMID: 28578394 PMCID: PMC5457420 DOI: 10.1038/s41598-017-02996-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria is a healthcare problem worldwide. We evaluated the antimicrobial activity of rhodomyrtone, an acylphloroglucinol present in Rhodomyrtus tomentosa leaves, against the human Gram-positive pathogen Streptococcus pneumoniae. The compound exhibited pronounced anti-pneumococcal activity against a broad collection of clinical isolates. We studied the effects at the molecular level by integrated proteomic and metabolomic analysis. The results revealed alterations in enzymes and metabolites involved in several metabolic pathways including amino acid biosynthesis, nucleic acid biosynthesis, glucid, and lipid metabolism. Notably, the levels of two enzymes (glycosyltransferase and UTP-glucose-1-phosphate uridylyltransferase) and three metabolites (UDP-glucose, UDP-glucuronic acid and UDP-N-acetyl-D-galactosamine) participating in the synthesis of the pneumococcal capsule clearly diminished in the bacterial cells exposed to rhodomyrtone. Rhodomyrtone-treated pneumococci significantly possessed less amount of capsule, as measured by a colorimetric assay and visualized by electron microscopy. These findings reveal the utility of combining proteomic and metabolomic analyses to provide insight into phenotypic features of S. pneumoniae treated with this potential novel antibiotic. This can lead to an alternative antibiotic for the treatment of S. pneumoniae infections, because of the growing concern regarding antimicrobial resistance.
Collapse
|
38
|
Zheng Y, Zhang X, Wang X, Wang L, Zhang J, Yin Y. ComE, an Essential Response Regulator, Negatively Regulates the Expression of the Capsular Polysaccharide Locus and Attenuates the Bacterial Virulence in Streptococcus pneumoniae. Front Microbiol 2017; 8:277. [PMID: 28326061 PMCID: PMC5339220 DOI: 10.3389/fmicb.2017.00277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/09/2017] [Indexed: 11/25/2022] Open
Abstract
The capsular polysaccharide (CPS) of Streptococcus pneumoniae is the main virulence factors required for effective colonization and invasive disease. The capacity to regulate CPS production at the transcriptional level is critical for the survival of S. pneumoniae in different host niches, but little is known about the transcription regulators of cps locus. In the present study, we isolated and identified the response regulator ComE, the master competence switch in transformation of S. pneumoniae, as a transcriptional regulator of cps locus by DNA affinity chromatography-pulldown, MALDI-TOF mass spectrometry (MS) and electrophoretic mobility shift assay (EMSA). Our results showed that phosphorylated mimetic of ComE (ComED58E) bound specifically to the cps locus prompter in vitro, and phosphorylated ComE negatively impacted both cps locus transcription and CPS production attenuating the pneumococcal virulence in vivo. Compared with D39-WT strain, D39ΔcomE mutant exhibited much thicker capsule, attenuated nasopharyngeal colonization and enhanced virulence in both pneumonia and bacteremia models of Balb/c mice. Furthermore, it was demonstrated that CSP-ComD/E competence system involved in regulating negatively the CPS production during the progress of transformation in D39. Our CSP1 induction experiment results showed that the expression of ComE in D39-WT strain increased powerfully by 120% after 10 min of CSP1 induction, but the CPS production in D39-WT strain decreased sharply by 67.1% after 15 min of CSP1 induction. However, the CPS production in D39ΔcomE mutant was almost constant during the whole stage of induction. Additionally, we found that extracellular glucose concentration could affect both the expression of ComE and CPS production of D39 in vitro. Taken together, for the first time, we report that ComE, as a transcriptional regulator of cps locus, plays an important role in transcriptional regulation of cps locus and capsular production level.
Collapse
Affiliation(s)
- Yuqiang Zheng
- Department of Medicine Laboratory, Childrens Hospital of Chongqing Medical University Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University Chongqing, China
| | - Xiaofang Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University Chongqing, China
| | - Libin Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University Chongqing, China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University Chongqing, China
| |
Collapse
|