1
|
Rui X, Jin Z, Li L, Liu J, Mao J, Leng X, Qiao H, Li W, Wang L, Chen Y, Wang J. A platinum(IV)-crocetin nanoplatform with intracellular morphological transformation for enhanced colorectal cancer therapy. J Mater Chem B 2025. [PMID: 40366349 DOI: 10.1039/d5tb00127g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide. Platinum(II)-based drugs, a cornerstone in CRC treatment, are often limited by significant side effects and suboptimal efficacy. Herein, we present a platinum(IV) prodrug nanoplatform (Pt(IV)-Cro NPs) designed to overcome these challenges through intracellular morphological transformation, enhancing therapeutic outcomes against CRC. Pt(IV)-Cro NPs are formed via the self-assembly of Pt(IV)-crocetin (Pt(IV)-Cro) and mPEG-crocetin (mPEG-Cro), driven by hydrophilic-hydrophobic interactions. These nanoparticles exhibit concentration-dependent morphology, transitioning from rod-shaped structures at lower concentrations to spherical forms at higher concentrations. Notably, Pt(IV)-Cro NPs undergo time-dependent morphological changes within cells. Upon uptake by CT26 cells, the nanoparticles retain a nanorod shape during the first hour but transform into spherical structures within 3 h. These morphological transitions contribute to a remarkable 141-fold reduction in the half-inhibitory concentration (IC50) against CT26 cells compared to cisplatin alone. Pt(IV)-Cro NPs induced 3.14-fold greater apoptosis, 51.2% mitochondrial depolarization, and 55.9% ROS elevation compared to cisplatin. In vivo studies in CT26 tumor-bearing mice reveal that Pt(IV)-Cro NPs significantly outperform cisplatin alone, reducing tumor growth by up to 8.08 times relative to controls. This innovative nanoplatform combines enhanced efficacy with minimized side effects, offering a transformative approach to CRC therapy. The concentration-responsive self-assembly of Pt(IV)-Cro NPs and the occurrence of morphologic transformations within the cell characterize a major advancement in clinical CRC therapeutic strategies.
Collapse
Affiliation(s)
- Xue Rui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhetong Jin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jia Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiarong Mao
- The First Clinical Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xuejiao Leng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hongzhi Qiao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Medicinal Substance and Utilization of Fresh Chinese Medicine, Nanjing, 210023, China
| | - Wei Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lingchong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yugen Chen
- The First Clinical Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jingjing Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Kadivar D, Eslami Moghadam M, Notash B. Effect of geometric isomerism on the anticancer property of new platinum complexes with glycine derivatives as asymmetric N, O donate ligands against human cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124809. [PMID: 39018672 DOI: 10.1016/j.saa.2024.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
In this project, to fallow the anticancer ability of new Pt drugs, several new Pt complexes were synthesized with the asymmetric bidentate glycine derivatives, as named propyl- and hexyl glycine (L), in the general formula: [Pt(NH3)2(L)]NO3, and cis- and trans-[Pt(L)2]. The structure of two cis- and trans-[Pt(propylgly)2] complexes was proved by single crystallography analysis. However, all complex structures were characterized by various methods of 1H NMR, 13C NMR, 195Pt NMR, FTIR, LC-Mass, and Raman spectroscopy. To study the passage of water-soluble complexes of [Pt(NH3)2(L)]NO3 via cell membrane, their solubility, and lipophilicity were analyzed. In addition, the cytotoxic properties of these complexes were evaluated against normal and malignant cell lines (skin, breast, and lung cancer cells). The results indicated that they were either comparable to cisplatin or less damaging than carboplatin and oxaliplatin. It was expected that due to less steric effect, and the presence of length aliphatic hydrocarbon chain in the complex structure, trans-[Pt(hexylgly)2] is more toxic on cancerous cell lines than trans-[Pt(propylgly)2]. Cellular accumulation of all complexes was evaluated on A549 and MCF7 cell lines, and the amount of platinum metal (ng) was measured by the ICP method. Results showed that trans-[Pt(hexylgly)2] complex has the highest accumulation inside both mentioned cell lines and [Pt(NH3)2(L)]NO3 complexes behave like clinical Pt-drugs. Ultimately, the interaction patterns of DNA were examined using spectroscopic methods and molecular docking simulations for all substances.
Collapse
Affiliation(s)
- Diba Kadivar
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
3
|
Tabrizi L, M. Jones A, Romero-Canelon I, Erxleben A. Multiaction Pt(IV) Complexes: Cytotoxicity in Ovarian Cancer Cell Lines and Mechanistic Studies. Inorg Chem 2024; 63:14958-14968. [PMID: 39083592 PMCID: PMC11323244 DOI: 10.1021/acs.inorgchem.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Ovarian cancer has the worst case-to-fatality ratio of all gynecologic malignancies. The main reasons for the high mortality rate are relapse and the development of chemoresistance. In this paper, the cytotoxic activity of two new multiaction platinum(IV) derivatives of cisplatin and oxaliplatin in a panel of ovarian cancer cells is reported. Cis,cis,trans-[Pt(NH3)2Cl2(IPA)(DCA)] (1) and trans-[Pt(DACH)(OX)(IPA)(DCA)] (2) (IPA = indole-3-propionic acid, DCA = dichloroacetate, DACH = 1R,2R-1,2-diaminocyclohexane, OX = oxalate) were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, and 1H, 13C, and195Pt NMR spectroscopy. The biological activity was evaluated in A2780, PEA1, PEA2, SKOV3, SW626, and OVCAR3 cells. Both complexes are potent cytotoxins. Remarkably, complex 2 is 14 times more active in OVCAR3 cells than cisplatin and is able to overcome cisplatin resistance in PEA2 and A2780cis cells, which are models of post-treatment patient-developed and laboratory-induced resistance. This complex also shows activity in 3D cancer models of the A2780 cells. Mechanistic studies revealed that the complexes induce apoptosis via DNA damage and ROS generation.
Collapse
Affiliation(s)
- Leila Tabrizi
- School
of Biological and Chemical Sciences, University
of Galway, Galway H91 TK33, Ireland
- School
of Chemical Sciences, Dublin City University, Dublin D09W6Y4, Ireland
| | - Alan M. Jones
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Isolda Romero-Canelon
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrea Erxleben
- School
of Biological and Chemical Sciences, University
of Galway, Galway H91 TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
4
|
Li J, Lim JYS, Eu JQ, Chan AKMH, Goh BC, Wang L, Wong ALA. Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies. Antioxid Redox Signal 2024; 41:322-341. [PMID: 38445392 DOI: 10.1089/ars.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Significance: Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism, and are tightly controlled through homeostatic mechanisms to maintain intracellular redox, regulating growth and proliferation in healthy cells. However, ROS production is perturbed in cancers where abnormal accumulation of ROS leads to oxidative stress and genomic instability, triggering oncogenic signaling pathways on one hand, while increasing oxidative damage and triggering ROS-dependent death signaling on the other. Recent Advances: Our review illuminates how critical interactions between ROS and oncogenic signaling, the tumor microenvironment, and DNA damage response (DDR) pathways have led to interest in ROS modulation as a means of enhancing existing anticancer strategies and developing new therapeutic opportunities. Critical Issues: ROS equilibrium exists via a delicate balance of pro-oxidant and antioxidant species within cells. "Antioxidant" approaches have been explored mainly in the form of chemoprevention, but there is insufficient evidence to advocate its routine application. More progress has been made via the "pro-oxidant" approach of targeting cancer vulnerabilities and inducing oxidative stress. Various therapeutic modalities have employed this approach, including direct ROS-inducing agents, chemotherapy, targeted therapies, DDR therapies, radiotherapy, and immunotherapy. Finally, emerging delivery systems such as "nanosensitizers" as radiotherapy enhancers are currently in development. Future Directions: While approaches designed to induce ROS have shown considerable promise in selectively targeting cancer cells and dealing with resistance to conventional therapies, most are still in early phases of development and challenges remain. Further research should endeavor to refine treatment strategies, optimize drug combinations, and identify predictive biomarkers of ROS-based cancer therapies.
Collapse
Affiliation(s)
- Jiaqi Li
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
5
|
Wang Y, Chen X, Chen Q, Liu T, Wu Y, Huang L, Chen Y. Expression of human dCTP pyrophosphatase 1 (DCTPP1) and its association with cisplatin resistance characteristics in ovarian cancer. J Cell Mol Med 2024; 28:e18371. [PMID: 38686496 PMCID: PMC11058668 DOI: 10.1111/jcmm.18371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Cisplatin (DDP) resistance is a major challenge in treating ovarian cancer patients. A recently discovered enzyme called dCTP pyrophosphatase 1 (DCTPP1) has been implicated in regulating cancer characteristics, including drug responses. In this study, we aimed to understand the role of DCTPP1 in cancer progression and cisplatin response. Using publicly available databases, we analysed the expression and clinical significance of DCTPP1 in ovarian cancer. Our bioinformatics analysis confirmed that DCTPP1 is significantly overexpressed in ovarian cancer and is closely associated with tumour progression and poor prognosis after cisplatin treatment. We also found that DCTPP1 located in oxidoreductase complex and may be involved in various biological processes related to cisplatin resistance, including pyrimidine nucleotide metabolism, the P53 signalling pathway and cell cycle signalling pathways. We observed higher expression of DCTPP1 in cisplatin-resistant cells (SKOV3/DDP) and samples compared to their sensitive counterparts. Additionally, we found that DCTPP1 expression was only enhanced in SKOV3/S cells when treated with cisplatin, indicating different expression patterns of DCTPP1 in cisplatin-sensitive and cisplatin-resistant cancer cells. Our study further supports the notion that cisplatin induces intracellular reactive oxygen species (ROS) and triggers cancer cell death through excessive oxidative stress. Knocking out DCTPP1 reversed the drug resistance of ovarian cancer cells by enhancing the intracellular antioxidant stress response and accumulating ROS. Based on our research findings, we conclude that DCTPP1 has prognostic value for ovarian cancer patients, and targeting DCTPP1 may be clinically significant in overcoming cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yu Wang
- Obstetrics and Gynecology center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Xiangyun Chen
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Qiduan Chen
- Obstetrics and Gynecology center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tiancai Liu
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Yingsong Wu
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Liping Huang
- Obstetrics and Gynecology center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yao Chen
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Shahlaei M, Asl SM, Derakhshani A, Kurek L, Karges J, Macgregor R, Saeidifar M, Kostova I, Saboury AA. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct 2024; 1301:137366. [DOI: 10.1016/j.molstruc.2023.137366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Aher S, Zhu J, Bhagat P, Borse L, Liu X. Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity. Top Curr Chem (Cham) 2024; 382:6. [PMID: 38400859 DOI: 10.1007/s41061-023-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.
Collapse
Affiliation(s)
- Sainath Aher
- K. K. Wagh College of Pharmacy, Nashik, Maharashtra, 422003, India
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Pundlik Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, India
| | - Laxmikant Borse
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, 422213, India
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
8
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity. Int J Mol Sci 2024; 25:2181. [PMID: 38396859 PMCID: PMC10888562 DOI: 10.3390/ijms25042181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
- Ingham Institute, Sydney, NSW 2170, Australia;
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Jennette A. Sakoff
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Kieran F. Scott
- Ingham Institute, Sydney, NSW 2170, Australia;
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| |
Collapse
|
9
|
Ahmedova A, Mihaylova R, Stoykova S, Mihaylova V, Burdzhiev N, Elincheva V, Momekov G, Momekova D. Pyrenebutyrate Pt(IV) Complexes with Nanomolar Anticancer Activity. Pharmaceutics 2023; 15:2310. [PMID: 37765279 PMCID: PMC10537052 DOI: 10.3390/pharmaceutics15092310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Research on platinum-based anticancer drugs continuously strives to develop new non-classical platinum complexes. Pt(IV) prodrugs are the most promising, and their activation-by-reduction mechanism of action is being explored as a prospect for higher selectivity and efficiency. Herein, we present the anticancer potency and chemical reactivity of Pt(IV) complexes formed by linking pyrene butyric acid with cisplatin. The results from cytotoxicity screening on 10 types of cancer cell lines and non-malignant cells (HEK-293) indicated IC50 values as low as 50-70 nM for the monosubstituted Pt(IV) complex against leukemia cell lines (HL-60 and SKW3) and a cisplatin-resistant derivative (HL-60/CDDP). Interestingly, the bis-substituted complex is virtually non-toxic to both healthy and cancerous cells of adherent types. Nevertheless, it shows high cytotoxicity against multidrug-resistant derivatives HL-60/CDDP and HL-60/Dox. The reactivity of the complexes with biological reductants was monitored by the NMR method. Furthermore, the platinum uptake by the treated cells was examined on two types of cellular cultures: adherent and suspension growing, and proteome profiling was conducted to track expression changes of key apoptosis-related proteins in HL-60 cells. The general conclusion points to a possible cytoskeletal entrapment of the bulkier bis-pyrene complex that could be limiting its cytotoxicity to adherent cells, both cancerous and healthy ones.
Collapse
Affiliation(s)
- Anife Ahmedova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Veronika Mihaylova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Nikola Burdzhiev
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Viktoria Elincheva
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| |
Collapse
|
10
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Krasnovskaya OO, Akasov RA, Spector DV, Pavlov KG, Bubley AA, Kuzmin VA, Kostyukov AA, Khaydukov EV, Lopatukhina EV, Semkina AS, Vlasova KY, Sypalov SA, Erofeev AS, Gorelkin PV, Vaneev AN, Nikitina VN, Skvortsov DA, Ipatova DA, Mazur DM, Zyk NV, Sakharov DA, Majouga AG, Beloglazkina EK. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12882-12894. [PMID: 36854172 DOI: 10.1021/acsami.3c01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.
Collapse
Affiliation(s)
- Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anna A Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Evgeny V Khaydukov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropot-kinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daria A Ipatova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Alexander G Majouga
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
12
|
Kazimir A, Schwarze B, Lönnecke P, Jelača S, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Metallodrugs against Breast Cancer: Combining the Tamoxifen Vector with Platinum(II) and Palladium(II) Complexes. Pharmaceutics 2023; 15:pharmaceutics15020682. [PMID: 36840003 PMCID: PMC9959148 DOI: 10.3390/pharmaceutics15020682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The luminal A-subtype of breast cancer, where the oestrogen receptor α (ERα) is overexpressed, is the most frequent one. The prodrug tamoxifen (1) is the clinically used agent, inhibiting the ERα activity via the formation of several active metabolites, such as 4-hydroxytamoxifen (2) or 4,4'-dihydroxytamoxifen (3). In this study, we present the tamoxifen derivative 4-[1,1-bis(4-methoxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (4), which was combined with platinum or palladium dichloride, the former a well-known scaffold in anticancer treatment, to give [PtCl2(4-κ2N,N')] (5) or [PdCl2(4-κ2N,N'] (6). To prevent fast exchange of weakly coordinating chlorido ligands in aqueous solution, a bulky, highly stable and hydrophobic nido-carborate(-2) ([C2B9H11]2-) was incorporated. The resulting complexes [3-(4-κ2N,N')-3,1,2-PtC2B9H11] (7) and [3-(4-κ2N,N')-3,1,2-PdC2B9H11] (8) exhibit a dramatic change in electronic and biological properties compared to 5 and 6. Thus, 8 is highly selective for triple-negative MDA-MB-231 cells (IC50 = 3.7 μM, MTT test), while 7 is completely inactive against this cell line. The observed cytotoxicity of compounds 4-6 and 8 against this triple-negative cell line suggests off-target mechanisms rather than only ERα inhibition, for which these compounds were originally designed. Spectroscopic properties and electronic structures of the metal complexes were investigated for possible explanations of the biological activities.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Benedikt Schwarze
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
13
|
Skverchinskaya E, Levdarovich N, Ivanov A, Mindukshev I, Bukatin A. Anticancer Drugs Paclitaxel, Carboplatin, Doxorubicin, and Cyclophosphamide Alter the Biophysical Characteristics of Red Blood Cells, In Vitro. BIOLOGY 2023; 12:biology12020230. [PMID: 36829507 PMCID: PMC9953263 DOI: 10.3390/biology12020230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Red blood cells (RBCs) are the most numerous cells in the body and perform gas exchange between all tissues. During the infusion of cancer chemotherapeutic (CT) agents, blood cells are the first ones to encounter aggressive cytostatics. Erythrocyte dysfunction caused by direct cytotoxic damage might be a part of the problem of chemotherapy-induced anemia-one of the most frequent side effects. The aim of the current study is to evaluate the functional status of RBCs exposed to mono and combinations of widely used commercial pharmaceutical CT drugs with different action mechanisms: paclitaxel, carboplatin, cyclophosphamide, and doxorubicin, in vitro. Using laser diffraction, flow cytometry, and confocal microscopy, we show that paclitaxel, having a directed effect on cytoskeleton proteins, by itself and in combination with carboplatin, caused the most marked abnormalities-loss of control of volume regulation, resistance to osmotic load, and stomatocytosis. Direct simulations of RBCs' microcirculation in microfluidic channels showed both the appearance of a subpopulation of cells with impaired velocity (slow damaged cells) and an increased number of cases of occlusions. In contrast to paclitaxel, such drugs as carboplatin, cyclophosphamide, and doxorubicin, whose main target in cancer cells is DNA, showed significantly less cytotoxicity to erythrocytes in short-term exposure. However, the combination of drugs had an additive effect. While the obtained results should be confirmed in in vivo models, one can envisioned that such data could be used for minimizing anemia side effects during cancer chemotherapy.
Collapse
Affiliation(s)
- Elisaveta Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| | - Nadezhda Levdarovich
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint-Petersburg, Russia
| | - Alexander Ivanov
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint-Petersburg, Russia
| | - Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| | - Anton Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint-Petersburg, Russia
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
14
|
Larasati L, Lestari WW, Firdaus M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Larasati Larasati
- Master of Chemistry Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Witri Wahyu Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| |
Collapse
|
15
|
Liu X, Barth MC, Cseh K, Kowol CR, Jakupec MA, Keppler BK, Gibson D, Weigand W. Oxoplatin-Based Pt(IV) Lipoate Complexes and Their Biological Activity. Chem Biodivers 2022; 19:e202200695. [PMID: 36026613 DOI: 10.1002/cbdv.202200695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
α-Lipoic acid, known for its anti-inflammatory and antioxidant activity, represents a promising ligand for Pt(IV) prodrugs. Three new Pt(IV) lipoate complexes were synthesized and characterized by NMR spectroscopy (1 H, 13 C, 195 Pt), mass spectrometry and elemental analysis. Due to the low solubility of the complex containing two axial lipoate ligands, further experiments to examine the biological activity were performed with two Pt(IV) complexes containing just one axial lipoate ligand. Both complexes exhibit anticancer activity and produce reactive oxygen species (ROS) in the cell lines tested. Especially, the monosubstituted complex can be reduced by ascorbic acid and forms adducts with 9-methylguanine (9MeG), which is favorable for the formation of DNA-crosslinks in the cells.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Inorganic and Analytical, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Marie-Christin Barth
- Institute of Inorganic and Analytical, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research', University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research', University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| |
Collapse
|
16
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Potent Chlorambucil-Platinum(IV) Prodrugs. Int J Mol Sci 2022; 23:ijms231810471. [PMID: 36142383 PMCID: PMC9499463 DOI: 10.3390/ijms231810471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The DNA-alkylating derivative chlorambucil was coordinated in the axial position to atypical cytotoxic, heterocyclic, and non-DNA coordinating platinum(IV) complexes of type, [PtIV(HL)(AL)(OH)2](NO3)2 (where HL is 1,10-phenanthroline, 5-methyl-1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane). The resultant platinum(IV)-chlorambucil prodrugs, PCLB, 5CLB, and 56CLB, were characterized using high-performance liquid chromatography, nuclear magnetic resonance, ultraviolet-visible, circular dichroism spectroscopy, and electrospray ionization mass spectrometry. The prodrugs displayed remarkable antitumor potential across multiple human cancer cell lines compared to chlorambucil, cisplatin, oxaliplatin, and carboplatin, as well as their platinum(II) precursors, PHENSS, 5MESS, and 56MESS. Notably, 56CLB was exceptionally potent in HT29 colon, Du145 prostate, MCF10A breast, MIA pancreas, H460 lung, A2780, and ADDP ovarian cell lines, with GI50 values ranging between 2.7 and 21 nM. Moreover, significant production of reactive oxygen species was detected in HT29 cells after treatment with PCLB, 5CLB, and 56CLB up to 72 h compared to chlorambucil and the platinum(II) and (IV) precursors.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
| | - Maria George Elias
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
- Ingham Institute, Liverpool, NSW 2170, Australia
| | - Jayne Gilbert
- Calvary Mater Hospital, Waratah, NSW 2298, Australia
| | | | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
| | | | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203218
| |
Collapse
|
17
|
Spector DV, Erofeev AS, Gorelkin PV, Vaneev AN, Akasov RA, Ul'yanovskiy NV, Nikitina VN, Semkina AS, Vlasova KY, Soldatov MA, Trigub AL, Skvortsov DA, Finko AV, Zyk NV, Sakharov DA, Majouga AG, Beloglazkina EK, Krasnovskaya OO. Electrochemical Detection of a Novel Pt(IV) Prodrug with the Metronidazole Axial Ligand in the Hypoxic Area. Inorg Chem 2022; 61:14705-14717. [PMID: 36047922 DOI: 10.1021/acs.inorgchem.2c02062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.
Collapse
Affiliation(s)
- Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.,Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Nikolay V Ul'yanovskiy
- Core Facility Center "Arktika," Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail A Soldatov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Alexander L Trigub
- National Research Center "Kurchatov Institute", Akademika Kurcha-tova pl.,1, Moscow 123182, Russia
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander V Finko
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
18
|
Murillo MI, Gaiddon C, Le Lagadec R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front Chem 2022; 10:967337. [PMID: 36034648 PMCID: PMC9405673 DOI: 10.3389/fchem.2022.967337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cancers is often linked to the alteration of essential redox processes, and therefore, oxidoreductases involved in such mechanisms can be considered as attractive molecular targets for the development of new therapeutic strategies. On the other hand, for more than two decades, transition metals derivatives have been leading the research on drugs as alternatives to platinum-based treatments. The success of such compounds is particularly due to their attractive redox kinetics properties, favorable oxidation states, as well as routes of action different to interactions with DNA, in which redox interactions are crucial. For instance, the activity of oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing protein) which can regulate angiogenesis in tumors, LDH (lactate dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD (superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in controlling oxidative stress, can be altered by metal effectors. In this review, we wish to discuss recent results on how transition metal complexes have been rationally designed to impact on redox processes, in search for effective and more specific cancer treatments.
Collapse
Affiliation(s)
- María Isabel Murillo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- *Correspondence: Ronan Le Lagadec,
| |
Collapse
|
19
|
Maji M, Kivale P, Ghosh M. A novel therapy to combat non-small cell lung carcinoma (A549) using platinum (IV) and barium titanate conjugate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Spector DV, Pavlov KG, Akasov RA, Vaneev AN, Erofeev AS, Gorelkin PV, Nikitina VN, Lopatukhina EV, Semkina AS, Vlasova KY, Skvortsov DA, Roznyatovsky VA, Ul'yanovskiy NV, Pikovskoi II, Sypalov SA, Garanina AS, Vodopyanov SS, Abakumov MA, Volodina YL, Markova AA, Petrova AS, Mazur DM, Sakharov DA, Zyk NV, Beloglazkina EK, Majouga AG, Krasnovskaya OO. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J Med Chem 2022; 65:8227-8244. [PMID: 35675651 DOI: 10.1021/acs.jmedchem.1c02136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.
Collapse
Affiliation(s)
- Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.,Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena V Lopatukhina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vitaly A Roznyatovsky
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Ul'yanovskiy
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Ilya I Pikovskoi
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Anastasiia S Garanina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Stepan S Vodopyanov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Yulia L Volodina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe highway 23, Moscow 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia.,A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilova 28, Moscow 119991, Russia
| | - Albina S Petrova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Marshal Novikov str. 23, Moscow 123098, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
21
|
Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. Int J Mol Sci 2022; 23:ijms23031222. [PMID: 35163143 PMCID: PMC8835432 DOI: 10.3390/ijms23031222] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Actions of symbiotic gut microbiota are in dynamic balance with the host’s organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.
Collapse
|
22
|
Paunović MG, Matić MM, Obradović AD, Jevtić VV, Stojković DL, Ognjanović BI. Antiproliferative, antimigratory, and prooxidative potential of novel platinum(IV) complexes and resveratrol on breast cancer (MDA-MB-231) and choriocarcinoma (JEG-3) cell lines. Drug Dev Res 2021; 83:688-698. [PMID: 34837232 DOI: 10.1002/ddr.21900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023]
Abstract
Platinum(IV) complexes offer the potential to overcome cisplatin resistance of cancer cells, with possible improved selectivity. Resveratrol, a natural polyphenol with anticancer and antioxidant capacity, could limit the possible side effects of chemotherapeutics on healthy cells. This study investigates the effects of platinum(IV) complexes containing some esters of the ethylenediamine-N,N'-di-S,S-(2,2'-dibenzyl)acetate acid (H2 -S,S-eddba), and resveratrol on proliferation, migration, and redox balance of breast cancer (MDA-MB-231), choriocarcinoma (JEG-3), and human lung fibroblast (MRC-5) cell line. According to IC50 values, all complexes exhibited a significantly stronger antiproliferative effect on tested cell lines compared to cisplatin. Due to reduced adverse effects on MRC-5 cells, the complex containing ethyl-substituent (10 μM) was selected for further examination with resveratrol (25 μM) cotreatment. Resveratrol enhanced the survival of MRC-5 cells while diminished the viability of both used cancer cell lines when applied combined with selected complex. Furthermore, cotreatment of these two compounds decreased the migratory potential of tested cancer cell lines. The examined platinum(IV) complex was able to induce oxidative stress in all tested cell lines. Resveratrol proved to be efficient in protecting MRC-5 cells from complex-induced oxidative damage, while it significantly amplified antiproliferative, antimigratory, and prooxidative effects of platinum(IV) complex on both examined cancer cell lines. These findings may be valuable in elucidating the mechanism of action of platinum(IV) drugs, which should be further investigated.
Collapse
Affiliation(s)
- Milica G Paunović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Miloš M Matić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Ana D Obradović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Verica V Jevtić
- Faculty of Science, Department of Chemistry, University of Kragujevac, Kragujevac, Serbia
| | - Danijela Lj Stojković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Branka I Ognjanović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
23
|
Cheng M, Dou H. Nano‐assemblies based on biomacromolecules to overcome cancer drug resistance. POLYM INT 2021. [DOI: 10.1002/pi.6310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
24
|
Sorolla MA, Hidalgo I, Sorolla A, Montal R, Pallisé O, Salud A, Parisi E. Microenvironmental Reactive Oxygen Species in Colorectal Cancer: Involved Processes and Therapeutic Opportunities. Cancers (Basel) 2021; 13:5037. [PMID: 34680186 PMCID: PMC8534037 DOI: 10.3390/cancers13205037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer deaths worldwide. Although screening programs have reduced mortality rates, there is a need for research focused on finding the main factors that lead primary CRC to progress and metastasize. During tumor progression, malignant cells modify their habitat, corrupting or transforming cells of different origins and creating the tumor microenvironment (TME). Cells forming the TME like macrophages, neutrophils, and fibroblasts generate reactive oxygen species (ROS) that modify the cancer niche. The effects of ROS in cancer are very diverse: they promote cellular proliferation, epithelial-to-mesenchymal transition (EMT), evasion of cell death programs, migration, and angiogenesis. Due to the multifaceted role of ROS in cancer cell survival and function, ROS-modulating agents such as antioxidants or pro-oxidants could have therapeutic potential in cancer prevention and/or as a complement to systemic treatments. In this review, we will examine the main ROS producer cells and their effects on cancer progression and metastasis. Furthermore, we will enumerate the latest clinical trials where pro-oxidants and antioxidants have therapeutic uses in CRC.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| |
Collapse
|
25
|
Krasnovskaya O, Spector D, Erofeev A, Gorelkin P, Akasov R, Skvortsov D, Trigub A, Vlasova K, Semkina A, Zyk N, Beloglazkina E, Majouga A. Alternative mechanism of action of the DNP Pt IV prodrug: intracellular cisplatin release and the mitochondria-mediated apoptotic pathway. Dalton Trans 2021; 50:7922-7927. [PMID: 34037020 DOI: 10.1039/d1dt00898f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a recent research paper Dr. Suxing Jin et al. reported two multispecific PtIV complexes DNP and NP with non-steroidal anti-inflammatory drug naproxen (NPX) as the axial ligand(s). Herein, we clarify the mechanism of action of DNP, its therapeutic target and intracellular redox-status.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Roman Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russia and Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - Dmitry Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and Faculty of biology and biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Alexander Trigub
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, Moscow, 123182, Russia
| | - Ksenia Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Alevtina Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov str. 1, Moscow, 117997, Russia and Serbsky National Medical Research Center for Psychiatry and Narcology, Department of Basic and Applied Neurobiology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Nikolay Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia and Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad' 9, Moscow, 125047, Russia
| |
Collapse
|
26
|
Hosseinzadeh S, Eslami Moghadam M, Sheshmani S, Shahvelayati AS. New anticancer Pd and Pt complexes of tertamyl dithiocarbamate and DACH ligands against HT29 and Panc1 cell lines. J Biomol Struct Dyn 2021; 40:6910-6920. [PMID: 33645454 DOI: 10.1080/07391102.2021.1891972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To investigate the reduction of side effects of commercial antitumor drugs such as cisplatin, two new platinum and palladium complexes with a formula of [M(DACH)(tertamyl.dtc)]NO3 were synthesized (DACH is 1R, 2R-diaminocyclohexane, tertamyl-dtc is tertpentyl dithiocarbamate, and M is palladium or platin ionic metals) and characterized by spectroscopic methods. The in vitro cytotoxicity of these compounds against HT29 and Panc1 cell lines showed that the IC50 values against Panc1 cell line of [Pt(DACH)(tertamyl.dtc)]NO3 and [Pd(DACH)(tertamyl.dtc)]NO3 were 263.1 and 198.7 µM, and also against HT29 cell line were 241.9 and 258.2 µM, respectively. They were similar to the value obtained for oxaliplatin and lower than cisplatin value. Thermal stability and circular dichroism results demonstrated that both metal complexes could bind to DNA via electrostatic bonds. Due to electrostatic interaction, the configuration of B-DNA to C-DNA changed, though the possibility of groove interaction may be strengthened. Furthermore, molecular docking simulation showed higher negative docking energy for [Pd(DACH)(tertamyl.dtc)]NO3 complex with a higher tendency for DNA interaction. In vitro cytotoxicity of two new Pt and Pd compounds have been studied against two cell lines (HT29 and Panc 1), which are almost equal to the value obtained for oxaliplatin and they are lower than cisplatin value. Thermal stability studies and CD results demonstrated that both complexes bind to DNA via electrostatic bonds. Further, molecular docking showed higher negative docking energy for [Pd(DACH)(tertamyl.dtc)]NO3 complex with a higher tendency for interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soudeh Hosseinzadeh
- Department of Chemistry, College of Basic Sciences, Yadeghar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | | | - Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadeghar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ashraf S Shahvelayati
- Department of Chemistry, College of Basic Sciences, Yadeghar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients. Cells 2021; 10:130. [PMID: 33440842 PMCID: PMC7827772 DOI: 10.3390/cells10010130] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an "eat me" signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor's antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant disease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; (I.S.-K.); (M.K.)
| | | | | |
Collapse
|
28
|
Mármol I, Montanel-Perez S, Royo JC, Gimeno MC, Villacampa MD, Rodríguez-Yoldi MJ, Cerrada E. Gold(I) and Silver(I) Complexes with 2-Anilinopyridine-Based Heterocycles as Multitarget Drugs against Colon Cancer. Inorg Chem 2020; 59:17732-17745. [DOI: 10.1021/acs.inorgchem.0c02922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología. and CIBERobn, IIS Aragón, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Sara Montanel-Perez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - José Carlos Royo
- Departamento de Farmacología y Fisiología, Unidad de Fisiología. and CIBERobn, IIS Aragón, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Dolores Villacampa
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología. and CIBERobn, IIS Aragón, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Kinetic Analysis of the Reduction Processes of a Cisplatin Pt(IV) Prodrug by Mesna, Thioglycolic Acid, and Thiolactic Acid. J CHEM-NY 2020. [DOI: 10.1155/2020/5868174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although Mesna is an FDA-approved chemotherapeutic adjuvant and an antioxidant based largely on its antioxidative properties, kinetic and mechanistic studies of its redox reactions are limited. A kinetic analysis of the reduction processes of cis-diamminetetrachloroplatinum(IV) (cis-[Pt(NH3)2Cl4], a cisplatin Pt(IV) prodrug) by thiol-containing compounds Mesna, thioglycolic acid (TGA), and DL-thiolactic acid (TLA) was carried out in this work at 25.0°C and 1.0 M ionic strength. The reduction processes were followed under pseudo-first-order conditions and were found to strictly obey overall second-order kinetics; the observed second-order rate constant k′ versus pH profiles were established in a wide pH range. A general reaction stoichiometry of Δ[Pt(IV)] : Δ[Thiol]tot = 1 : 2 was revealed for all the thiols; the thiols were oxidized to their corresponding disulfides which were identified by mass spectrometry. Reaction mechanisms are proposed which involves all the prololytic species of the thiols attacking the Pt(IV) prodrug in parallel, designating as the rate-determining steps. Transient species chlorothiol and/or chlorothiolate are formed in these steps; for each particular thiol, these transient species can be trapped rapidly by another thiol molecule which is in excess in the reaction mixture, giving rise to a disulfide as the oxidation product. The rate constants of the rate-determining steps were elucidated, revealing reactivity enhancements of (1.4–8.9) × 105 times when the thiols become thiolates. The species versus pH and reactivity of species versus pH distribution diagrams were constructed, demonstrating that the species ‒SCH2CH2SO3‒ of Mesna largely governs the total reactivity when pH > 5; in contrast, the form of Mesna per se (mainly as HSCH2CH2SO3‒) makes a negligible contribution. In addition, a well-determined dissociation constant for the Mesna thiol group (pKa2 = 8.85 ± 0.05 at 25.0°C and μ = 1.0 M) is offered in this work, which was determined by both kinetic approach and spectrophotometic titration method.
Collapse
|
30
|
Al-Khayal K, Vaali-Mohammed MA, Elwatidy M, Bin Traiki T, Al-Obeed O, Azam M, Khan Z, Abdulla M, Ahmad R. A novel coordination complex of platinum (PT) induces cell death in colorectal cancer by altering redox balance and modulating MAPK pathway. BMC Cancer 2020; 20:685. [PMID: 32703189 PMCID: PMC7376665 DOI: 10.1186/s12885-020-07165-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous tumor having various genetic alterations. The current treatment options had limited impact on disease free survival due to therapeutic resistance. Novel anticancer agents are needed to treat CRC specifically metastatic colorectal cancer. A novel coordination complex of platinum, (salicylaldiminato)Pt(II) complex with dimethylpropylene linkage (PT) exhibited potential anti-cancer activity. In this study, we explored the molecular mechanism of PT-induced cell death in colorectal cancer. Methods Colony formation was evaluated using the clonogenic assay. Apoptosis, cell cycle analysis, reactive oxygen species, mitochondrial membrane potential and caspase-3/− 7 were assessed by flow cytometry. Glutathione level was detected by colorimetric assay. PT-induced alteration in pro-apoptotic/ anti-apoptotic proteins and other signaling pathways were investigated using western blotting. P38 downregulation was performed using siRNA. Results In the present study, we explored the molecular mechanism of PT-mediated inhibition of cell proliferation in colorectal cancer cells. PT significantly inhibited the colony formation in human colorectal cancer cell lines (HT-29, SW480 and SW620) by inducing apoptosis and necrosis. This platinum complex was shown to significantly increase the reactive oxygen species (ROS) generation, depletion of glutathione and reduced mitochondrial membrane potential in colorectal cancer cells. Exposure to PT resulted in the downregulation of anti-apoptotic proteins (Bcl2, BclxL, XIAP) and alteration in Cyclins expression. Furthermore, PT increased cytochrome c release into cytosol and enhanced PARP cleavage leading to activation of intrinsic apoptotic pathway. Moreover, pre-treatment with ROS scavenger N-acetylcysteine (NAC) attenuated apoptosis suggesting that PT-induced apoptosis was driven by oxidative stress. Additionally, we show that PT-induced apoptosis was mediated by activating p38 MAPK and inhibiting AKT pathways. This was demonstrated by using chemical inhibitor and siRNA against p38 kinase which blocked the cytochrome c release and apoptosis in colorectal cancer cells. Conclusion Collectively, our data demonstrates that the platinum complex (PT) exerts its anti-proliferative effect on CRC by ROS-mediated apoptosis and activating p38 MAPK pathway. Thus, our findings reveal a novel mechanism of action for PT on colorectal cancer cells and may have therapeutic implication.
Collapse
Affiliation(s)
- Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mohammed Elwatidy
- College of Medicine Research Center, King Saud University College of Medicine, Riyadh, 11472, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia.
| |
Collapse
|
31
|
Tabrizi L, Thompson K, Mnich K, Chintha C, Gorman AM, Morrison L, Luessing J, Lowndes NF, Dockery P, Samali A, Erxleben A. Novel Pt(IV) Prodrugs Displaying Antimitochondrial Effects. Mol Pharm 2020; 17:3009-3023. [PMID: 32628022 DOI: 10.1021/acs.molpharmaceut.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design, synthesis, characterization, and biological activity of a series of platinum(IV) prodrugs containing the axial ligand 3-(4-phenylquinazoline-2-carboxamido)propanoate (L3) are reported. L3 is a derivative of the quinazolinecarboxamide class of ligands that binds to the translocator protein (TSPO) at the outer mitochondrial membrane. The cytotoxicities of cis,cis,trans-[Pt(NH3)2Cl2(L3)(OH)] (C-Pt1), cis,cis,trans-[Pt(NH3)2Cl2(L3)(BZ)] (C-Pt2), trans-[Pt(DACH)(OX)(L3)(OH)] (C-Pt3), and trans-[Pt(DACH)(OX)(L3)(BZ)] (C-Pt4) (DACH: R,R-diaminocyclohexane, BZ: benzoate, OX: oxalate) in MCF-7 breast cancer and noncancerous MCF-10A epithelial cells were assessed and compared with those of cisplatin, oxaliplatin, and the free ligand L3. Moreover, the cellular uptake, ROS generation, DNA damage, and the effect on the mitochondrial function, mitochondrial membrane potential, and morphology were investigated. Molecular interactions of L3 in the TSPO binding site were studied using molecular docking. The results showed that complex C-Pt1 is the most effective Pt(IV) complex and exerts a multimodal mechanism involving DNA damage, potent ROS production, loss of the mitochondrial membrane potential, and mitochondrial damage.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| | - Kerry Thompson
- Anatomy, School of Medicine, National University of Ireland, Galway H91 TK33, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Chetan Chintha
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Janna Luessing
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Noel F Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland, Galway H91 TK33, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
32
|
Almotairy ARZ, Montagner D, Morrison L, Devereux M, Howe O, Erxleben A. Pt(IV) pro-drugs with an axial HDAC inhibitor demonstrate multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance in A2780/A2780cis cells. J Inorg Biochem 2020; 210:111125. [PMID: 32521289 DOI: 10.1016/j.jinorgbio.2020.111125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic agents such as histone deacetylase (HDAC) inhibitors are widely investigated for use in combined anticancer therapy and the co-administration of Pt drugs with HDAC inhibitors has shown promise for the treatment of resistant cancers. Coordination of an HDAC inhibitor to an axial position of a Pt(IV) derivative of cisplatin allows the combination of the epigenetic drug and the Pt chemotherapeutic into a single molecule. In this work we carry out mechanistic studies on the known Pt(IV) complex cis,cis,trans-[Pt(NH3)2Cl2(PBA)2] (B) with the HDAC inhibitor 4-phenylbutyrate (PBA) and its derivatives cis,cis,trans-[Pt(NH3)2Cl2(PBA)(OH)] (A), cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Bz)] (C), and cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Suc)] (D) (Bz = benzoate, Suc = succinate). The comparison of the cytotoxicity, effect on HDAC activity, reactive oxygen species (ROS) generation, γ-H2AX (histone 2A-family member X) foci generation and induction of apoptosis in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells shows that A - C exhibit multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance.
Collapse
Affiliation(s)
- Awatif Rashed Z Almotairy
- School of Chemistry, National University of Ireland, Galway, Ireland; School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Michael Devereux
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Orla Howe
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland.
| |
Collapse
|
33
|
Zhang X, Feng L, Dong Z, Xin X, Yang Z, Deng D, Wagner E, Liu Z, Liu X. Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. Int J Pharm 2020; 582:119321. [PMID: 32289483 DOI: 10.1016/j.ijpharm.2020.119321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Combining functional proteins with small molecular drugs into one entity may endow distinct synergistic advantages. However, on account of completely different physicochemical properties of such payloads, co-delivery through systemic administration for therapeutic purpose is challenging. Herein, we designed the protein-drug conjugate HSAP-DC-CAT (human serum albumin/Pt (IV)-dibenzocyclooctyne/chlorin e6-catalase) by modification of CAT and cisplatin pro-drug loaded HSA with pH-sensitive azide linker 3-(azidomethyl)-4-methyl-2,5-furandione (AzMMMan) followed by click chemistry assembly with DC. The dynamic covalent bonds between linker and proteins, on the one hand, can bridge proteins and small molecular drugs in the intermediate state for systemic delivery in the harsh in vivo environment; on the other hand, it can trigger traceless cleavage and release of drugs and proteins with full bioactivity in acidic microenvironment of tumor. The multifunctional HSAP-DC-CAT provides efficient cytosolic transduction in vitro, excellent blood half-lives after systemic administration, and significant antitumor outcome via integrated cisplatin-based chemotherapy and Ce6-based photodynamic therapy enhanced by catalase-induced manipulation of tumor hypoxia microenvironment. This study describes a universal formulation strategy for protein and small molecular drug by a bifunctional linker through amide reaction and click chemistry, with traceless in vivo release of therapeutic units.
Collapse
Affiliation(s)
- Xican Zhang
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Dashi Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiaowen Liu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China.
| |
Collapse
|
34
|
Adams CJ, Meade TJ. Gd(iii)-Pt(iv) theranostic contrast agents for tandem MR imaging and chemotherapy. Chem Sci 2020; 11:2524-2530. [PMID: 34084418 PMCID: PMC8157322 DOI: 10.1039/c9sc05937g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pt(iv) prodrugs have emerged as versatile therapeutics for addressing issues regarding off-target toxicity and the chemoresistance of classic Pt(ii) drugs such as cisplatin and carboplatin. There is significant potential for Pt(iv) complexes to be used as theranostic agents, yet there are currently no reported examples of Gd(iii)–Pt(iv) agents for simultaneous MR imaging and chemotherapy. Here we report the synthesis, characterization, and in vitro efficacy of two Gd(iii)–Pt(iv) agents, GP1 and GP2. Both agents are water soluble and stable under extracellularly relevant conditions but are reduced under intracellular conditions. Both are cytotoxic in multiple cancer cell lines, cell permeable, and significantly enhance the T1-weighted MR contrast of multiple cell lines. Thus, GP1 and GP2 are promising agents for tandem MR imaging and chemotherapy and provide a versatile platform through which future Gd(iii)–Pt(iv) agents can be developed. The first example of Gd(iii)–Pt(iv) theranostic agents that are intracellularly reduced to provide MR contrast enhancement with simultaneous Pt(ii) chemotherapy.![]()
Collapse
Affiliation(s)
- Casey J Adams
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University Evanston Illinois 60208 USA
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University Evanston Illinois 60208 USA
| |
Collapse
|
35
|
Phillips AM, Pombeiro AJ. Transition Metal-Based Prodrugs for Anticancer Drug Delivery. Curr Med Chem 2020; 26:7476-7519. [DOI: 10.2174/0929867326666181203141122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
:
Transition metal complexes, of which the platinum(II) complex cisplatin is an example,
have been used in medicine to treat cancer for more than 40 years. Although many successes have
been achieved, there are problems associated with the use of these drugs, such as side effects and
drug resistance. Converting them into prodrugs, to make them more inert, so that they can travel to
the tumour site unchanged and release the drug in its active form only there, is a strategy which is
the subject of much research nowadays. The new prodrugs may be activated and release the cytotoxic
agent by differences in oxygen concentration or in pH, by the action of overexpressed enzymes,
by differences in metabolic rates, etc., which characteristically distinguish cancer cells from
normal ones, or even by the input of radiation, which can be visible light. Converting a metal complex
into a prodrug may also be used to improve its pharmacological properties. In some cases, the
metal complex is a carrier which transports the active drug as a ligand. Some platinum prodrugs
have reached clinical trials. So far platinum, ruthenium and cobalt have been the most studied metals.
This review presents the recent developments in this area, including the types of complexes
used, the mechanisms of drug action and in some cases the techniques applied to monitor drug delivery
to cells.
Collapse
Affiliation(s)
- Ana M.F. Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J.L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
36
|
Three Reactions, One Catalyst: A Multi‐Purpose Platinum(IV) Complex and its Silica‐Supported Homologue for Environmentally Friendly Processes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Fazli-Abukheyli R, Rahimi MR, Ghaedi M. Electrospinning coating of nanoporous anodic alumina for controlling the drug release: Drug release study and modeling. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
|
39
|
|
40
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Cytotoxicity and ROS production of novel Pt(IV) oxaliplatin derivatives with indole propionic acid. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Lin YX, Wang Y, An HW, Qi B, Wang J, Wang L, Shi J, Mei L, Wang H. Peptide-Based Autophagic Gene and Cisplatin Co-delivery Systems Enable Improved Chemotherapy Resistance. NANO LETTERS 2019; 19:2968-2978. [PMID: 30924343 DOI: 10.1021/acs.nanolett.9b00083] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cisplatin-based chemotherapy is a widely used first-line strategy for numerous cancers. However, drug resistances are often inevitable accompanied by the long-term use of cisplatin in vivo, significantly hampering its therapeutic efficacy and clinical outcomes. Among others, autophagy induction is one of the most common causes of tumor resistance to cisplatin. Herein, a self-assembled nanoprodrug platform was developed with the synergistic effect of cisplatin and RNAi to fight against cisplatin-resistant lung cancer. The nanoprodrug platform consists of three molecular modules, including prodrug complex of Pt(IV)-peptide-bis(pyrene), DSPE-PEG, and cRGD-modified DSPE-PEG. The Pt(IV) is immobilized with peptide via amide bonds, allowing the Pt(IV) to be loaded with a loading efficiency of >95% and rapid-release active platinum ions (Pt(II)) in the presence of glutathione (GSH). Meanwhile, the peptide of the prodrug complex could efficiently deliver Beclin1 siRNA ( Beclin1 is an autophagy initiation factor) to the cytoplasm, thereby leading to autophagy inhibition. In addition, incorporation of DSPE-PEG and cRGD-modified DSPE-PEG molecules improves the biocompatibility and cellular uptake of the nanoprodrug platform. In vivo results also indicate that the nanoprodrug platform significantly inhibits the growth of a cisplatin-resistant tumor on xenograft mice models with a remarkable inhibition rate, up to 84% after intravenous injection.
Collapse
Affiliation(s)
- Yao-Xin Lin
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , People's Republic of China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , People's Republic of China
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , People's Republic of China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , People's Republic of China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
43
|
Sabbatini M, Zanellato I, Ravera M, Gabano E, Perin E, Rangone B, Osella D. Pt(IV) Bifunctional Prodrug Containing 2-(2-Propynyl)octanoato Axial Ligand: Induction of Immunogenic Cell Death on Colon Cancer. J Med Chem 2019; 62:3395-3406. [PMID: 30879295 DOI: 10.1021/acs.jmedchem.8b01860] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, characterization, and in vitro activity of a cyclohexane-1 R,2 R-diamine-based Pt(IV) derivative containing the histone deacetylase inhibitor rac-2-(2-propynyl)octanoato, namely, ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV), are reported together with those of its isomers containing enantiomerically enriched axial ligands. These Pt(IV) complexes showed comparable activity, of 2 orders of magnitude higher than reference drug oxaliplatin on three human (HCT 116, SW480, and HT-29) and one mouse (CT26) colon cancer cell lines. In vivo experiments were carried out on immunocompetent BALB/c mice bearing the same syngeneic tumor. The complex ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV) showed higher tumor mass Pt accumulation than oxaliplatin, due to its higher lipophilicity, with negligible nephro- and hepatotoxicities when administered intravenously. A remarkable tumor mass invasion by cytotoxic CD8+ T lymphocytes, following the Pt(IV) treatment, indicated a strong induction of immunogenic cell death.
Collapse
Affiliation(s)
- Maurizio Sabbatini
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| |
Collapse
|
44
|
Abstract
Despite improvements in the 5-year survival rate to over 80% in cancers, such as Hodgkin lymphoma and testicular cancer, more aggressive tumors including pancreatic and brain cancer still have extremely low survival rates. The establishment of chemoresistance, responsible for the reduction in treatment efficiency and cancer relapse, is one possible explanation for this setback. Metal-based compounds, a class of anticancer drugs, are largely used in the treatment of cancer. Herein, we will review the use of metal-based small molecules in chemotherapy, focusing on recent studies, and we will discuss how new nonplatinum-based agents are prompting scientists to increase drug specificity to overcome chemoresistance in cancer cells.
Collapse
|
45
|
Tolan DA, Abdel-Monem YK, El-Nagar MA. Anti-tumor platinum (IV) complexes bearing the anti-inflammatory drug naproxen in the axial position. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dina A. Tolan
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| | - Yasser K. Abdel-Monem
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| | - Mohamed A. El-Nagar
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| |
Collapse
|
46
|
Montagner D, Tolan D, Andriollo E, Gandin V, Marzano C. A Pt(IV) Prodrug Combining Chlorambucil and Cisplatin: a Dual-Acting Weapon for Targeting DNA in Cancer Cells. Int J Mol Sci 2018; 19:ijms19123775. [PMID: 30486477 PMCID: PMC6321036 DOI: 10.3390/ijms19123775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
In this study, two DNA-targeting agents, cisplatin and chlorambucil, were combined in a Pt(IV) prodrug, 1, which was thoroughly characterized by means of spectroscopic and spectrometric techniques. Tested towards a panel of various human tumor cell lines, this compound showed superior in vitro antitumor potential than the reference drug cisplatin. In addition, an antitumor potential of 1 was found, which is comparable to that of oxaliplatin in 3D spheroid models of colon cancer cells. Mechanistic studies performed in colon cancer cells confirmed that the conjugation of chlorambucil to Pt(IV) cisplatin-based scaffold tunes the lipophilicity of the prodrug, consequently improving the ability of the compound to accumulate into cancer cells and to target DNA, ultimately leading to apoptotic cancer cell death.
Collapse
Affiliation(s)
- Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth zip code, Ireland.
| | - Dina Tolan
- School of Chemistry, National University of Ireland Galway, Galway zip code, Ireland.
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom 32511, Egypt.
| | - Emma Andriollo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova 35131, Italy.
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova 35131, Italy.
| | - Cristina Marzano
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova 35131, Italy.
| |
Collapse
|
47
|
Ortega E, Yellol JG, Rothemund M, Ballester FJ, Rodríguez V, Yellol G, Janiak C, Schobert R, Ruiz J. A new C,N-cyclometalated osmium(ii) arene anticancer scaffold with a handle for functionalization and antioxidative properties. Chem Commun (Camb) 2018; 54:11120-11123. [PMID: 30204166 DOI: 10.1039/c8cc06427j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of six osmium(ii) complexes of the type [(η6-p-cymene)Os(C^N)X] (X = chlorido or acetato) containing benzimidazole C^N ligands with an ester group as a handle for further functionalization have been synthesized. They exhibit IC50 values in the low micromolar range in a panel of cisplatin (CDDP)-resistant cancer cells (approximately 10× more cytotoxic than CDDP in MCF-7), decrease the levels of intracellular ROS and reduce the NAD+ coenzyme, and inhibit tubulin polymerization. This discovery could open the door to a new large family of osmium(ii)-based bioconjugates with diverse modes of action.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
49
|
Lo Re D, Montagner D, Tolan D, Di Sanza C, Iglesias M, Calon A, Giralt E. Increased immune cell infiltration in patient-derived tumor explants treated with Traniplatin: an original Pt(iv) pro-drug based on Cisplatin and Tranilast. Chem Commun (Camb) 2018; 54:8324-8327. [PMID: 29796549 DOI: 10.1039/c8cc02071j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Elevated intra-tumoral immune infiltrate is associated with an improved prognosis in cancer of distinct origins. Traniplatin (TPT) is a novel platinum(iv) pro-drug based on Cisplatin (CDDP) and the marketed drug Tranilast. When compared in vitro to Cisplatin, TPT showed increased cytotoxic activity against colon and lung cancer cells but decreased activity against immune cells. In addition, TPT efficiency was evaluated in tumor explants derived from colorectal cancer samples from patients subjected to intended curative surgery. TPT induced strong intra-tumoral cytotoxic activity yet was associated with an elevated presence of immune cell infiltrate, suggesting a reduced cytotoxic activity against immune cells in colorectal cancer.
Collapse
Affiliation(s)
- Daniele Lo Re
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, E-08028, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
DNA binding and antitumor activities of platinum(IV) and zinc(II) complexes with some S-alkyl derivatives of thiosalicylic acid. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0260-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|