1
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
2
|
Wang Y, Wang H, Wei L, Li S, Liu L, Wang X. Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res 2020; 48:6403-6412. [PMID: 32424410 PMCID: PMC7337522 DOI: 10.1093/nar/gkaa325] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023] Open
Abstract
Promoter design remains one of the most important considerations in metabolic engineering and synthetic biology applications. Theoretically, there are 450 possible sequences for a 50-nt promoter, of which naturally occurring promoters make up only a small subset. To explore the vast number of potential sequences, we report a novel AI-based framework for de novo promoter design in Escherichia coli. The model, which was guided by sequence features learned from natural promoters, could capture interactions between nucleotides at different positions and design novel synthetic promoters in silico. We combined a deep generative model that guides the search for artificial sequences with a predictive model to preselect the most promising promoters. The AI-designed promoters were optimized based on the promoter activity in E. coli and the predictive model. After two rounds of optimization, up to 70.8% of the AI-designed promoters were experimentally demonstrated to be functional, and few of them shared significant sequence similarity with the E. coli genome. Our work provided an end-to-end approach to the de novo design of novel promoter elements, indicating the potential to apply deep learning methods to de novo genetic element design.
Collapse
Affiliation(s)
- Ye Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shuailin Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liyang Liu
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Read JE, Luo D, Chowdhury TT, Flower RJ, Poston RN, Sukhorukov GB, Gould DJ. Magnetically responsive layer-by-layer microcapsules can be retained in cells and under flow conditions to promote local drug release without triggering ROS production. NANOSCALE 2020; 12:7735-7748. [PMID: 32211625 DOI: 10.1039/c9nr10329e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery.
Collapse
Affiliation(s)
- Jordan E Read
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | | | | | | | | | | | | |
Collapse
|
4
|
Young E, Gould D, Hart S. Toward gene therapy in rheumatoid arthritis. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1736942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emily Young
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David Gould
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Stephen Hart
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
5
|
Gabner S, Ertl R, Velde K, Renner M, Jenner F, Egerbacher M, Hlavaty J. Cytokine-induced interleukin-1 receptor antagonist protein expression in genetically engineered equine mesenchymal stem cells for osteoarthritis treatment. J Gene Med 2018; 20:e3021. [PMID: 29608232 PMCID: PMC6001542 DOI: 10.1002/jgm.3021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A combination of tissue engineering methods employing mesenchymal stem cells (MSCs) together with gene transfer takes advantage of innovative strategies and highlights a new approach for targeting osteoarthritis (OA) and other cartilage defects. Furthermore, the development of systems allowing tunable transgene expression as regulated by natural disease-induced substances is highly desirable. METHODS Bone marrow-derived equine MSCs were transduced with a lentiviral vector expressing interleukin-1 receptor antagonist (IL-1Ra) gene under the control of an inducible nuclear factor-kappa B-responsive promoter and IL-1Ra production upon pro-inflammatory cytokine stimulation [tumor necrosis factor (TNF)α, interleukin (IL)-1β] was analysed. To assess the biological activity of the IL-1Ra protein that was produced and the therapeutic effect of IL-1Ra-expressing MSCs (MSC/IL-1Ra), cytokine-based two- and three-dimensional in vitro models of osteoarthritis using equine chondrocytes were established and quantitative real-time polymerase chain reaction (PCR) analysis was used to measure the gene expression of aggrecan, collagen IIA1, interleukin-1β, interleukin-6, interleukin-8, matrix metalloproteinase-1 and matrix metalloproteinase-13. RESULTS A dose-dependent increase in IL-1Ra expression was found in MSC/IL-1Ra cells upon TNFα administration, whereas stimulation using IL-1β did not lead to IL-1Ra production above the basal level observed in nonstimulated cells as a result of the existing feedback loop. Repeated cycles of induction allowed on/off modulation of transgene expression. In vitro analyses revealed that IL-1Ra protein present in the conditioned medium from MSC/IL-1Ra cells blocks OA onset in cytokine-treated equine chondrocytes and co-cultivation of MSC/IL-1Ra cells with osteoarthritic spheroids alleviates the severity of the osteoarthritic changes. CONCLUSIONS Thus, pro-inflammatory cytokine induced IL-1Ra protein expression from genetically modified MSCs might represent a promising strategy for osteoarthritis treatment.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Reinhard Ertl
- VetCORE, Facility for ResearchUniversity of Veterinary MedicineViennaAustria
| | - Karsten Velde
- Equine University HospitalUniversity of Veterinary Medicine ViennaViennaAustria
| | - Matthias Renner
- Division of Medical BiotechnologyPaul‐Ehrlich‐InstitutLangenGermany
| | - Florien Jenner
- Equine University HospitalUniversity of Veterinary Medicine ViennaViennaAustria
| | - Monika Egerbacher
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Juraj Hlavaty
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
6
|
Mohamed H, Gould D. PCR Assembly of Synthetic Promoters. Methods Mol Biol 2018; 1651:147-156. [PMID: 28801905 DOI: 10.1007/978-1-4939-7223-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this chapter, we describe a two-step assembly PCR method to construct synthetic promoters. Essentially, this method takes advantage of specific annealing between complimentary DNA sequences to build random TFBS combinations within the assembled PCR products. A DNA polymerase is then employed to fill in the unpaired nucleotides in the generated sequences and also to amplify the assembled PCR products. We have used this method to generate synthetic promoters whereby the orientation of the TFBS can be controlled, the spacing between TFBS can be predetermined, and also the full diversity of the consensus TFBS can be covered through the use of degenerate oligonucleotides .
Collapse
Affiliation(s)
- Hodan Mohamed
- Public Health England, 61 Colindale Avenue, NW9 5EQ, London, UK
| | - David Gould
- Department of Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
7
|
Initial Considerations Before Designing a Promoter Construct. Methods Mol Biol 2017. [PMID: 28801895 DOI: 10.1007/978-1-4939-7223-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Before designing a synthetic promoter, it can be helpful to think about its final application. Is the study purely an in vitro exercise in monitoring short-term promoter activity from an episomal vector, or does the promoter eventually need to be permanently active and be integrated into the genome or perhaps even to function in vivo? The final application will have a bearing on promoter design and vector of choice from the start of the study. In this chapter I highlight some of the vector attributes to consider and features that should be thought about.
Collapse
|