1
|
Iqbal FM, Rodríguez-Nogales C, Boulens N, Delie F. Formulation and optimization of transferrin-modified genistein nanocrystals: In vitro anti-cancer assessment and pharmacokinetic evaluation. Int J Pharm 2024; 667:124863. [PMID: 39447935 DOI: 10.1016/j.ijpharm.2024.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
In this research work, nanocrystals (NC) of poorly water-soluble drug genistein (Gen) were formulated to improve its aqueous solubility and bioavailability. Genistein nanocrystals (Gen-NC) were prepared by wet ball milling. The formulation was optimized using Box Behnken Design Expert to evaluate the impact of stabilizer concentration, drug concentration and quantity of zirconium beads (milling media) on NC size, polydispersity and zeta potential. The NCs were surface-decorated with transferrin (Tf) to form Tf modified Gen-NCs (Tf-Gen-NC) for improving cancer cell selectivity and cytotoxicity. The NC formulations were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray power diffraction (XRD) and differential scanning calorimetry (DSC). The particle size distribution of the optimized formulation varied from 200 to 300 nm with poly dispersibility index (PDI) between 0.1 and 0.3. Tf-Gen-NC and Gen-NC released 96 % and 80 % of the drug content in 20 min at 37 °C, respectively, whereas only 18 % were released with the unprocessed drug. In vitro cytotoxicity was tested in pulmonary adenocarcinoma epithelial cells (A549) and fibroblast cell line (L929). The Tf-Gen-NC presented an enhanced anticancer effect. In vivo pharmacokinetic studies in mice after intraperitoneal administration showed that the Cmax of NC formulations were 2.5-fold higher compared to free Gen. The area under the curve from time of administration to 24 h was 2.5 to 3-fold higher when compared with unprocessed drug. This study shows the interest of Gen-NC in the development of new formulations for Gen as an anticancer drug.
Collapse
Affiliation(s)
- Furqan Muhammad Iqbal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Carlos Rodríguez-Nogales
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Nathalie Boulens
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland
| | - Florence Delie
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Giri D, Dey SK, Manna S, Das Chaudhuri A, Mahata R, Pradhan A, Roy T, Jana K, Das S, Roy S, Maiti Choudhury S. Nanoconjugate Carrying pH-Responsive Transferrin Receptor-Targeted Hesperetin Triggers Triple-Negative Breast Cancer Cell Death through Oxidative Attack and Assemblage of Pro-Apoptotic Proteins. ACS APPLIED BIO MATERIALS 2024; 7:7556-7573. [PMID: 39504304 DOI: 10.1021/acsabm.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is recognized as a major aggressive subtype of breast cancer due to its expeditious worsening growth, extensive metastatic capability, and recalcitrance to standard current treatments. Hesperetin (HSP), a natural bioflavonoid from citrus fruits, demonstrates pronounced anticancer efficacy, but its hydrophobicity limits its clinical development. The present study reports the fabrication of a biocompatible and pH-responsive transferrin (TF) receptor-targeted HSP-loaded poly(lactic-co-glycolic acid) (PLGA) nanobioconjugate (PLGA-HSP-TF NPs) and the exploration of its in vitro and in vivo antineoplastic potential. PLGA nanoparticles (NPs), PLGA-HSP NPs, and PLGA-HSP-TF NPs were synthesized and characterized by DLS, FTIR, FE-SEM, and 1H NMR spectroscopy. The stability and in vitro release profile of nanoparticles were inspected, and anticancer efficacy was scrutinized in terms of in vitro cytotoxicity, oxidative stress and apoptosis biomarkers, and cell cycle arrest. In vivo tumor regression and host survival studies were executed in Ehrlich ascites carcinoma (EAC) cell-bearing Swiss albino mice. The drug uptake of highly stable PLGA-HSP-TF NPs was accomplished effectively in MDA-MB-231 cells and showed the pH-dependent intracellular release of HSP, which generated excessive intracellular reactive oxygen species (ROS) that led to oxidative assault to the TNBC cells. This elevated ROS dropped the mitochondrial membrane potential and triggered apoptosis-mediated cell death by arresting the cell cycle at the G0/G1 phase. Furthermore, PLGA-HSP-TF NPs unveiled significant in vivo Ehrlich ascites carcinoma regression and host survival compared to free HSP with minimum toxicity at a minimum dose of 20 mg/kg body weight. The study divulges that PLGA-HSP-TF NPs may be an astounding anticancer nanocandidate for aggressive triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Dibyendu Giri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
- Department of Physiology, Ghatal Rabindra Satabarsiki Mahavidyalaya, Ghatal, Paschim Medinipur, West Bengal, India, 721212
| | - Surya Kanta Dey
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sounik Manna
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Angsuman Das Chaudhuri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Rumi Mahata
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Ananya Pradhan
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Tamanna Roy
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 CIT scheme VIIM, Kolkata, West Bengal, India, 700054
| | - Subhasis Das
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sumita Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sujata Maiti Choudhury
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| |
Collapse
|
3
|
Altuwaijri N, Atef E. Transferrin-Conjugated Nanostructured Lipid Carriers for Targeting Artemisone to Melanoma Cells. Int J Mol Sci 2024; 25:9119. [PMID: 39201805 PMCID: PMC11354828 DOI: 10.3390/ijms25169119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
We report a successful formulation of Artemisone (ATM) in transferrin (Tf)-conjugated nanostructured lipid carriers (NLCs), achieving nearly a five-times increase in cell toxicity. The escalating cost of new drug discoveries led to the repurposing of approved drugs for new indications. This study incorporated Artemisone, an antimalarial drug, into a nanostructured lipid carrier (NLC) and tested for possible anticancer effects. The aim was to develop NLCs, and transferrin-conjugated NLCs (NLC-Tf) encapsulating Artemisone to enhance its delivery and anticancer activity. NLC formulations were prepared using high-pressure homogenization followed by ultrasonication and were characterized by particle size, zeta potential, and PDI. The conjugation of (Tf) to (NLC) was confirmed using IR, and the anticancer activity was tested using MTS assay. All formulations were in the nanometer size range (140-167 nm) with different zeta potential values. IR spectroscopy confirmed the successful conjugation of transferrin to NLC. Upon testing the formulations on melanoma cell lines using MTS assay, there was a significant decrease in viability and an increase in the encapsulated ATM-Tf toxicity compared to positive control ATM. The NLCs presented a promising potential carrier for delivering ATM to melanoma cells, and further conjugation with Tf significantly improved the ATM cytotoxicity.
Collapse
Affiliation(s)
- Njoud Altuwaijri
- Pharmaceutical Sciences Department, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Eman Atef
- Pharmacy College, West Coast University, 590 N Vermont Ave, Los Angeles, CA 90005, USA
| |
Collapse
|
4
|
Inácio CR, Nascimento GS, Barboza APM, Neves BRA, Andrade ÂL, Teixeira GM, Sousa LRD, de A. Vieira PM, Novack KM, dos Santos VMR. Controlled Release and Cell Viability of Ketoconazole Incorporated in PEG 4000 Derivatives. Polymers (Basel) 2023; 15:2513. [PMID: 37299312 PMCID: PMC10255533 DOI: 10.3390/polym15112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, polymeric materials have been gaining prominence in studies of controlled release systems to obtain improvements in drug administration. These systems present several advantages compared with conventional release systems, such as constant maintenance in the blood concentration of a given drug, greater bioavailability, reduction of adverse effects, and fewer dosages required, thus providing a higher patient compliance to treatment. Given the above, the present work aimed to synthesize polymeric matrices derived from polyethylene glycol (PEG) capable of promoting the controlled release of the drug ketoconazole in order to minimize its adverse effects. PEG 4000 is a widely used polymer due to its excellent properties such as hydrophilicity, biocompatibility, and non-toxic effects. In this work, PEG 4000 and derivatives were incorporated with ketoconazole. The morphology of polymeric films was observed by AFM and showed changes on the film organization after drug incorporation. In SEM, it was possible to notice spheres that formed in some incorporated polymers. The zeta potential of PEG 4000 and its derivatives was determined and suggested that the microparticle surfaces showed a low electrostatic charge. Regarding the controlled release, all the incorporated polymers obtained a controlled release profile at pH 7.3. The release kinetics of ketoconazole in the samples of PEG 4000 and its derivatives followed first order for PEG 4000 HYDR INCORP and Higuchi for the other samples. Cytotoxicity was determined and PEG 4000 and its derivatives were not cytotoxic.
Collapse
Affiliation(s)
- Carolina R. Inácio
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil; (C.R.I.); (G.S.N.)
| | - Gabriel S. Nascimento
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil; (C.R.I.); (G.S.N.)
| | - Ana Paula M. Barboza
- Department of Physics, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil;
| | - Bernardo R. A. Neves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ângela Leão Andrade
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil; (C.R.I.); (G.S.N.)
| | - Gabriel M. Teixeira
- Center for Research in Biological Sciences, Laboratory of Morphopathology, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Lucas R. D. Sousa
- Center for Research in Biological Sciences, Laboratory of Morphopathology, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Paula M. de A. Vieira
- Center for Research in Biological Sciences, Laboratory of Morphopathology, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Kátia M. Novack
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil; (C.R.I.); (G.S.N.)
| | - Viviane M. R. dos Santos
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil; (C.R.I.); (G.S.N.)
| |
Collapse
|
5
|
Zheng Y, Qin C, Li F, Qi J, Chu X, Li H, Shi T, Yan Z, Yang L, Xin X, Liu L, Han X, Yin L. Self-assembled thioether-bridged paclitaxel-dihydroartemisinin prodrug for amplified antitumor efficacy-based cancer ferroptotic-chemotherapy. Biomater Sci 2023; 11:3321-3334. [PMID: 36946490 DOI: 10.1039/d2bm02032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ferroptosis has been proposed as one form of iron-dependent cell death, overgeneration of high-toxicity hydroxyl radicals (˙OH) tumor sites via Fenton reactions induced cell membrane damage. However, the insufficient intracellular concentrations of both iron and H2O2 limited the anticancer performance of ferroptosis. In this study, ROS-sensitive prodrug nanoassemblies composed of a PEG2000-ferrous compound and a single thioether bond bridged dihydroartemisinin-paclitaxel prodrug were constructed, which fully tapped ex/endogenous iron, ferroptosis inducers, and chemotherapeutic agents. Following cellular uptake, the intracellular oxidizing environment accelerated the self-destruction of nanoassemblies and triggered drug release. In addition to the chemotherapeutic effect, the activated dihydroartemisinin was capable of acting as a toxic ˙OH amplifier via the reinforced Fenton reaction, simultaneously depleting intracellular GSH, as well as inducing glutathione peroxidase 4 inactivation, further enhancing ferroptosis-dependent cancer cell proliferation inhibition. Meanwhile, the ROS generation-inductive and cell cycle arrest effect from the paclitaxel augmented synergetic ferroptotic-chemotherapy of cancer. Thus, the prodrug integrating dihydroartemisinin with paclitaxel via a single thioether bond represents a potent nanoplatform to exert amplified ferroptotic-chemotherapy for improved anticancer efficacy.
Collapse
Affiliation(s)
- Yifei Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Chao Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Fei Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Jingxin Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xinyu Chu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ting Shi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhen Yan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaopeng Han
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Zhao X, Guo H, Bera H, Jiang H, Chen Y, Guo X, Tian X, Cun D, Yang M. Engineering Transferrin-Decorated Pullulan-Based Prodrug Nanoparticles for Redox Responsive Paclitaxel Delivery to Metastatic Lung Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4441-4457. [PMID: 36633929 DOI: 10.1021/acsami.2c18422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paclitaxel (PTX) remains a cornerstone in the treatment of locally advanced and metastatic lung cancer. To improve its therapeutic indices against lung cancer, novel redox-sensitive pullulan/PTX-based prodrug NPs (PULL-SS-PTX NPs) were accomplished, which were further surface-decorated with transferrin (TF), a cancer cell-targeting ligand, to afford TF-PULL-SS-PTX NPs. These prodrug NPs (drug content, >37% and average size, 134-163 nm) rapidly dismantled their self-assembled architecture upon exposure to simulated reducing conditions, causing a triggered drug release as compared to the control scaffold (PULL-CC-PTX NPs). These scaffolds also evidenced outstanding colloidal stability, cellular uptake efficiency, and discriminating cytotoxicity between the cancer and healthy cells. Intravenously delivered redox-sensitive NPs exhibited improved tumor-suppressing properties as compared to the control nanovesicles (PULL-CC-PTX NPs) in a B16-F10 melanoma lung metastasis mice model. The targeting efficiency and associated augmented anticancer potentials of TF-PULL-SS-PTX NPs relative to TF-free redox-responsive NPs and Taxol intravenous injection were also established on the transferrin receptor (TFR) overexpressed Lewis lung carcinoma (LLC-luc) cell-bearing mice model. Moreover, the TF-functionalized scaffold displayed a reduced systemic toxicity compared to that of Taxol intravenous injection. Overall, the proposed TF-decorated prodrug NPs could be a promising nanomedicine for intracellular PTX delivery against metastatic lung cancer.
Collapse
Affiliation(s)
- Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Haifei Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Durgapur, India713206
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Xidong Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| |
Collapse
|
7
|
Wong KH, Yang D, Chen S, He C, Chen M. Development of Nanoscale Drug Delivery Systems of Dihydroartemisinin for Cancer Therapy: A Review. Asian J Pharm Sci 2022; 17:475-490. [PMID: 36105316 PMCID: PMC9459003 DOI: 10.1016/j.ajps.2022.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
|
8
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
9
|
Zhou X, Soto-Gamez A, Nijdam F, Setroikromo R, Quax WJ. Dihydroartemisinin-Transferrin Adducts Enhance TRAIL-Induced Apoptosis in Triple-Negative Breast Cancer in a P53-Independent and ROS-Dependent Manner. Front Oncol 2022; 11:789336. [PMID: 35047402 PMCID: PMC8762273 DOI: 10.3389/fonc.2021.789336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype independent of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. It has a poor prognosis and high recurrence. Due to its limited treatment options in the clinic, novel therapies are urgently needed. Single treatment with the death receptor ligand TRAIL was shown to be poorly effective. Recently, we have shown that artemisinin derivatives enhance TRAIL-induced apoptosis in colon cancer cells. Here, we utilized transferrin (TF) to enhance the effectiveness of dihydroartemisinin (DHA) in inducing cell death in TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT549). We found that the combination of DHA-TF and the death receptor 5-specific TRAIL variant DHER leads to an increase in DR5 expression in all four TNBC cell lines, while higher cytotoxicity was observed in MDA-MB-231, and MDA-MB-436. All the data point to the finding that DHA-TF stimulates cell death in TNBC cells, while the combination of DHA-TF with TRAIL variants will trigger more cell death in TRAIL-sensitive cells. Overall, DHA-TF in combination with TRAIL variants represents a potential novel combination therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Fleur Nijdam
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Ma Z, Woon CYN, Liu CG, Cheng JT, You M, Sethi G, Wong ALA, Ho PCL, Zhang D, Ong P, Wang L, Goh BC. Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? Front Pharmacol 2022; 12:828856. [PMID: 35035355 PMCID: PMC8758560 DOI: 10.3389/fphar.2021.828856] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Cancer has become a global health problem, accounting for one out of six deaths. Despite the recent advances in cancer therapy, there is still an ever-growing need for readily accessible new therapies. The process of drug discovery and development is arduous and takes many years, and while it is ongoing, the time for the current lead compounds to reach clinical trial phase is very long. Drug repurposing has recently gained significant attention as it expedites the process of discovering new entities for anticancer therapy. One such potential candidate is the antimalarial drug, artemisinin that has shown anticancer activities in vitro and in vivo. In this review, major molecular and cellular mechanisms underlying the anticancer effect of artemisinin and its derivatives are summarised. Furthermore, major mechanisms of action and some key signaling pathways of this group of compounds have been reviewed to explore potential targets that contribute to the proliferation and metastasis of tumor cells. Despite its established profile in malaria treatment, pharmacokinetic properties, anticancer potency, and current formulations that hinder the clinical translation of artemisinin as an anticancer agent, have been discussed. Finally, potential solutions or new strategies are identified to overcome the bottlenecks in repurposing artemisinin-type compounds as anticancer drugs.
Collapse
Affiliation(s)
- Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Clariis Yi-Ning Woon
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chen-Guang Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jun-Ting Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China.,Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Daping Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Peishi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon-Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
11
|
Xu P, Wang X, Li T, Li L, Wu H, Tu J, Zhang R, Zhang L, Guo Z, Chen Q. Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33926-33936. [PMID: 34254767 DOI: 10.1021/acsami.1c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artemisinin compounds have shown satisfactory safety records in anti-malarial clinical practice over decades and have revealed value as inexpensive anti-tumor adjuvant chemotherapeutic drugs. However, the rational design and precise preparation of nanomedicines based on the artemisinin drugs are still limited due to their non-aromatic and fragile chemical structure. Herein, a bioinspired coordination-driven self-assembly strategy was developed to manufacture the artemisinin-based nanoprodrug with a significantly increased drug loading efficacy (∼70 wt %) and decreased preparation complexity compared to conventional nanodrugs. The nanoprodrug has suitable size distribution and robust colloidal stability for cancer targeting in vivo. The nanoprodrug was able to quickly disassemble in the tumor microenvironment with weak acidity and a high glutathione concentration, which guarantees a better tumor inhibitory effect than direct administration and fewer side effects on normal tissues in vivo. This work highlights a new strategy to harness a robust, simplified, organic solvent-free, and highly repeatable route for nanoprodrug manufacturing, which may offer opportunities to develop cost-effective, safe, and clinically available nanomedicines.
Collapse
Affiliation(s)
- Pengping Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xueying Wang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tuanwei Li
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, China
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jinwei Tu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ruoyang Zhang
- Changzhou Senior High School of Jiangsu Province, Changzhou, Jiangsu 213003, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Qianwang Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Abstract
The major problems with cancer therapy are drug-induced side effects. There is an urgent need for safe anti-tumor drugs. Artemisinin is a Chinese herbal remedy for malaria with efficacy and safety. However, several studies reported that artemisinin causes neurotoxicity and cardiotoxicity in animal models. Recently, nanostructured drug delivery systems have been designed to improve therapeutic efficacy and reduce toxicity. Artemisinin has been reported to show anticancer properties. The anticancer effects of artemisinin appear to be mediated by inducing cell cycle arrest, promoting ferroptosis and autophagy, inhibiting cell metastasis. Therefore, the review is to concentrate on mechanisms and molecular targets of artemisinin as anti-tumor agents. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as potent anticancer agents.
Collapse
Affiliation(s)
- Dongning Li
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Zhao
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Ahmad E, Ali A, Fatima MT, Nimisha, Apurva, Kumar A, Sumi MP, Sattar RSA, Mahajan B, Saluja SS. Ligand decorated biodegradable nanomedicine in the treatment of cancer. Pharmacol Res 2021; 167:105544. [PMID: 33722711 DOI: 10.1016/j.phrs.2021.105544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is one of the major global health problems, responsible for the second-highest number of deaths. The genetic and epigenetic changes in the oncogenes or tumor suppressor genes alter the regulatory pathways leading to its onset and progression. Conventional methods are used in appropriate combinations for the treatment. Surgery effectively treats localized tumors; however, it fails to treat metastatic tumors, leading to a spread in other organs, causing a high recurrence rate and death. Among the different strategies, the nanocarriers-based approach is highly sought for, but its nonspecific delivery can cause a profound side effect on healthy cells. Targeted nanomedicine has the advantage of targeting cancer cells specifically by interacting with the receptors overexpressed on their surface, overcoming its non-specificity to target healthy cells. Nanocarriers prepared from biodegradable and biocompatible materials are decorated with different ligands by encapsulating therapeutic or diagnostic agents or both to target cancer cells overexpressing the receptors. Scientists are now utilizing a theranostic approach to simultaneously evaluate nanocarrier bio-distribution and its effect on the treatment regime. Herein, we have summarized the recent 5-year efforts in the development of the ligands decorated biodegradable nanocarriers, as a targeted nanomedicine approach, which has been highly promising in the treatment of cancer.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna 810507, India
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Science, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant, Postgraduate Institute of Medical, Education and Research (GIPMER), New Delhi 110002, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
14
|
Lu Y, Wen Q, Luo J, Xiong K, Wu Z, Wang B, Chen Y, Yang B, Fu S. Self-assembled dihydroartemisinin nanoparticles as a platform for cervical cancer chemotherapy. Drug Deliv 2020; 27:876-887. [PMID: 32516033 PMCID: PMC8216472 DOI: 10.1080/10717544.2020.1775725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) is a potent anti-cancer drug that has limited clinical applications due to poor water solubility and low bioavailability. We designed a biodegradable poly(ethylene glycol) methyl ether-poly(ε-caprolactone) (MPEG-PCL) micelle carrier for DHA using the self-assembly method. The DHA/MPEG-PCL nanoparticles were spherical with an average particle size of 30.28 ± 0.27 nm, and released the drug in a sustained manner in aqueous solution. The drug-loaded nanoparticles showed dose-dependent toxicity in HeLa cells by inducing cycle arrest and apoptosis. Furthermore, compared to free DHA, the DHA/MPEG-PCL nanoparticles showed higher therapeutic efficacy and lower toxicity in vivo, and significantly inhibited tumor growth and prolonged the survival of tumor-bearing nude mice. In addition, the tumor tissues of the DHA/MPEG-PCL-treated mice showed a marked decline in the in situ expression of proliferation and angiogenesis markers. Taken together, the self-assembled DHA/MPEG-PCL nanoparticles are a highly promising delivery system for targeted cancer treatment.
Collapse
Affiliation(s)
- Yun Lu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ZhouXue Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - BiQiong Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Bo Yang
- Department of Oncology, Three Gorges Central Hospital, Chongqing, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
15
|
Yoon S, Kim Y, Youn YS, Oh KT, Kim D, Lee ES. Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics 2020; 12:pharmaceutics12111109. [PMID: 33218116 PMCID: PMC7698888 DOI: 10.3390/pharmaceutics12111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we developed γ-cyclodextrin-based multifunctional nanoparticles (NPs) for tumor-targeted therapy. The NPs were self-assembled using a γ-cyclodextrin (γCD) coupled with phenylacetic acid (PA), 2,3-dimethylmaleic anhydride (DMA), poly(ethylene glycol) (PEG), and transferrin (Tf), termed γCDP-(DMA/PEG-Tf) NPs. These γCDP-(DMA/PEG-Tf) NPs are effective in entrapping topotecan (TPT, as a model antitumor drug) resulting from the ionic interaction between pH-responsive DMA and TPT or the host–guest interaction between γCDP and TPT. More importantly, the γCDP-(DMA/PEG-Tf) NPs can induce ionic repulsion at an endosomal pH (~6.0) resulting from the chemical detachment of DMA from γCDP, which is followed by extensive TPT release. We demonstrated that γCDP-(DMA/PEG-Tf) NPs led to a significant increase in cellular uptake and MDA-MB-231 tumor cell death. In vivo animal studies using an MDA-MB-231 tumor xenografted mice model supported the finding that γCDP-(DMA/PEG-Tf) NPs are effective carriers of TPT to Tf receptor-positive MDA-MB-231 tumor cells, promoting drug uptake into the tumors through the Tf ligand-mediated endocytic pathway and increasing their toxicity due to DMA-mediated cytosolic TPT delivery.
Collapse
Affiliation(s)
- Seonyoung Yoon
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea;
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117, USA;
| | - Eun Seong Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea
- Correspondence: ; Tel.: +82-2-2164-4921
| |
Collapse
|
16
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
17
|
Alven S, Aderibigbe BA. Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics 2020; 12:E748. [PMID: 32784933 PMCID: PMC7466127 DOI: 10.3390/pharmaceutics12080748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).
Collapse
|
18
|
Yi R, Wang H, Deng C, Wang X, Yao L, Niu W, Fei M, Zhaba W. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci Rep 2020; 40:BSR20193314. [PMID: 32452511 PMCID: PMC7313443 DOI: 10.1042/bsr20193314] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
It has been demonstrated from previous studies about the killing effect of dihydroartemisinin (DHA) on glioblastoma, which involves multiple aspects: cytotoxicity, cell cycle arrest and invasion inhibition. DHA has the advantages of low cytotoxicity to normal cells, selective killing effect and low drug resistance, making it one of the popular anti-tumor research directions. Ferroptosis is a newly discovered form of cell death characterized by iron dependence and lipid reactive oxygen species (ROS) accumulation. In the present study, we found differences in the expression of transferrin receptors in normal human astrocytes (NHA) and glioblastoma cells (U87 and A172), which may be one of the mechanisms of DHA selective killing effect. Through the determination of ferroptosis-related protein expression, we found that the significant decrease of GPX4, accompanied by the constant expression of xCT and ACSL4, suggesting GPX4 was a pivotal target for DHA-activated ferroptosis in glioblastoma. Total and lipid ROS levels were increased and all these results could be reversed by the ferroptosis inhibitor, ferrostatin-1. These findings demonstrated ferroptosis would be a critical component of cell death caused by DHA and GPX4 was the main target. All these results provide a novel treatment direction to glioblastoma. The association between ferroptosis and polyamines is also discussed, which will provide new research directions for ferroptosis caused by DHA in glioblastoma.
Collapse
Affiliation(s)
- Renxin Yi
- Department of Neurosurgery, Jinling Hospital, Southeast University, School of Medicine, Nanjing 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, P.R. China
| | - Chulei Deng
- Department of Neurosurgery, Jinling Hospital, South Medical University, School of Medicine, Nanjing 210002, P.R. China
| | - Xinyue Wang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210002, P.R. China
| | - Lei Yao
- Department of Neurosurgery, Jinling Hospital, Southeast University, School of Medicine, Nanjing 210002, P.R. China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Southeast University, School of Medicine, Nanjing 210002, P.R. China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, School of Medicine, Nanjing 210002, P.R. China
| | - Wangdui Zhaba
- Department of Neurosurgery, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, P.R. China
| |
Collapse
|
19
|
Pinheiro RGR, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, Reis S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer's disease. Eur J Pharm Sci 2020; 148:105314. [PMID: 32200044 DOI: 10.1016/j.ejps.2020.105314] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/26/2022]
Abstract
Quercetin was encapsulated in lipid nanoparticles (SLN and NLC) to take advantage of its neuroprotective properties in Alzheimer's disease. The nanoparticles were functionalized with transferrin to facilitate the passage across the blood-brain barrier through the transferrin receptors overexpressed in brain endothelial cells. NMR and FTIR confirmed the functionalization of the nanoparticles with transferrin. TEM results showed all nanoparticles presented spherical morphology. Nanoparticles exhibited size around 200 nm and zeta potential values higher than -30 mV. Quercetin entrapment efficiency was around 80-90%. LDH cytotoxicity assays in hCMEC/D3 cell line demonstrated that even for the highest concentration (30 μM) nanoparticles did not reveal cytotoxicity after 4 h of incubation. Permeability studies across hCMEC/D3 cell monolayers showed NLC permeate more the blood-brain barrier, while amyloid-beta studies demonstrated NLC-transferrin have the capacity to inhibit fibril formation. Nanoparticles seem to be suitable for brain applications, mainly for Alzheimer's disease due to inhibition of amyloid-beta aggregation.
Collapse
Affiliation(s)
- R G R Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal
| | - A Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal
| | - J A Loureiro
- LEPABE, Departamento de Ciências da Engenharia, Faculdade de Engenharia, Universidade do Porto, Porto, 4500-465, Portugal
| | - M C Pereira
- LEPABE, Departamento de Ciências da Engenharia, Faculdade de Engenharia, Universidade do Porto, Porto, 4500-465, Portugal
| | - M Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal
| | - A R Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal; CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, 9020-105, Portugal.
| | - S Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal
| |
Collapse
|
20
|
Kumar A, Ahmad A, Vyawahare A, Khan R. Membrane Trafficking and Subcellular Drug Targeting Pathways. Front Pharmacol 2020; 11:629. [PMID: 32536862 PMCID: PMC7267071 DOI: 10.3389/fphar.2020.00629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022] Open
Abstract
The movement of micro and macro molecules into and within a cell significantly governs several of their pharmacokinetic and pharmacodynamic parameters, thus regulating the cellular response to exogenous and endogenous stimuli. Trafficking of various pharmacological agents and other bioactive molecules throughout and within the cell is necessary for the fidelity of the cells but has been poorly investigated. Novel strategies against cancer and microbial infections need a deeper understanding of membrane as well as subcellular trafficking pathways and essentially regulate several aspects of the initiation and spread of anti-microbial and anti-cancer drug resistance. Furthermore, in order to avail the maximum possible bioavailability and therapeutic efficacy and to restrict the unwanted toxicity of pharmacological bioactives, these sometimes need to be functionalized with targeting ligands to regulate the subcellular trafficking and to enhance the localization. In the recent past the scenario drug targeting has primarily focused on targeting tissue components and cell vicinities, however, it is the membranous and subcellular trafficking system that directs the molecules to plausible locations. The effectiveness of the delivery platforms largely depends on their physicochemical nature, intracellular barriers, and biodistribution of the drugs, pharmacokinetics and pharmacodynamic paradigms. Most subcellular organelles possess some peculiar characteristics by which membranous and subcellular targeting can be manipulated, such as negative transmembrane potential in mitochondria, intraluminal delta pH in a lysosome, and many others. Many specialized methods, which positively promote the subcellular targeting and restrict the off-targeting of the bioactive molecules, exist. Recent advancements in designing the carrier molecules enable the handling of membrane trafficking to facilitate the delivery of active compounds to subcellular localizations. This review aims to cover membrane trafficking pathways which promote the delivery of the active molecule in to the subcellular locations, the associated pathways of the subcellular drug delivery system, and the role of the carrier system in drug delivery techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
21
|
Ren G, Chen P, Tang J, Guo W, Wang R, Li N, Li Y, Zhang G, Wang R, Zhang S. In vivo and in vitro evaluation of dihydroartemisinin prodrug nanocomplexes as a nano-drug delivery system: characterization, pharmacokinetics and pharmacodynamics. RSC Adv 2020; 10:17270-17279. [PMID: 35521441 PMCID: PMC9053626 DOI: 10.1039/d0ra02150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
To develop new, more effective and lower toxicity antitumor dihydroartemisinin (DHA) nanocomplexes, a DHA prodrug synthesized in this study was used to prepare DHA prodrug self-assembled nanocomplexes (DHANPs) by molecular self-assembly technology. The optimization, pharmacokinetics and in vitro and in vivo antitumor efficiency of DHANPs were assessed. The results showed that the entrapment efficiency, drug loading, particle size and zeta potential of the optimized formulation were 92.37 ± 3.68%, 76.98 ± 3.07%, 145.9 ± 2.11 nm and -16.0 ± 0.52 mV, respectively. DHANPs had a uniform size distribution and good stability during storage. The release of DHA prodrugs from DHANPs was slow in a PBS solution (pH 7.4). The pharmacokinetic study indicated that DHANPs could significantly improve the blood concentration of DHA. DHANPs exhibited lower cytotoxicity to 4T1 cells. More importantly, DHANPs could increase the quality life of mice in comparison with that of the DHA solution in 4T1 tumor-bearing mice. In short, the optimized DHA prodrug nanocomplexes show good long-term stability during the experimental time, extend the life-cycle of DHA in rats and can act as a prospective nano-drug delivery system for future artemisinin-based anti-tumor drugs.
Collapse
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Pei Chen
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
- School of Pharmacy, The Second Military Medical University Shanghai China
| | - Jiaqi Tang
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Wenju Guo
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Ning Li
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University Taiyuan 030001 Shanxi China
| |
Collapse
|
22
|
Ahmad A, Khan F, Mishra RK, Khan R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J Med Chem 2019; 62:10475-10496. [DOI: 10.1021/acs.jmedchem.9b00511] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Farheen Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| |
Collapse
|
23
|
Ning X, Tan G, Chen X, Wang M, Wang B, Cui L. Development of a lateral flow dipstick for simultaneous and semi-quantitative analysis of dihydroartemisinin and piperaquine in an artemisinin combination therapy. Drug Test Anal 2019; 11:1444-1452. [PMID: 31150570 DOI: 10.1002/dta.2656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 11/10/2022]
Abstract
Dihydroartemisinin (DHA) and piperaquine (PPQ) are two drugs used in an artemisinin-based combination therapy (ACT). The circulation of counterfeit antimalarial drugs demands the development of simple, point-of-care (POC) tests for monitoring drug quality. Here we aimed to design an antibody-based lateral flow dipstick assay for simultaneous quality control of DHA and PPQ. To obtain a monoclonal antibody (mAb) for PPQ, one structural unit of the symmetric PPQ molecule was used to derive a carboxylic acid for linkage to a carrier protein as immunogen. Screening of hybridoma cells identified an mAb 4D112B2 that reacted with the PPQ-based immunogen. A highly-sensitive icELISA was designed based on this mAb, which showed 50% inhibition concentration of PPQ at 1.66 ng/mL and a working range of 0.35 - 7.40 ng/mL. The mAb showed 10.2, 15.9 and 30.4% cross reactivity to hydroxychloroquine sulfate, chloroquine and amodiaquine, respectively. No cross reactivity was observed to lumefantrine, mefloquine artemisinin and its derivatives. Using our previous DHA dipstick design, a lateral flow dipstick for simultaneous analysis of PPQ and DHA was developed. The indicator ranges for PPQ and DHA were 2 - 5 μg/mL and 250 - 500 ng/mL, respectively. The dipstick was used to semi-quantitatively analyze PPQ and DHA content in commercial ACT drugs, which produced agreeable results to those determined by high-performance liquid chromatography. This combination dipstick makes it a potential POC device for quality control of the two active ingredients in a commonly used ACT.
Collapse
Affiliation(s)
- Xiangxue Ning
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Guiyu Tan
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaojiao Chen
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Mian Wang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Baomin Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
24
|
Umeyor CE, Obachie O, Chukwuka R, Attama A. Development Insights of Surface Modified Lipid Nanoemulsions of Dihydroartemisinin for Malaria Chemotherapy: Characterization, and in vivo Antimalarial Evaluation. Recent Pat Biotechnol 2019; 13:149-165. [PMID: 30514197 DOI: 10.2174/1872208313666181204095314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The use of dihydroartemisinin (DHA) for effective malaria treatment is challenged by its poor aqueous solubility and inadequate bioavailability leading to treatment failures and emergence of resistant strains. A review of some novel drug delivery systems developed to address these challenges and their patents revealed that no study has reported the application of surface modified lipid nanoemulsions for improved antimalarial activity of DHA. OBJECTIVE The main thrust of this study is to develop oral dihydroartemisinin formulations solubilized in surface modified lipid nanoemulsions, characterize, and evaluate their activity against murine malaria. METHOD Lipid nanoemulsions containing dihydroartemisinin were formulated by high pressure homogenization using soybean oil, and polyethylene glycol 4000 was employed for surface modification. The formulations were characterized for droplet size, surface charge, pH, fouriertransform infrared spectroscopy, and surface morphology, viscosity and drug content efficiency. In vitro haemolytic study as a function of cytotoxicity using red blood cells as well as in vivo anti-malarial study using murine malaria model was also investigated. RESULTS Nanoemulsions recorded droplet sizes ranging from 26 - 56 nm, and zeta potential in the range of -28 to -35 mV. The formulations were slightly acidic (pH 4.4 - 5.8) with the drug molecularly dispersed as seen using infrared spectroscopy. The formulations showed non- Newtonian flow with significant drug content efficiency in the range of 77-96%. The formulations did not induce haemolysis of cells and showed good clearance of parasitaemia. CONCLUSION Surface-modified lipid nanoemulsion is a perfect carrier system for improving the anti-malarial activity of dihydroartemisinin.
Collapse
Affiliation(s)
- Chukwuebuka E Umeyor
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Onyedikachi Obachie
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Rozeeta Chukwuka
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| |
Collapse
|
25
|
Li C, Dai J, Zheng D, Zhao J, Tao Y, Lei J, Xi X, Liu J. An efficient prodrug-based nanoscale delivery platform constructed by water soluble eight-arm-polyethylene glycol-diosgenin conjugate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:153-160. [DOI: 10.1016/j.msec.2018.12.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/25/2022]
|
26
|
Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-facilitated toxicity in neuroblastoma cells. Toxicology 2019; 419:40-54. [DOI: 10.1016/j.tox.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
|
27
|
Ismail M, Du Y, Ling L, Li X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int J Pharm 2019; 562:162-171. [DOI: 10.1016/j.ijpharm.2019.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
|
28
|
Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm Res 2019; 36:78. [PMID: 30945009 DOI: 10.1007/s11095-019-2608-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.
Collapse
|
29
|
Li H, Li X, Shi X, Li Z, Sun Y. Effects of magnetic dihydroartemisinin nano-liposome in inhibiting the proliferation of head and neck squamous cell carcinomas. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:215-228. [PMID: 30668343 DOI: 10.1016/j.phymed.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dihydroartemisinin (DHA) was one of the most potent anticancer artemisinin-like compounds that had been proved by many researchers, but its application was limited by its own characteristics. PURPOSE Magnetic DHA nano-liposomes (DHA-MLPs) were developed to improve the targeting antitumor efficiency and bioavailability of DHA, and their physical properties were characterized. STUDY DESIGN AND METHODS Liposomes were prepared by thin film dispersion and orthogonal experimental design was used to optimize the formula. The magnetic targeting and antitumor effects of DHA-MLPs in the externally applied magnetic field was investigated in vitro and in vivo. RESULTS The mean particle size of DHA-MLPs was 209.10 ± 4.92 nm, the charge potential was -37.13 ± 1.01 mV, the encapsulation efficiency (E.E.%) was 82.12 ± 0.91%, and the saturation magnetization at room temperature was 11.84 emu g-1. Targeting DHA-MLPs as well as free DHA could lead to cell cycle G1 block and apoptosis of HNSCC tumor cells in vitro. The tumor volumes of targeting DHA-MLPs treated mouse group were distinctly decreased than that in the control group, free DHA group and non-targeting DHA-MLPs group (P < 0.05). It was observed from iron staining intensity that DHA-MLPs had significant targeting effect in magnetic field (P < 0.05). CONCLUSION This novelty liposome could strengthen the ability of DHA in tumor suppression, by increasing the targeted delivery of DHA and biocompatibility, optimize the bioefficacy of DHA.
Collapse
Affiliation(s)
- Hui Li
- Postgraduate School, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China; Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province 050081, China
| | - Xiaoming Li
- Postgraduate School, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China; Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei Province 050081, China.
| | - Xinli Shi
- Department of Basic Sciences, Hebei College of Traditional Chinese Medicine, Shijiazhuang, Hebei Province 050061, China
| | - Zhen Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei Province 050081, China
| | - Yajing Sun
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei Province 050081, China
| |
Collapse
|
30
|
Patel YS, Mistry N, Mehra S. Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis (Edinb) 2019; 115:146-153. [DOI: 10.1016/j.tube.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 01/25/2023]
|
31
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2019; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
32
|
Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. Int J Pharm 2018; 548:500-514. [DOI: 10.1016/j.ijpharm.2018.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
33
|
Abstract
BACKGROUND Aim of this study was to prepare the hyaluronic acid and human serum albumin modified erlotinib nanoparticles (ERT-HSA-HA NPs) delivery system by a precipitation method. METHODS ERT-HSA-HA NPs were characterized for physical properties, such as morphology and particle size, and in vitro drug release. Moreover, the cytotoxicity, cellular uptake, in vivo studies of ERT-HSA-HA nanoparticle were investigated and compared in A549 cells. RESULTS The ERT-HSA-HA NPs showed spherical morphology, and their hydrodynamic diameter was 112.5±2.8 nm. The drug loading amount and encapsulation efficiency were 5.6% and 81.2%, respectively. After 3 months of storage, no dramatic change, such as visible aggregation, drug content changes, and precipitation, in the appearance of ERT-HSA-HA NPs occurred. In vitro release showed that the release of ERT from HSA-HA NPs was slow, without obvious burst effects at an early stage. In in vivo studies, ERT-HSA-HA NPs showed a superior antiproliferative effect on A549 cells, and the HA modification strategy can also facilitate the high-efficiency uptake of ERT-HSA NPs by A549 cells. Pharmacokinetic studies showed that the form of NPs could significantly extend the role of ERT in vivo (provided higher bioavailability). However, there was no significant difference in the pharmacokinetic parameters between ERT-HSA NPs and ERT-HSA-HA NPs after intravenous administration. In terms of in vivo antitumor activity, ERT-HSA-HA NP-treated mice showed a significantly suppressed tumor growth and no relapse after 30 d of treatment. CONCLUSION HA/HSA co-modified erlotinib albumin nanoparticles was expected to be a new strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China,
| | - Wentao Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China,
| |
Collapse
|
34
|
Zhao Y, Li F, Mao C, Ming X. Multiarm Nanoconjugates for Cancer Cell-Targeted Delivery of Photosensitizers. Mol Pharm 2018; 15:2559-2569. [PMID: 29764120 DOI: 10.1021/acs.molpharmaceut.8b00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy, a procedure that uses a photosensitizer to enable light therapy selectively at diseased sites, remains underutilized in oncological clinic. To further improve its cancer selectivity, we developed a polymeric nanosystem by conjugating a photosensitizer IRDye 700DX (IR700) and cancer targeting RGD peptide to 8-arm polyethylene glycol (PEG). The resulting nanoconjugates (RGD-8PEG-IR700) exhibited a hydrodynamic size of 6.6 nm with narrow distribution of size. The targeted nanoconjugates showed significantly higher intracellular uptake of IR700 in integrin αvβ3-expressing A375 and SKOV3 cells when compared with nontargeted control 8PEG-IR700, and an excess amount of RGD peptides could abolish this enhancement, indicating a receptor-mediated uptake mechanism for the targeted polymer conjugates. Phototoxicity studies indicated that RGD-8PEG-IR700 produced massive cell killing in A375 cells after photoirradiation with an IC50 value of 57.8 nM for IR700. In contrast, free IR700 and the control 8PEG-IR700 conjugates did not produce any phototoxicity at the concentrations up to 1 μM IR700. Upon photoirradiation, the RGD-8PEG-IR700 could produce sufficient singlet oxygen in the cells and induced cell apoptosis. The studies with three-dimensional tumor spheroids showed that they penetrated tumor spheroids deeply and produced strong phototoxicity. Thus, we conclude that the polymer nanoconjugates may provide a promising delivery system for targeted photodynamic therapy of cancers due to their small size, cancer cell specificity, and minimal side effects.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States.,National Pharmaceutical Engineering Research Center , China State Institute of Pharmaceutical Industry , Shanghai 201203 , China
| | - Fang Li
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States.,School of Pharmacy , Jiangsu Vocational College of Medicine , Yancheng 224005 , China
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States
| |
Collapse
|
35
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
36
|
Liu Y, Liu K, Li X, Xiao S, Zheng D, Zhu P, Li C, Liu J, He J, Lei J, Wang L. A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 86:28-41. [PMID: 29525094 DOI: 10.1016/j.msec.2017.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022]
Abstract
The application of non-toxic carriers to increase drug loading, multi-drug delivery, and extremely small size of nano-drugs to construct a tremendous transmission system is the goal for all researchers to be pursued. The proposal of natural pectin nano-platform for delivery of multiple drugs is critical for biomedical research, especially a particle size of below 100nm with high yield. Here we design a new core-shell structure pectin-eight-arm polyethylene glycol-ursolic acid/hydrooxycampothecin nanoparticle (Pec-8PUH NPs) through a special self-assembly method for stabilizing and dispersing particles, improving water-solubility, and achieving drug controlled release. The obtained Pec-8PUH NPs possessed appropriate size (~91nm), drug-loaded efficiency and encapsulation efficiency through the regulation of eight-arm polyethylene glycol. In addition, Pec-8PUH NPs could enhance cell cytotoxicity, shorten blood retention time (7.3-fold UA, 7.2-fold HCPT) and more effective cellular uptake than free drugs, which exhibited an obvious synergistic effect of UA and HCPT by the co-delivery. 4T1 tumor-bearing mice also showed a higher survival rate than free UA and free HCPT. The result further shows that this novel drug delivery system has a promising potential for anti-cancer combination therapy.
Collapse
Affiliation(s)
- Yanxue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaomin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Shangzhen Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Pengbo Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Chunxiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
37
|
Liu Y, Zheng D, Ma Y, Dai J, Li C, Xiao S, Liu K, Liu J, Wang L, Lei J, He J. Self-Assembled Nanoparticles Platform Based on Pectin-Dihydroartemisinin Conjugates for Codelivery of Anticancer Drugs. ACS Biomater Sci Eng 2018; 4:1641-1650. [PMID: 33445320 DOI: 10.1021/acsbiomaterials.7b00842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural pectin is an important carrier for delivering drugs in biomedical research, however, there are only a few reports on the preparation of pectin nanoparticles, especially a particle size of below 100 nm with high yield. Here we design pectin-dihydroartemisinin/hydrooxycampothecin nanoparticles (PDC-H NPs) through a self-assembly method. The prepared PDC-H NPs contained hydrophilic part of pectin and hydrophobic anticancer drugs of dihydroartemisinin and hydroxycamptothecin, which could increase drug loading, improve water solubility, and achieve controlled release of drugs. The results indicated that the particle size of PDC-H NPs was about 70 nm, drug-loaded efficiency of DHA was 20.33 wt %, and encapsulation efficiency of HCPT was 14.11 wt %. PDC-H NPs exhibited a higher cytotoxicity, the blood retention time of PDC-H NPs was 4.8-fold longer than DHA and was 6.8-fold longer than HCPT. In addition, effective cellular uptake exhibited an obvious synergistic effect compared with DHA and HCPT. 4T1 tumor-bearing mice also showed a higher survival rate than free DHA and free HCPT. The result show that the self-assembled PDC-H NPs is a promising anticancer drug for codelivery.
Collapse
Affiliation(s)
- Yanxue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Yunyun Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Juan Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chunxiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Shangzhen Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
38
|
González Torres M, Cerna Cortez J, Balam Muñoz Soto R, Ríos Perez A, Pfeiffer H, Leyva Gómez G, Zúñiga Ramos J, Rivera AL. Synthesis of gamma radiation-induced PEGylated cisplatin for cancer treatment. RSC Adv 2018; 8:34718-34725. [PMID: 35548615 PMCID: PMC9086999 DOI: 10.1039/c8ra06296j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/29/2018] [Indexed: 01/06/2023] Open
Abstract
The synthesis of gamma radiation-induced PEGylated cisplatin paves the way to a new alternative PEGylation of small drugs.
Collapse
Affiliation(s)
- Maykel González Torres
- Escuela de Ingeniería y Ciencias
- Instituto Tecnológico y de Estudios Superiores de Monterrey
- Mexico
- Laboratorio de Biotecnología
- Instituto Nacional de Rehabilitación “Luís Guillermo Ibarra Ibarra”
| | - Jorge Cerna Cortez
- Benemérita Universidad Autónoma de Puebla
- Facultad de Química
- Puebla
- Mexico
| | - Rodrigo Balam Muñoz Soto
- Escuela de Ingeniería y Ciencias
- Instituto Tecnológico y de Estudios Superiores de Monterrey
- Mexico
| | - Alfonso Ríos Perez
- Escuela de Ingeniería y Ciencias
- Instituto Tecnológico y de Estudios Superiores de Monterrey
- Mexico
| | - Heriberto Pfeiffer
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Gerardo Leyva Gómez
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad de México 04510
- Mexico
| | - Joaquín Zúñiga Ramos
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas
- Ciudad de México
- Mexico
| | - Ana Leonor Rivera
- Instituto de Ciencias Nucleares
- Universidad Nacional Autónoma de México
- Ciudad de México 04510
- Mexico
| |
Collapse
|
39
|
Geng T, Zhao X, Ma M, Zhu G, Yin L. Resveratrol-Loaded Albumin Nanoparticles with Prolonged Blood Circulation and Improved Biocompatibility for Highly Effective Targeted Pancreatic Tumor Therapy. NANOSCALE RESEARCH LETTERS 2017; 12:437. [PMID: 28673056 PMCID: PMC5493600 DOI: 10.1186/s11671-017-2206-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 05/18/2023]
Abstract
Human serum albumin (HSA) is an intrinsic protein and important carrier that transports endogenous as well as exogenous substances across cell membranes. Herein, we have designed and prepared resveratrol (RV)-loaded HSA nanoparticles conjugating RGD (arginine-glycine-aspartate) via a polyethylene glycol (PEG) "bridge" (HRP-RGD NPs) for highly effective targeted pancreatic tumor therapy. HRP-RGD NPs possess an average size of 120 ± 2.6 nm with a narrow distribution, a homodisperse spherical shape, a RV encapsulation efficiency of 62.5 ± 4.21%, and a maximum RV release ratio of 58.4.2 ± 2.8% at pH 5.0 and 37 °C. In vitro biocompatibility of RV is improved after coating with HSA and PEG. Confocal fluorescence images show that HRP-RGD NPs have the highest cellular uptake ratio of 47.3 ± 4.6% compared to HRP NPs and HRP-RGD NPs with free RGD blocking, attributing to an RGD-mediated effect. A cell counting kit-8 (CCK-8) assay indicates that HRP-RGD NPs without RV (HP-RGD NPs) have nearly no cytotoxicity, but HRP-RGD NPs are significantly more cytotoxic to PANC-1 cells compared to free RV and HRP NPs in a concentration dependent manner, showing apoptotic morphology. Furthermore, with a formulated PEG and HSA coating, HRP-RGD NPs prolong the blood circulation of RV, increasing approximately 5.43-fold (t1/2). After intravenous injection into tumor-bearing mice, the content of HRP-RGD NPs in tumor tissue was proven to be approximately 3.01- and 8.1-fold higher than that of HRP NPs and free RV, respectively. Based on these results, HRP-RGD NPs were used in an in vivo anti-cancer study and demonstrated the best tumor growth suppression effect of all tested drugs with no relapse, high in vivo biocompatibility, and no significant systemic toxicity over 35 days treatment. These results demonstrate that HRP-RGD NPs with prolonged blood circulation and improved biocompatibility have high anti-cancer effects with promising future applications in cancer therapy.
Collapse
Affiliation(s)
- Tao Geng
- Department of Pharmacy, the Affiliated Hospital of Taishan Medical University, Tai'an, 271000, China.
| | - Xia Zhao
- Department of Pharmacy, Shandong Qianfoshan Hospital, Jinan, 250000, China
| | - Meng Ma
- Tai'an Maternal and Child Health Hospital, Tai'an, 271000, China
| | - Gang Zhu
- Taishan People's Hospital, Tai'an, 271000, China
| | - Ling Yin
- Affiliated Hospital of Taishan Medical University, Tai'an, 271000, China
| |
Collapse
|
40
|
Tan Y, Liu W, Zhu Z, Lang L, Wang J, Huang M, Zhang M, Yang C. Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells. Anal Bioanal Chem 2017; 410:1071-1077. [PMID: 29046922 DOI: 10.1007/s00216-017-0664-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
Abstract
Since the transferrin receptor (CD71 or TFRC) is known to be highly expressed in numerous cancers, CD71 has become an attractive target in cancer research. Acquiring specific molecular probes for CD71, such as small molecular ligands, aptamers, peptides, or antibodies, is of great importance for cancer cell recognition and capture. In this work, we chose CD71 as the target for phage display, and after four rounds of positive selection and one round of negative selection, the specific phage library was enriched. After verification and sequence analysis, six peptides were identified to be able to bind to CD71 with high specificity. The specific recognition of the CD71-positive cells was confirmed by flow cytometry and confocal microscopy. Competition experiments demonstrated that peptide Y1 and transferrin (TF) were bound to distinct sites on CD71, indicating that peptide Y1 could replace TF as a potential probe for cell imaging and drug delivery, thus avoiding competition by endogenous TF and side effects. Graphical abstract Six peptides were successfully isolated using in vitro biopanning against CD71 with high specificity and affinity. Peptides Y1 and Y2 would be powerful tools in biosensors and biomedicine due to their unique properties.
Collapse
Affiliation(s)
- Yuyu Tan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenli Liu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Lijun Lang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Junxia Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mengjiao Huang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingxia Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
41
|
Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J Aerosol Med Pulm Drug Deliv 2017; 31:139-154. [PMID: 29022837 DOI: 10.1089/jamp.2017.1382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Collapse
Affiliation(s)
- Ali Dabbagh
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Chai Hong Yeong
- 2 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- 3 Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universiti Teknologi MARA , Puncak Alam, Malaysia
| | - Noorsaadah Abdul Rahman
- 4 Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia .,5 Drug Design and Development Research Group (DDDRG), University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Ganugula R, Arora M, Saini P, Guada M, Kumar MNVR. Next Generation Precision-Polyesters Enabling Optimization of Ligand-Receptor Stoichiometry for Modular Drug Delivery. J Am Chem Soc 2017; 139:7203-7216. [PMID: 28395139 DOI: 10.1021/jacs.6b13231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of receptor-mediated drug delivery primarily depends on the ability to optimize ligand-receptor stoichiometry. Conventional polyesters such as polylactide (PLA) or its copolymer, polylactide-co-glycolide (PLGA), do not allow such optimization due to their terminal functionality. We herein report the synthesis of 12 variations of the PLA-poly(ethylene glycol) (PEG) based precision-polyester (P2s) platform, permitting 5-12 periodically spaced carboxyl functional groups on the polymer backbone. These carboxyl groups were utilized to achieve variable degrees of gambogic acid (GA) conjugation to facilitate ligand-receptor stoichiometry optimization. These P2s-GA combined with fluorescent P2s upon emulsification form nanosystems (P2Ns) of size <150 nm with GA expressed on the surface. The P2Ns outclass conventional PLGA-GA nanosystems in cellular uptake using caco-2 intestinal model cultures. The P2Ns showed a proportional increase in cellular uptake with an increase in relative surface GA density from 0 to 75%; the slight decline for 100% GA density was indicative of receptor saturation. The intracellular trafficking of P2Ns in live caco-2 cells demonstrated the involvement of endocytic pathways in cellular uptake. The P2Ns manifest transferrin receptor (TfR) colocalization in ex vivo intestinal tissue sections, despite blocking of the receptor with transferrin (Tf) noncompetitively, i.e., independently of receptor occupation by native ligand. The in vivo application of P2Ns was demonstrated using cyclosporine (CsA) as a model peptide. The P2Ns exhibited modular release in vivo, as a function of surface GA density. This approach may contribute to the development of personalized dose regimen.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Prabhjot Saini
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Melissa Guada
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Majeti N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| |
Collapse
|
43
|
Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, Davamani F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One 2017; 12:e0174888. [PMID: 28362873 PMCID: PMC5376299 DOI: 10.1371/journal.pone.0174888] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/16/2017] [Indexed: 11/19/2022] Open
Abstract
Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
Collapse
Affiliation(s)
- Teik Hwa Ong
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ebenezer Chitra
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Srinivasan Ramamurthy
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Kah Hay Yuen
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Stephen Periathamby Ambu
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
44
|
Design of Drug Delivery Systems Containing Artemisinin and Its Derivatives. Molecules 2017; 22:molecules22020323. [PMID: 28230749 PMCID: PMC6155641 DOI: 10.3390/molecules22020323] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 11/17/2022] Open
Abstract
Artemisinin and its derivatives have been reported to be experimentally effective for the treatment of highly aggressive cancers without developing drug resistance, they are useful for the treatment of malaria, other protozoal infections and they exhibit antiviral activity. However, they are limited pharmacologically by their poor bioavailability, short half-life in vivo, poor water solubility and long term usage results in toxicity. They are also expensive for the treatment of malaria when compared to other antimalarials. In order to enhance their therapeutic efficacy, they are incorporated onto different drug delivery systems, thus yielding improved biological outcomes. This review article is focused on the currently synthesized derivatives of artemisinin and different delivery systems used for the incorporation of artemisinin and its derivatives.
Collapse
|
45
|
Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother Pharmacol 2017; 79:451-466. [DOI: 10.1007/s00280-017-3251-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
|