1
|
Qin H, Xu H, Capron A, Porth I, Cui M, Keena MA, Deng X, Shi J, Hamelin RC. Is there hybridization between 2 species of the same genus in sympatry?-The genetic relationships between Anoplophora glabripennis, Anoplophora chinensis, and putative hybrids. INSECT SCIENCE 2024; 31:633-645. [PMID: 37578006 DOI: 10.1111/1744-7917.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/15/2023]
Abstract
Anoplophora glabripennis (Asian longhorn beetle, ALB) and Anoplophora chinensis (Citrus longhorn beetle, CLB) are native forest pests in China; they have become important international quarantine pests. They are found using the same Salix aureo-pendula host tree of Cixi, Zhejiang province, China. On this host tree, we collected additional beetles that appeared to be morphologically intermediate between ALB and CLB. By using a stereoscope, we observed that there were several bumps on the base of the elytra, which was inconsistent with ALB, which typically has a smooth elytral base, but was more like CLB, which has numerous short tubercles on the elytral base. Given their sympatry and intermediate morphology, we hypothesized that these may represent ALB × CLB hybrids. We studied the genomic profiles for 46 samples (ALB, CLB, and putative hybrids) using genotyping-by-sequencing (GBS) providing a reduced representation of the entire genome. Employing principal component analyses on the 163 GBS-derived single nucleotide polymorphism data, we found putative hybrids tightly clustered with ALB, but genetically distinct from the CLB individuals. Therefore, our initial hybrid hypothesis was not supported by genomic data. Further, while mating experiments between adult ALB and CLB were successful in 4 separate years (2017, 2018, 2020, and 2021), and oviposition behavior was observed, no progeny was produced. Having employed population genomic analysis and biological hybridization experiments, we conclude that the putative hybrids represent newly discovered morphological variants within ALB. Our approach further confirmed the advantage of genome-wide information for Anoplophora species assignment in certain ambiguous classification cases.
Collapse
Affiliation(s)
- Haiwen Qin
- Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Department of Forest, Beijing Forestry University, Beijing, China
| | - Huachao Xu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Arnaud Capron
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Laval University, Quebec, Canada
| | - Mingming Cui
- Department of Wood and Forest Sciences, Laval University, Quebec, Canada
| | - Melody A Keena
- Department of Agriculture, Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - Xiaofang Deng
- Changchun Landscape Plant Conservation Station, Bureau of Forestry and Landscaping of Changchun, Changchun, China
| | - Juan Shi
- Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Department of Forest, Beijing Forestry University, Beijing, China
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Yasui H, Uechi N, Fujiwara-Tsujii N. Differences in Male Mate Recognition between the Invasive Anoplophora glabripennis (Coleoptera: Cerambycidae) and Japanese Native A. malasiaca. INSECTS 2023; 14:171. [PMID: 36835739 PMCID: PMC9960942 DOI: 10.3390/insects14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The Asian longicorn beetle Anoplophora glabripennis is a recently arrived invasive species to Japan. The Japanese native A. malasiaca shows an extensive overlap with A. glabripennis with host plants, niches, and emergence season. Hybridization between these two species is suspected in Japan. The surface of the female is covered with contact sex pheromones that elicit male mating behavior within species. We evaluated the contact pheromonal activity of crude extract and fractions of female A. glabripennis coated on a black glass model and revealed a hydrocarbon fraction and a blend of fractions to show activity but relatively weak, suggesting the presence of other unknown active compounds. Few male A. glabripennis showed mating behavior when they were exposed to a crude extract of female A. malasiaca. However, a considerable number of A. malasiaca males mounted and showed abdominal bending behavior when presented with glass models that were coated with each extract of female A. glabripennis and A. malasiaca. Gomadalactones are essential contact pheromone components that elicit mating behavior in male A. malasiaca; however, we could not detect them in female A. glabripennis extract. Here, we investigated the possible reasons for this phenomenon and the difference in male mate recognition systems between these two species.
Collapse
|
3
|
Degradation of White Birch Shelterbelts by the Attack of White-Spotted Longicorn Beetles in Central Hokkaido, Northern Japan. FORESTS 2021. [DOI: 10.3390/f13010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A widespread decline of white birch (Betula platyphylla var. japonica) shelterbelts was observed in central Hokkaido, Japan. Many exit holes bored by white-spotted longicorn beetles (Anoplophora malasiaca) were found at the base of the trunks of trees in these stands. The present study aims to evaluate the effects of infestation on the degradation, and demonstrates whether the number of exit holes (Nholes) can be used as an index of the decline of trees. We selected 35 healthy appearing stands and 16 degraded stands in the study area. A generalized linear mixed model with zero inflation revealed that Nholes of standing dead trees tended to be greater than that of living trees, and the tree vigor decreased with increasing Nholes. These results implied that the degradation of the shelterbelts was caused by the beetle. We also found size-dependent mortality, i.e., only a few larvae can cause the death of smaller trees, but not larger trees. Furthermore, evaluation of the degradation at the stand level (Nholes) using a logistic regression analysis revealed that the degradation at the stand level could be predicted by Nholes. Our findings can be used as a useful index marker for diagnosing white birch shelterbelts.
Collapse
|
4
|
Chemical Ecology of the Asian Longhorn Beetle, Anoplophora glabripennis. J Chem Ecol 2021; 47:489-503. [PMID: 34081236 DOI: 10.1007/s10886-021-01280-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The Asian longhorn beetle (ALB), Anoplophora glabripennis (Motschulsky), is a destructive forest pest in its native range, East Asia, or a high-risk invasive species in many other parts of the world. Extensive research has been directed toward the development of ALB management strategies. However, semiochemical-based trap lures, which are one of the effective tools for detecting, monitoring, and potentially assisting in eradicating cerambycids, have not reached operational efficacy for ALB to date, which is probably due to a grossly incomplete understanding of its chemical ecology. Here, we summarize the current progress in ALB chemical ecology including host selection and location, pheromone identification, trapping techniques, olfactory system, and related biology and behavior. We also briefly review the known semiochemicals in the subfamily Lamiinae, particularly the ALB congener, A. chinensis. Based on this knowledge, we highlight a potentially important role of some host-original chemicals, such as sesquiterpenes, in ALB host and mate location, and emphasize the basic studies on the biology and behavior of adult ALB. Last, we formulate suggestions for further research directions that may contribute to a better understanding of ALB chemical ecology and improved lure efficacy.
Collapse
|
5
|
Chen R, Huang K, Pan S, Xu T, Tan J, Hao D. Jasmonate induced terpene-based defense in Pinus massoniana depresses Monochamus alternatus adult feeding. PEST MANAGEMENT SCIENCE 2021; 77:731-740. [PMID: 32865291 DOI: 10.1002/ps.6068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Symptoms of pine wilt disease (PWD) are caused when pathogenic pine wood nematodes (PWN) invade healthy host trees via wounds created by adult Monochamus alternatus. Exogenous methyl jasmonate (MeJA) can trigger terpene-based induced defense in conifers, which is a core part of the conifer defense system. Herein, we hypothesized that the terpene-based plant defense induced by MeJA could negatively affect the feeding behavior of M. alternatus adults, and may contribute to a new strategy in the control of PWD. RESULTS The feeding area for M. alternatus adults feeding on MeJA-treated seedlings was significantly smaller compared with control seedlings. However, no significant difference was detected in the enzyme activities in the midgut of beetles that had fed on these seedlings. Terpenoids were mainly accumulated in traumatic resin duct, whereas the constitutive resin duct accumulated only diterpenoids. Correspondingly, large-scaled responses at the transcriptional level mainly focused on terpenoid and phenolic biosynthesis in the defending trees. CONCLUSIONS Breeding tree species with a high resin yield may contribute to control of the spread of PWD by suppressing the feeding of M. alternatus adults. Transcriptome sequencing results provided abundant information for further breeding of highly resistant trees. Based on these findings, a potential push-pull strategy for the control of M. alternatus was discussed.
Collapse
Affiliation(s)
- Ruixu Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kairu Huang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shiye Pan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiajin Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Sun L, Zhang YN, Qian JL, Kang K, Zhang XQ, Deng JD, Tang YP, Chen C, Hansen L, Xu T, Zhang QH, Zhang LW. Identification and Expression Patterns of Anoplophora chinensis (Forster) Chemosensory Receptor Genes from the Antennal Transcriptome. Front Physiol 2018; 9:90. [PMID: 29497384 PMCID: PMC5819563 DOI: 10.3389/fphys.2018.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/25/2022] Open
Abstract
The citrus long-horned beetle (CLB), Anoplophora chinensis (Forster) is a destructive native pest in China. Chemosensory receptors including odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs) function to interface the insect with its chemical environment. In the current study, we assembled the antennal transcriptome of A. chinensis by next-generation sequencing. We assembled 44,938 unigenes from 64,787,784 clean reads and annotated their putative gene functions based on gene ontology (GO) and Clusters of Orthologous Groups of proteins (COG). Overall, 74 putative receptor genes from chemosensory receptor gene families, including 53 ORs, 17 GRs, and 4 IRs were identified. Expression patterns of these receptors on the antennae, maxillary and labial palps, and remaining body segments of both male and female A. chinensis were performed using quantitative real time-PCR (RT-qPCR). The results revealed that 23 ORs, 6 GRs, and 1 IR showed male-biased expression profiles, suggesting that they may play a significant role in sensing female-produced sex pheromones; whereas 8 ORs, 5 GRs, and 1 IR showed female-biased expression profiles, indicating that these receptors may be involved in some female-specific behaviors such as oviposition site seeking. These results lay a solid foundation for deeply understanding CLB olfactory processing mechanisms. Moreover, by comparing our results with those from chemosensory receptor studies in other cerambycid species, several highly probable pheromone receptor candidates were highlighted, which may facilitate the identification of additional pheromone and/or host attractants in CLB.
Collapse
Affiliation(s)
- Long Sun
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Forest Diseases and Insect Pests Control and Quarantine Station of Chaohu City, Chaohu, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jun-Dan Deng
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan-Ping Tang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Cheng Chen
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Laura Hansen
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Tian Xu
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, United States
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|