1
|
Tao S, Wu J, He Y, Jiao F. Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix. MICROMACHINES 2023; 14:2224. [PMID: 38138393 PMCID: PMC10745660 DOI: 10.3390/mi14122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Precisely controlling magnetically tagged cells in a complex environment is crucial to constructing a magneto-microfluidic platform. We propose a two-dimensional model for capturing magnetic beads from non-magnetic fluids under a micromagnetic matrix. A qualitative description of the relationship between the capture trajectory and the micromagnetic matrix with an alternating polarity configuration was obtained by computing the force curve of the magnetic particles. Three stages comprise the capture process: the first, where motion is a parabolic fall in weak fields; the second, where the motion becomes unpredictable due to the competition between gravity and magnetic force; and the third, where the micromagnetic matrix finally captures cells. Since it is not always obvious how many particles are adhered to the surface, attachment density is utilized to illustrate how the quantity of particles influences the capture path. The longitudinal magnetic load is calculated to measure the acquisition efficiency. The optimal adhesion density is 13%, and the maximum adhesion density is 18%. It has been demonstrated that a magnetic ring model with 100% adhesion density can impede the capture process. The results offer a theoretical foundation for enhancing the effectiveness of rare cell capture in practical applications.
Collapse
Affiliation(s)
- Shanjia Tao
- School of Mechanical Engineering, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Jianguo Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
| | - Yongqing He
- Chongqing Key Laboratory of Micro-Nano System and Intelligent Transduction, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Feng Jiao
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Castaño N, Kim S, Martin AM, Galli SJ, Nadeau KC, Tang SKY. Exponential magnetophoretic gradient for the direct isolation of basophils from whole blood in a microfluidic system. LAB ON A CHIP 2022; 22:1690-1701. [PMID: 35438713 PMCID: PMC9080715 DOI: 10.1039/d2lc00154c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite their rarity in peripheral blood, basophils play important roles in allergic disorders and other diseases including sepsis and COVID-19. Existing basophil isolation methods require many manual steps and suffer from significant variability in purity and recovery. We report an integrated basophil isolation device (i-BID) in microfluidics for negative immunomagnetic selection of basophils directly from 100 μL of whole blood within 10 minutes. We use a simulation-driven pipeline to design a magnetic separation module to apply an exponentially increasing magnetic force to capture magnetically tagged non-basophils flowing through a microtubing sandwiched between magnetic flux concentrators sweeping across a Halbach array. The exponential profile captures non-basophils effectively while preventing their excessive initial buildup causing clogging. The i-BID isolates basophils with a mean purity of 93.9% ± 3.6% and recovery of 95.6% ± 3.4% without causing basophil degradation or unintentional activation. Our i-BID has the potential to enable basophil-based point-of-care diagnostics such as rapid allergy assessment.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, USA.
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University, USA.
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, USA.
| | - Stephen J Galli
- Department of Pathology, Stanford University, USA.
- Department of Microbiology and Immunology, Stanford University, USA
| | - Kari C Nadeau
- Department of Medicine and Pediatrics, with courtesy in Otolaryngology and in Population Science and Epidemiology, Stanford University, USA.
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, USA.
| |
Collapse
|
3
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
4
|
Abstract
Magnetophoresis offers many advantages for manipulating magnetic targets in microsystems. The integration of micro-flux concentrators and micro-magnets allows achieving large field gradients and therefore large reachable magnetic forces. However, the associated fabrication techniques are often complex and costly, and besides, they put specific constraints on the geometries. Magnetic composite polymers provide a promising alternative in terms of simplicity and fabrication costs, and they open new perspectives for the microstructuring, design, and integration of magnetic functions. In this review, we propose a state of the art of research works implementing magnetic polymers to trap or sort magnetic micro-beads or magnetically labeled cells in microfluidic devices.
Collapse
|
5
|
Stevens M, Liu P, Niessink T, Mentink A, Abelmann L, Terstappen L. Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment. Diagnostics (Basel) 2021; 11:1020. [PMID: 34199434 PMCID: PMC8229094 DOI: 10.3390/diagnostics11061020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Due to the low frequency of circulating tumor cells (CTC), the standard CellSearch method of enumeration and isolation using a single tube of blood is insufficient to measure treatment effects consistently, or to steer personalized therapy. Using diagnostic leukapheresis this sample size can be increased; however, this also calls for a suitable new method to process larger sample inputs. In order to achieve this, we have optimized the immunomagnetic enrichment process using a flow-through magnetophoretic system. An overview of the major forces involved in magnetophoretic separation is provided and the model used for optimizing the magnetic configuration in flow through immunomagnetic enrichment is presented. The optimal Halbach array element size was calculated and both optimal and non-optimal arrays were built and tested using anti-EpCAM ferrofluid in combination with cell lines of varying EpCAM antigen expression. Experimentally measured distributions of the magnetic moment of the cell lines used for comparison were combined with predicted recoveries and fit to the experimental data. Resulting predictions agree with measured data within measurement uncertainty. The presented method can be used not only to optimize magnetophoretic separation using a variety of flow configurations but could also be adapted to optimize other (static) magnetic separation techniques.
Collapse
Affiliation(s)
- Michiel Stevens
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| | - Peng Liu
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands
| | - Tom Niessink
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| | - Anouk Mentink
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany;
- MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Leon Terstappen
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| |
Collapse
|
6
|
Vu-Dinh H, Feng H, Jen CP. Effective Isolation for Lung Carcinoma Cells Based on Immunomagnetic Separation in a Microfluidic Channel. BIOSENSORS-BASEL 2021; 11:bios11010023. [PMID: 33467122 PMCID: PMC7830457 DOI: 10.3390/bios11010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023]
Abstract
In this paper, we developed an isolation system for A549 human lung carcinoma cells as an effective factor for the early diagnosis of lung cancer. A microfluidic immunomagnetic method was used, in which the combination of immunomagnetic separation and a microfluidic system allowed for increased isolation efficiency with uncomplicated manipulation. In the microfluidic immunomagnetic strategy, A549 cells were combined with aptamer-conjugated carboxylated magnetic beads and then collected in a specified region by applying a magnetic field. The results were recorded using a fluorescence microscope, and the captured targets were then quantified. The isolation efficiency of A549 cells is up to 77.8%. This paper developed a simple working procedure, which is less time consuming, high-throughput, and trustworthy for the isolation of A549 cells. This procedure can be a useful reference method for the development of an effective diagnosis and treatment method for lung cancer in the future.
Collapse
Affiliation(s)
- Hien Vu-Dinh
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Hui Feng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
- Correspondence: (H.F.); (C.-P.J.); Tel.: +886-5-2729-382 (C.-P.J.)
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan;
- Correspondence: (H.F.); (C.-P.J.); Tel.: +886-5-2729-382 (C.-P.J.)
| |
Collapse
|
7
|
Liu P, Jonkheijm P, Terstappen LWMM, Stevens M. Magnetic Particles for CTC Enrichment. Cancers (Basel) 2020; 12:cancers12123525. [PMID: 33255978 PMCID: PMC7760229 DOI: 10.3390/cancers12123525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the enrichment of very rare cells, such as Circulating Tumor Cells (CTCs), immunomagnetic enrichment is frequently used. For this purpose, magnetic nanoparticles (MNPs) coated with specific antibodies directed against cancer cells are used. In this review, we look at the properties such a particle needs to have in order to be used successfully, and describe the different methods used in the production of such a particle as well as the methods for their separation. Additionally, an overview is given of the antibodies that could potentially be used for this purpose. Abstract Here, we review the characteristics and synthesis of magnetic nanoparticles (MNPs) and place these in the context of their usage in the immunomagnetic enrichment of Circulating Tumor Cells (CTCs). The importance of the different characteristics is explained, the need for a very specific enrichment is emphasized and different (commercial) magnetic separation techniques are shown. As the specificity of an MNP is in a large part dependent on the antibody coated onto the particle, different strategies in the coupling of specific antibodies as well as an overview of the available antibodies is given.
Collapse
Affiliation(s)
- Peng Liu
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Pascal Jonkheijm
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
| | - Michiel Stevens
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Correspondence: ; Tel.: +31-53-489-4101
| |
Collapse
|
8
|
Luo L, He Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med 2020; 9:4207-4231. [PMID: 32325536 PMCID: PMC7300401 DOI: 10.1002/cam4.3077] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) largely contribute to cancer metastasis and show potential prognostic significance in cancer isolation and detection. Miniaturization has progressed significantly in the last decade which in turn enabled the development of several microfluidic systems. The microfluidic systems offer a controlled microenvironment for studies of fundamental cell biology, resulting in the rapid development of microfluidic isolation of CTCs. Due to the inherent ability of magnets to provide forces at a distance, the technology of CTCs isolation based on the magnetophoresis mechanism has become a routine methodology. This historical review aims to introduce two principles of magnetic isolation and recent techniques, facilitating research in this field and providing alternatives for researchers in their study of magnetic isolation. Researchers intend to promote effective CTC isolation and analysis as well as active development of next-generation cancer treatment. The first part of this review summarizes the primary principles based on positive and negative magnetophoretic isolation and describes the metrics for isolation performance. The second part presents a detailed overview of the factors that affect the performance of CTC magnetic isolation, including the magnetic field sources, functionalized magnetic nanoparticles, magnetic fluids, and magnetically driven microfluidic systems.
Collapse
Affiliation(s)
- Laan Luo
- School of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
| | - Yongqing He
- School of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
- Chongqing Key Laboratory of Micro‐Nano System and Intelligent SensingChongqing Technology and Business UniversityChongqingChina
| |
Collapse
|
9
|
Sukumar P, Deliorman M, Brimmo AT, Alnemari R, Elsori D, Chen W, Qasaimeh MA. Airplug-mediated isolation and centralization of single T cells in rectangular microwells for biosensing. ADVANCED THERAPEUTICS 2020; 3:1900085. [PMID: 33117882 PMCID: PMC7591138 DOI: 10.1002/adtp.201900085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 11/09/2022]
Abstract
Sorting cells in a single cell per microwell format is of great interest to basic biology studies, biotherapeutics, and biosensing including cell phenotyping. For instance, isolation of individual immune T cells in rectangular microwells has been shown to empower the multiplex cytokine profiling at the single cell level for therapeutics applications. The present study, however, shows that there is an existing bias in temporal cytokine sensing that originates from random "unpredicted" positions of loaded cells within the rectangular microwells. To eliminate this bias, the isolated cells need to be well-aligned with each other and relative to the sensing elements. Hence, an approach that utilizes the in situ formation and release of airplugs to localize cells towards the center of the rectangular microwells is reported. The chip includes 2250 microwells (each 500 × 50 × 20 μm3) arranged in 9 rows. Results showed 20% efficiency in trapping single T cells per microwells, where cells are localized within ±3% of the center of microwells. The developed platform could provide real-time dynamic and unbiased multiplex cytokine detection from single T cells for phenotyping and biotherapeutics studies.
Collapse
Affiliation(s)
- Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Muhammedin Deliorman
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Ayoola T Brimmo
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Roaa Alnemari
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Deena Elsori
- Department of Applied Sciences and Mathematics, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, UAE
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| |
Collapse
|
10
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
11
|
Lee H, Kim G, Park E, Jeon S. Lenz's Law-Based Virtual Net for Detection of Pathogenic Bacteria from Water. Anal Chem 2019; 91:15585-15590. [PMID: 31714060 DOI: 10.1021/acs.analchem.9b03636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed a method for rapid detection of pathogenic bacteria from water using a virtual net comprising magnetic nanoparticle clusters (MNC). When an external magnetic field was applied to the antibody-functionalized MNC (Ab-MNC) solution in a glass tube (GT), the Ab-MNCs were aligned along the direction of the applied magnetic field to form a wall of MNCs. The injection of a liquid into the GT pushed the MNCs to flow when the drag force exceeded the magnetic force that held the MNCs. In contrast, injection of a liquid into the GT wrapped with a copper tape (Cu-GT) created a magnetic field in the opposite direction of the liquid flow according to Lenz's law, which retained the MNCs inside Cu-GT even at a flow rate 2.5 times higher than the maximum flow rate at which the MNCs were retained inside the GT. As proof of concept, E. coli O157:H7-spiked aqueous solutions were injected into Cu-GT containing Ab-MNCs. The structural flexibility of the Ab-MNC wall allowed the liquid to pass through but induced binding of the bacteria to the Ab-MNC wall, just as the wall acted like a virtual net. The detection limit was 102 CFU/mL of E. coli as measured by an ATP luminometer, and the total assay time was 15 min including 10 min for the isolation and separation steps.
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang , Gyeongbuk 790-784 , Republic of Korea
| | - Gwanho Kim
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang , Gyeongbuk 790-784 , Republic of Korea
| | - Eunjin Park
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang , Gyeongbuk 790-784 , Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang , Gyeongbuk 790-784 , Republic of Korea
| |
Collapse
|
12
|
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. BIOMICROFLUIDICS 2019; 13:061502. [PMID: 31737153 PMCID: PMC6847985 DOI: 10.1063/1.5123518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 06/01/2023]
Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.
Collapse
Affiliation(s)
| | - Baihe Lang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | | | | | | | - Zuobin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Haehnel V, Khan FZ, Mutschke G, Cierpka C, Uhlemann M, Fritsch I. Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems. Sci Rep 2019; 9:5103. [PMID: 30911104 PMCID: PMC6433926 DOI: 10.1038/s41598-019-41284-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
A novel method to drive and manipulate fluid in a contactless way in a microelectrode-microfluidic system is demonstrated by combining the Lorentz and magnetic field gradient forces. The method is based on the redox-reaction [Fe(CN)6]3-/[Fe(CN)6]4- performed in a magnetic field oriented perpendicular to the ionic current that crosses the gap between two arrays of oppositely polarized microelectrodes, generating a magnetohydrodynamic flow. Additionally, a movable magnetized CoFe micro-strip is placed at different positions beneath the gap. In this region, the magnetic flux density is changed locally and a strong magnetic field gradient is formed. The redox-reaction changes the magnetic susceptibility of the electrolyte near the electrodes, and the resulting magnetic field gradient exerts a force on the fluid, which leads to a deflection of the Lorentz force-driven main flow. Particle Image Velocity measurements and numerical simulations demonstrate that by combining the two magnetic forces, the flow is not only redirected, but also a local change of concentration of paramagnetic species is realized.
Collapse
Affiliation(s)
- Veronika Haehnel
- Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069, Dresden, Germany
| | - Foysal Z Khan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Gerd Mutschke
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01328, Dresden, Germany
| | - Christian Cierpka
- Institute of Thermodynamics and Fluid Mechanics,Technische Universität Ilmenau, D-98684, Ilmenau, Germany
| | - Margitta Uhlemann
- Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069, Dresden, Germany.
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
14
|
Wu J, Chen Q, Lin JM. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 2018; 142:421-441. [PMID: 27900377 DOI: 10.1039/c6an01939k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient platforms for cell isolation and analysis play an important role in applied and fundamental biomedical studies. As cells commonly have a size of around 10 microns, conventional handling approaches at a large scale are still challenged in precise control and efficient recognition of cells for further performance of isolation and analysis. Microfluidic technologies have become more prominent in highly efficient cell isolation for circulating tumor cells (CTCs) detection, single-cell analysis and stem cell separation, since microfabricated devices allow for the spatial and temporal control of complex biochemistries and geometries by matching cell morphology and hydrodynamic traps in a fluidic network, as well as enabling specific recognition with functional biomolecules in the microchannels. In addition, the fabrication of nano-interfaces in the microchannels has been increasingly emerging as a very powerful strategy for enhancing the capability of cell capture by improving cell-interface interactions. In this review, we focus on highlighting recent advances in microfluidic technologies for cell isolation and analysis. We also describe the general biomedical applications of microfluidic cell isolation and analysis, and finally make a prospective for future studies.
Collapse
Affiliation(s)
- Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine (Lond) 2018; 13:1221-1238. [PMID: 29882719 DOI: 10.2217/nnm-2017-0379] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe2O4) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe2O4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe2O4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.
Collapse
Affiliation(s)
- Sumithra Y Srinivasan
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| |
Collapse
|
16
|
Immunomagnetic separation of tumor initiating cells by screening two surface markers. Sci Rep 2017; 7:40632. [PMID: 28074882 PMCID: PMC5225414 DOI: 10.1038/srep40632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Isolating tumor initiating cells (TICs) often requires screening of multiple surface markers, sometimes with opposite preferences. This creates a challenge for using bead-based immunomagnetic separation (IMS) that typically enriches cells based on one abundant marker. Here, we propose a new strategy that allows isolation of CD44+/CD24− TICs by IMS involving both magnetic beads coated by anti-CD44 antibody and nonmagnetic beads coated by anti-CD24 antibody (referred to as two-bead IMS). Cells enriched with our approach showed significant enhancement in TIC marker expression (examined by flow cytometry) and improved tumorsphere formation efficiency. Our method will extend the application of IMS to cell subsets characterized by multiple markers.
Collapse
|