1
|
Zhang S, Han G, Gao X, Liu J, Qiao N. Megacity river as a critical anthropogenic source of strontium release in global Sr cycle: Insights from Bayesian mixing model and Sr isotope. WATER RESEARCH 2025; 278:123402. [PMID: 40037096 DOI: 10.1016/j.watres.2025.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Rapid urbanization has led to substantial anthropogenic disturbance of urban rivers and poses a significant threat to the marginal sea. Accurate identification and estimation of human interferences in urban rivers is critical to elucidate the current status of urban impact. Strontium isotope is a useful tool to trace river material origins. This study reported strontium and its isotope data from the most typical megacity river in China. The dissolved Sr concentration (440.6 μg/L) was much higher than the global average (78.3 μg/L) while 87Sr/86Sr exhibited the opposite (0.7104 in megacity river and 0.7119 in global rivers), revealing distinctive urban characteristics. According to elemental ratios and correlation analysis, basic judgments have been made on five specific human-related endmembers (sewage, fertilizer, coal, municipal water, and irrigation). To accurately estimate source contributions, water chemistry and 87Sr/86Sr were innovatively coupled as highly sensitive tracers. Bayesian model results confirmed that weathering and human activities jointly control solute compositions, and anthropogenic sources (61.2%) dominated the middle-lower region. Upper reach exhibited half of the contributions from weathering and coal mining (35.2%) also played non-negligible roles. Among five human-related origins, municipal input presented the highest proportion. Sr flux was 1.97 × 104 tons/yr, and urban activities contributed over half of the flux, revealing that municipal, coal mining, and sewage input posed a critical threat to the elemental cycling of the marginal sea. Urban rivers may serve as a significant Sr source in the global Sr cycle. Further investigation and long-term observations on megacity rivers are urgently needed to achieve coordinated and sustainable development of the continent-ocean system.
Collapse
Affiliation(s)
- Shitong Zhang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guilin Han
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Xi Gao
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jinke Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Qiao
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
2
|
Moon A, Jongebloed U, Dingilian KK, Schauer AJ, Chan YC, Cesler-Maloney M, Simpson WR, Weber RJ, Tsiang L, Yazbeck F, Zhai S, Wedum A, Turner AJ, Albertin S, Bekki S, Savarino J, Gribanov K, Pratt KA, Costa EJ, Anastasio C, Sunday MO, Heinlein LMD, Mao J, Alexander B. Primary Sulfate Is the Dominant Source of Particulate Sulfate during Winter in Fairbanks, Alaska. ACS ES&T AIR 2024; 1:139-149. [PMID: 39166537 PMCID: PMC10928653 DOI: 10.1021/acsestair.3c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 08/23/2024]
Abstract
Within and surrounding high-latitude cities, poor air quality disturbs Arctic ecosystems, influences the climate, and harms human health. The Fairbanks North Star Borough has wintertime particulate matter (PM) concentrations that exceed the Environmental Protection Agency's (EPA) threshold for public health. Particulate sulfate (SO4 2-) is the most abundant inorganic species and contributes approximately 20% of the total PM mass in Fairbanks, but air quality models underestimate observed sulfate concentrations. Here we quantify sulfate sources using size-resolved δ34S(SO4 2-), δ18O(SO4 2-), and Δ17O(SO4 2-) of particulate sulfate in Fairbanks from January 18th to February 25th, 2022 using a Bayesian isotope mixing model. Primary sulfate contributes 62 ± 12% of the total sulfate mass on average. Most primary sulfate is found in the size bin with a particle diameter < 0.7 μm, which contains 90 ±5% of total sulfate mass and poses the greatest risk to human health. Oxidation by all secondary formation pathways combined contributes 38 ± 12% of total sulfate mass on average, indicating that secondary sulfate formation is inefficient in this cold, dark environment. On average, the dominant secondary sulfate formation pathways are oxidation by H2O2 (13 ± 6%), O3 (8 ± 4%), and NO2 (8 ± 3%). These findings will inform mitigation strategies to improve air quality and public health in Fairbanks and possibly other high-latitude urban areas during winter.
Collapse
Affiliation(s)
- Allison Moon
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ursula Jongebloed
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Kayane K. Dingilian
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew J. Schauer
- Department
of Earth and Space Sciences, University
of Washington, Seattle, Washington 98195, United States
| | - Yuk-Chun Chan
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Meeta Cesler-Maloney
- Department
of Chemistry and Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775-6160, United States
| | - William R. Simpson
- Department
of Chemistry and Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775-6160, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ling Tsiang
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Fouad Yazbeck
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Shuting Zhai
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Alanna Wedum
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Alexander J. Turner
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Sarah Albertin
- IGE,
Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, 38000 Grenoble, France
| | - Slimane Bekki
- LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, 75005 Paris, France
| | - Joël Savarino
- IGE,
Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, 38000 Grenoble, France
| | - Konstantin Gribanov
- Climate
and Environment Physics Laboratory, Ural
Federal University, 620002, Yekaterinburg, Russia
| | - Kerri A. Pratt
- Department
of Chemistry and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emily J. Costa
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cort Anastasio
- Department
of Land, Air, and Water Resources, University
of California, Davis, California 95616, United States
| | - Michael O. Sunday
- Department
of Land, Air, and Water Resources, University
of California, Davis, California 95616, United States
| | - Laura M. D. Heinlein
- Department
of Land, Air, and Water Resources, University
of California, Davis, California 95616, United States
| | - Jingqiu Mao
- Department
of Chemistry and Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775-6160, United States
| | - Becky Alexander
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Li T, Li J, Xie L, Lin B, Jiang H, Sun R, Wang X, Liu B, Tian C, Li Q, Jia W, Zhang G, Peng P. In situ biomass burning enhanced the contribution of biogenic sources to sulfate aerosol in subtropical cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168384. [PMID: 37956844 DOI: 10.1016/j.scitotenv.2023.168384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Sulfurous gases released by biogenic sources play a key role in the global sulfur cycle. However, the contribution of biogenic sources to sulfate aerosol in the urban atmosphere has received little attention. Emission sources and formation process of sulfate in Guangzhou, a subtropical mega-city in China, were clarified using multiple methods, including isotope tracers and chemical markers. The δ18O of sulfate suggested that secondary sulfate was the dominant component (84 %) of sulfate aerosol, which mainly formed by transition metal ion (TMI) catalyzed oxidation (31 %) and OH radical oxidation (30 %). The factors driving secondary sulfate formation were revealed using a tree boosting model, which suggested that NH3, temperature, and oxidants were the most important factors. The δ34S of sulfate indicated that biogenic sources accounted for annual average of 26.0 % of the sulfate, which increased to 30.4 % in winter monsoon period. Rice straw burning enhanced sulfate formation by promoting the release of reduced sulfur from soil, which is rapidly converted into sulfate under a subtropical urban atmosphere with high concentration of NH3 and oxidants. This study revealed the important influence of rice straw burning on biogenic sulfur emission during the rice harvest, thereby providing insight into the sulfur cycle and regional air pollution.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Luhua Xie
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Boji Lin
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxing Jiang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Rong Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben Liu
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| |
Collapse
|
4
|
Lee G, Ahn J, Park SM, Moon J, Park R, Sim MS, Choi H, Park J, Ahn JY. Sulfur isotope-based source apportionment and control mechanisms of PM 2.5 sulfate in Seoul, South Korea during winter and early spring (2017-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167112. [PMID: 37717778 DOI: 10.1016/j.scitotenv.2023.167112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
High level of particulate matter (PM) concentrations are a major environmental concern in Seoul, South Korea, especially during winter and early spring. Sulfate is a major component of PM and induces severe environmental pollution, such as acid precipitation. Previous studies have used numerical models to constrain the relative contributions of domestic and trans-boundary sources to PM2.5 sulfate concentration in South Korea. Because of the scarce measurement result of δ34S for PM2.5 sulfate in South Korea, poorly defined δ34S value of domestic sulfur sources, and no application of sulfur isotope fractionation during sulfate formation in previous observation-based studies, source apportionment results conducted by model studies have not been corroborated from independent chemical observations. Here, we examined the δ34S of PM2.5 in Seoul and domestic sulfur sources, and considered the sulfur isotope fractionation for accurate source apportionment constraint. Accordingly, domestic and trans-boundary sulfur sources accounted for approximately (16-32) % and (68-84) % of the sulfate aerosols in Seoul, respectively, throughout the winter and early spring of 2017-2020. Air masses passing through north-eastern China had relatively low sulfate concentrations, enriched δ34S, and a low domestic source contribution. Those passing through south-eastern China had relatively a high sulfate concentrations, depleted δ34S, and high domestic source contribution. Furthermore, elevated PM2.5 sulfate concentrations (>10 μg m-3) were exclusively associated with a weak westerly wind speed of <3 m s-1. From December 2019 to March 2020, Seoul experienced relatively low levels of PM2.5 sulfate, which might be attributed to favorable weather conditions rather than the effects of COVID-19 containment measures. Our results demonstrate the potential use of δ34S for accurate source apportionment and for identifying the crucial role of regional air mass transport and meteorological conditions in PM2.5 sulfate concentration. Furthermore, the data provided can be essential for relevant studies and policy-making in East Asia.
Collapse
Affiliation(s)
- Giyoon Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jinho Ahn
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Seung-Myung Park
- Air Quality Research Division, National Institute of Environmental Research, Seo, Incheon 22689, South Korea
| | - Jonghan Moon
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Rokjin Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hanna Choi
- Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Gwahak-ro 124, Yuseong-gu, Daejeon 34132, South Korea
| | - Jinsoo Park
- Air Quality Research Division, National Institute of Environmental Research, Seo, Incheon 22689, South Korea
| | - Joon-Young Ahn
- Air Quality Research Division, National Institute of Environmental Research, Seo, Incheon 22689, South Korea
| |
Collapse
|
5
|
Han X, Dong X, Liu CQ, Wei R, Lang Y, Strauss H, Guo Q. Multiple Sulfur Isotopic Evidence for Sulfate Formation in Haze Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20647-20656. [PMID: 38033251 DOI: 10.1021/acs.est.3c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The mechanism of sulfate formation during winter haze events in North China remains largely elusive. In this study, the multiple sulfur isotopic composition of sulfate in different grain-size aerosol fractions collected seasonally from sampling sites in rural, suburban, urban, industrial, and coastal areas of North China are used to constrain the mechanism of SO2 oxidation at different levels of air pollution. The Δ33S values of sulfate in aerosols show an obvious seasonal variation, except for those samples collected in the rural area. The positive Δ33S signatures (0‰ < Δ33S < 0.439‰) observed on clean days are mainly influenced by tropospheric SO2 oxidation and stratospheric SO2 photolysis. The negative Δ33S signatures (-0.236‰ < Δ33S < ∼0‰) observed during winter haze events (PM2.5 > 200 μg/m3) are mainly attributed to SO2 oxidation by H2O2 and transition metal ion catalysis (TMI) in the troposphere. These results reveal that both the H2O2 and TMI pathways play critical roles in sulfate formation during haze events in North China. Additionally, these new data provide evidence that the tropospheric oxidation of SO2 can produce significant negative Δ33S values in sulfate aerosols.
Collapse
Affiliation(s)
- Xiaokun Han
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinyuan Dong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Harald Strauss
- Institut für Geologie und Paläontologie, Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Hu H, Wei R, Zerizghi T, Du C, Zhao C, Wang Z, Zhang J, Tan Q, Guo Q. Control mechanisms of water chemistry based on long-term analyses of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164713. [PMID: 37302593 DOI: 10.1016/j.scitotenv.2023.164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/13/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Long-term series data can provide a glimpse of the influence of natural and anthropogenic factors on water chemistry. However, few studies have been conducted to analyze the driving forces of the chemistry of large rivers based on long-term data. This study aimed to analyze the variations and driving mechanisms of riverine chemistry from 1999 to 2019. We compiled published data on major ions in the Yangtze River, one of the three largest rivers in the world. The results showed that Na+ and Cl- concentrations decreased with increasing discharge. Significant differences in riverine chemistry were found between the upper and middle-lower reaches. Major ion concentrations in the upper reaches were mainly controlled by evaporites, especially Na+ and Cl- ions. In contrast, major ion concentrations in the middle-lower reaches were mainly affected by silicate and carbonate weathering. Furthermore, human activities were the drivers of some major ions, notably SO42- ions associated with coal emissions. The increased major ions and total dissolved solids in the Yangtze River in the last 20 years were ascribed to the continuous acidification of the river and the construction of the Three Gorges Dam. Attention should be given to the impact of anthropogenic activities on the water quality of the Yangtze River.
Collapse
Affiliation(s)
- Huiying Hu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Teklit Zerizghi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenjun Du
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changqiu Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziteng Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyu Tan
- Yunnan University, Kunming 650091, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Liu Z, Zhu W, Yan G, Bai L, Han J, Li J, Sun Y, Wang Y, Hu B. Exploring the formation mechanism of fine particles in an ex-heavily polluted Northwestern city, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161333. [PMID: 36623666 DOI: 10.1016/j.scitotenv.2022.161333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Fine particle pollution is still a severe issue in the northwestern region of China where the formation mechanism of which remains ambiguous due to the limited studies there. In this study, a comprehensive study on the chemical composition and sources of PM2.5 at an ex-heavily polluted northwestern city was conducted, based on filter sampling data obtained from three consecutive winter campaigns during 2020-2022. The average PM2.5 during the three winter campaigns were 170.9 ± 66.4, 249.0 ± 75.7, and 200.9 ± 47.6 μg/m3, respectively, with the daily maximum value of PM2.5 exceeds 400 μg/m3 under stagnant meteorological conditions charactered by high relative humidity (>60 %) and low wind speed (<1 m/s). The major chemical components in PM2.5 were found to be inorganic aerosol (55.2 %) that mainly constituted by sulfate (24.2 %), and mineral dust (14.9 %); while the carbonous species contributed a minor fraction (∼13 %). In addition, (NH4)2SO4 and NH4NO3 were the dominate contributors to appearance of low visibility (<3 km) which together accounting for over 85 % of light extinction coefficient (bext) during heavy polluted period. Source appointment of fine particles was then conducted by applying the positive matrix factorization method, and the primary sources were resolved to be coal combustion (27.7 %) and biomass burning (18.6 %), followed by industrial dust (16.2 %), residential combustion (15.3 %), traffic emissions (11.9 %) and dust aerosol (10.4 %). To explore the potential formation mechanism of fine particle pollution, the chemical evolution pattern combined with gaseous pollutants and meteorological parameters were further analyzed, which refine the important role of primary emissions in the forming of high sulfate aerosol loading, while secondary formation was largely suppressed during the winter period that totally different from those reported in the developed regions of China, thus indicating more effort should be paid on the reduction of primary particles emissions in the northwestern cities than on its gaseous percussors.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Weibin Zhu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxuan Yan
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Lingyan Bai
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
| | - Jiaxing Han
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- The Sixth Monitoring Station of Ecology and Environment Bureau, Xinjiang Production and Construction Corps, Urumqi 836099, China
| | - Yuyin Sun
- The First Monitoring Station of Ecology and Environment Bureau, Xinjiang Production and Construction Corps, Urumqi 830011, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
8
|
Monsoon climate controls metal loading in global hotspot region of transboundary air pollution. Sci Rep 2022; 12:11096. [PMID: 35773372 PMCID: PMC9245867 DOI: 10.1038/s41598-022-15066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Eastern Asia is a major source of global air pollution. The distribution and intensity of these emissions are becoming well characterized, but their impact on the earth surface considering regional hydroclimatological settings has yet to be quantified. Here we show high-resolution spatiotemporal trace metal distributions of precipitation samples collected throughout the Japanese archipelago in 2013, when the world's coal consumption was the greatest, to depict the mass transportation and deposition of pollution. The results show that metals emitted through coal combustion transported from the continent via prevailing wind were intensively deposited along the western coast of the archipelago during winter due to heavy snowing, resulting in lead (Pb) concentration of precipitations exceed the critical level (> 10 μg l-1). About 1497 tons of Pb of continental origin loaded through wet deposition accounted for over ca. 87% of the total annual flux in 2013, which constituted ca. 18.5% of the total emissions from China in 2012. This study presents the first detailed picture of monsoon climate-controlled atmospheric metal transportation and loading in the hotspot region after the phase-out of leaded gasoline in the twentieth century. The dataset can serve as a base for evaluating the effect of countermeasures implemented recent year.
Collapse
|
9
|
Lin YC, Yu M, Xie F, Zhang Y. Anthropogenic Emission Sources of Sulfate Aerosols in Hangzhou, East China: Insights from Isotope Techniques with Consideration of Fractionation Effects between Gas-to-Particle Transformations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3905-3914. [PMID: 35294169 DOI: 10.1021/acs.est.1c05823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate (SO42-) is a major species in atmospheric fine particles (PM2.5), inducing haze formation and influencing Earth's climate. In this study, the δ34S values in PM2.5 sulfate (δ34S-SO42-) were measured in Hangzhou, east China, from 2015 September to 2016 October. The result showed that the δ34S-SO42- values varied from 1.6 to 6.4‰ with the higher values in the winter. The estimated fractionation factor (α34Sg→p) from SO2 to SO42- averaged at 3.9 ± 1.6‰. The higher α34Sg→p values in the winter were mainly attributed to the decrease of ambient temperature. We further compared the quantified source apportionments of sulfate by isotope techniques with and without the consideration of fractionation factors. The result revealed that the partitioned emission sources to sulfate with the consideration of the fractionation effects were more logical, highlighting that fractionation effects should be considered in partitioning emission sources to sulfate using sulfur isotope techniques. With considering the fractionation effects, coal burning was the dominant source to sulfate (85.5%), followed by traffic emissions (12.8%) and oil combustion (1.7%). However, the coal combustion for residential heating contributed only 0.9% to sulfate on an annual basis in this megacity.
Collapse
Affiliation(s)
- Yu-Chi Lin
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Jiangsu Provincial Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingyuan Yu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Jiangsu Provincial Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Feng Xie
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Jiangsu Provincial Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Jiangsu Provincial Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
10
|
Won EJ, Yun HY, Lee DH, Shin KH. Application of Compound-Specific Isotope Analysis in Environmental Forensic and Strategic Management Avenue for Pesticide Residues. Molecules 2021; 26:4412. [PMID: 34361564 PMCID: PMC8348328 DOI: 10.3390/molecules26154412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Unintended pesticide pollution in soil, crops, and adjacent environments has caused several issues for both pesticide users and consumers. For users, pesticides utilized should provide higher yield and lower persistence while considering both the environment and agricultural products. Most people are concerned that agricultural products expose humans to pesticides accumulating in vegetation. Thus, many countries have guidelines for assessing and managing pesticide pollution, for farming in diverse environments, as all life forms in soil are untargeted to these pesticides. The stable isotope approach has been a useful technique to find the source of organic matter in studies relating to aquatic ecology and environmental sciences since the 1980s. In this study, we discuss commonly used analytical methods using liquid and gas chromatography coupled with isotopic ratio mass spectrometry, as well as the advanced compound-specific isotope analysis (CSIA). CSIA applications are discussed for tracing organic pollutants and understanding chemical reactions (mechanisms) in natural environments. It shows great applicability for the issues on unintended pesticide pollution in several environments with the progress history of isotope application in agricultural and environmental studies. We also suggest future study directions based on the forensic applications of stable isotope analysis to trace pesticides in the environment and crops.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Hee-Young Yun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Dong-Hun Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
11
|
Tao Z, Guo Q, Wei R, Dong X, Han X, Guo Z. Atmospheric lead pollution in a typical megacity: Evidence from lead isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:145810. [PMID: 33714101 DOI: 10.1016/j.scitotenv.2021.145810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric lead (Pb) pollution has adverse health effects on humans, while the sources and atmospheric process of Pb are key scientific problems. In this study, the concentrations and isotopic composition of Pb in fine particulate matter (PM2.5), coal and street dust samples collected from a typical megacity Beijing were analyzed to identify the sources of atmospheric Pb. Results showed that the Pb concentrations in PM2.5 were high in winter (168.1 ± 32.0 ng/m3) and low in summer (27.7 ± 9.1 ng/m3), whereas Pb isotopic values presented opposite variation trends. The abnormally elevated Pb concentrations in winter were probably related to coal combustion, while declined Pb concentration in summer may be attributed to favorable meteorological parameters such as high temperature, high wind speed, and frequent rain events. Pb isotopic ratios indicated that anthropogenic sources (coal combustion and vehicle exhaust) and natural sources were the main contributors to Pb in PM2.5. Combined with the binary model, the anthropogenic sources predominantly contributed to Pb in the Beijing atmosphere by approximately 85% annually, while the natural sources accounted for the rest of 15%. More specifically, the contribution of natural sources was about 9.4% in spring, 29.7% in summer, 16.0% in autumn and 6.1% in winter, suggesting that natural sources might contribute more lead into the atmosphere during clear days. Furthermore, the contribution of the vehicle exhaust to atmospheric Pb was nonnegligible in megacity, highlighting that the ownership of motor vehicles in megacity should be regulated and more efforts should be paid to strengthen vehicle emission standard. This study may enrich the reservoir of Pb isotopic composition in nature and provides a new method to investigate the Pb migration and transformation in the environment, and also serve as a theoretical reference for pollution control measures.
Collapse
Affiliation(s)
- Zhenghua Tao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyuan Dong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokun Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaobing Guo
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
12
|
Lang Y, Guo Q, Li S. The abatement of acid rain in Guizhou province, southwestern China: Implication from sulfur and oxygen isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115444. [PMID: 32866874 DOI: 10.1016/j.envpol.2020.115444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The high frequency of acid rain in southern China has captured public and official concern since 1980s. Subsequently, gas emission reduction measures have been implemented to improve the air quality. Variations in SO2 emission intensities can influence the sulfur and oxygen isotopic compositions of sulfate in rainwater, since atmospheric sulfate is mainly formed via the oxidation of sulfur gases from natural and anthropogenic sources. To evaluate the impacts of emission reduction measures on atmospheric sulfate, the seasonal and long-term trends in stable isotopic compositions of sulfate in rainwater in Guizhou province, southwestern China have been investigated based on rainwater samples collected from June 2016 to June 2018 and literature investigation (2000-2010).The results reveal that coal combustion remains a major contributor to sulfate in rainwater, although its SO2 emission has significantly decreased over the past two decades. The δ34Ssulfate and δ18Osulfate values in rainwater are negatively correlated and have significant seasonal changes. The seasonality in δ34Ssulfate has been interpreted as due to the changes in contributions of dimethyl sulfide and coal combustion, while the seasonal pattern of δ18Osulfate is consistent with that of δ18Owater values, indicating sulfate in rainwater is mainly formed by heterogeneous oxidation of SO2. Combined with the data from previous studies (Xiao and Liu, 2002; Liu, 2007; Xiao et al., 2009; Xiao et al., 2014), we found that the volume weighted mean δ34S values of sulfate in rainwater in Guizhou province show a marked increase between 2001 and 2018, indicating that the 34S-depleted SO2 emission from coal combustion has declined during this period. Furthermore, the synchronous changes in δ34S values, sulfate concentration and pH values of rainwater suggest that the frequency of acid rain in Guizhou province has dropped over the past two decades, which is likely to result from the emission reduction measures taken in Guizhou province.
Collapse
Affiliation(s)
- Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Qinjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Siliang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci 2020; 284:102244. [PMID: 32871405 PMCID: PMC7435289 DOI: 10.1016/j.cis.2020.102244] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), which is the primary contributor to air pollution, has become a pervasive global health threat. When PM enters into a respiratory tract, the first body tissues to be directly exposed are the cells of respiratory tissues and pulmonary surfactant. Pulmonary surfactant is a pivotal component to modulate surface tension of alveoli during respiration. Many studies have proved that PM would interact with pulmonary surfactant to affect the alveolar activity, and meanwhile, pulmonary surfactant would be adsorbed to the surface of PM to change the toxic effect of PM. This review focuses on recent studies of the interactions between micro/nanoparticles (synthesized and environmental particles) and pulmonary surfactant (natural surfactant and its models), as well as the health effects caused by PM through a few significant aspects, such as surface properties of PM, including size, surface charge, hydrophobicity, shape, chemical nature, etc. Moreover, in vitro and in vivo studies have shown that PM leads to oxidative stress, inflammatory response, fibrosis, and cancerization in living bodies. By providing a comprehensive picture of PM-surfactant interaction, this review will benefit both researchers for further studies and policy-makers for setting up more appropriate regulations to reduce the adverse effects of PM on public health.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
14
|
Faßbender S, Rodiouchkina K, Vanhaecke F, Meermann B. Method development for on-line species-specific sulfur isotopic analysis by means of capillary electrophoresis/multicollector ICP-mass spectrometry. Anal Bioanal Chem 2020; 412:5637-5646. [PMID: 32613566 PMCID: PMC8236454 DOI: 10.1007/s00216-020-02781-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
In this work, a method for species-specific isotopic analysis of sulfur via capillary electrophoresis hyphenated on-line with multicollector ICP-MS (CE/MC-ICP-MS) was developed. Correction for the mass bias caused by instrumental mass discrimination was realized via external correction with multiple-injection sample-standard bracketing. By comparing the isotope ratio measurement results obtained using the newly developed on-line CE/MC-ICP-MS method with those obtained via traditional MC-ICP-MS measurement after analyte/matrix separation by anion exchange chromatography for isotopic reference materials and an in-house bracketing standard, the most suitable data evaluation method could be identified. The repeatability for the sulfate-δ34S value (calculated from 18 measurements of a standard conducted over seven measurement sessions) was 0.57‰ (2SD) and thereby only twice that obtained with off-line measurements (0.30‰, n = 68). As a proof of concept for analysis of samples with a real matrix, the determination of the sulfur isotopic composition of naturally present sulfate was performed for different river systems. The CE/MC-ICP-MS results thus obtained agreed with the corresponding off-line MC-ICP-MS results within the 2SD ranges, and the repeatability of consecutive δ34S measurements (n = 3) was between 0.3‰ and 1.3‰ (2SD). Finally, the isotopic analysis of two different S-species in a river water sample spiked with 2-pyridinesulfonic acid (PSA) was also accomplished. Graphical abstract The CE/MC-ICP-MS method developed allows for species-specific S isotopic analysis in samples containing multiple species. Mass bias is corrected for by multiple-injection sample-standard bracketing, while the repeatability (2SD) of the resulting 34δ-values is <1‰.
Collapse
Affiliation(s)
- Sebastian Faßbender
- Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Katerina Rodiouchkina
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS research unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS research unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Björn Meermann
- Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
15
|
Li J, Zhang YL, Cao F, Zhang W, Fan M, Lee X, Michalski G. Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO 2 Oxidation in Haze Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2626-2634. [PMID: 31944676 DOI: 10.1021/acs.est.9b07150] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Secondary sulfate aerosols played an important role in aerosol formation and aging processes, especially during haze episodes in China. Secondary sulfate was formed via atmospheric oxidation of SO2 by OH, O3, H2O2, and transition-metal-catalyzed (TMI) O2. However, the relative importance of these oxidants in haze episodes was strongly debated. Here, we use stable sulfur isotopes (δ34S) of sulfate aerosols and a Rayleigh distillation model to quantify the contributions of each oxidant during a haze episode in Nanjing, a megacity in China. The observed δ34S values of sulfate aerosols showed a negative correlation with sulfur oxidation ratios, which was attributed to the sulfur isotopic fractionations during the sulfate formation processes. Using the average fractionation factor calculated from our observations and zero-dimensional (0-D) atmospheric chemistry modeling estimations, we suggest that OH oxidation was trivial during the haze episode, while the TMI pathway contributed 49 ± 10% of the total sulfate production and O3/H2O2 oxidations accounted for the rest. Our results displayed good agreement with several atmospheric chemistry models that carry aqueous and heterogeneous TMI oxidation pathways, suggesting the role of the TMI pathway was significant during haze episodes.
Collapse
Affiliation(s)
- Jianghanyang Li
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenqi Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Meiyi Fan
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xuhui Lee
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520, United States
| | - Greg Michalski
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Sulfur isotope analysis for representative regional background atmospheric aerosols collected at Mt. Lulin, Taiwan. Sci Rep 2019; 9:19707. [PMID: 31873111 PMCID: PMC6928072 DOI: 10.1038/s41598-019-56048-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/06/2019] [Indexed: 12/03/2022] Open
Abstract
Air pollution resulted from fossil fuel burning has been an environmental issue in developing countries in Asia. Sulfur-bearing compounds, in particular, are species that are regulated and monitored routinely. To assess how the species affect at local and global scales, regional background level has to be defined. Here, we report analysis of sulfur isotopes in atmospheric sulfate, the oxidation end product of sulfur species, in particulate phase collected at the Lulin observatory located at 2862 m above mean sea level in 2010. The averaged sulfate concentration for 44 selected samples is 2.7 ± 2.3 (1-σ standard deviation) μg m−3, and the averaged δ34S is 2.2 ± 1.6‰, with respect to the international standard Vienna Canyon Diablo Troilite. Regardless of the origins of air masses, no noticeable difference between the low-altitude Pacific and high-altitude free troposphere sulfate aerosols is observed. Also, no identifiable seasonal cycle in seen. Correlation analysis with respect to coal burning tracers such as lead and oil industry tracers such as vanadium shows sulfate concentration is in better correlation with vanadium (R2 = 0.86, p-value < 0.001) than with lead (R2 = 0.45, p-value < 0.001) but no statistically significant correlation is found in δ34S with any of physical quantities measured. We suggest the sulfate collected at Lulin can best represent the regional background level in the Western Pacific, a quantity that is needed in order to quantitatively assess the budget of sulfur in local to country scales.
Collapse
|
17
|
Han G, Tang Y, Wu Q, Liu M, Wang Z. Assessing Contamination Sources by Using Sulfur and Oxygen Isotopes of Sulfate Ions in Xijiang River Basin, Southwest China. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1507-1516. [PMID: 31589715 DOI: 10.2134/jeq2019.03.0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The chemical and stable isotopic compositions (δS and δO) of Xijiang River water in southwest China, were measured to determine the extent of rock weathering and associated CO consumption rates, and to assess the contamination sources of river water. The SO concentration in the river water was in the range of 0.05 to 0.96 mmol L (mean value = 0.32 mmol L) and was characterized by δS values ranging from -9.1 to 5.1‰ (mean value = -2.1‰) and δO values ranging from -0.4 to 10.8‰ (mean value = 5.0‰). The δS and δO values ranged from high to low from the upper reaches to the lower reaches in all the river water samples. The results indicate that the oxidation of sulfide and anthropogenic inputs are the dominant processes affecting SO sources and S cycling of the Xijiang River during high-discharge conditions, which are controlled by regional hydrological processes that are affected by natural processes and anthropogenic inputs.
Collapse
|
18
|
DiTucci MJ, Stachl CN, Williams ER. Long distance ion-water interactions in aqueous sulfate nanodrops persist to ambient temperatures in the upper atmosphere. Chem Sci 2018; 9:3970-3977. [PMID: 29780530 PMCID: PMC5942037 DOI: 10.1039/c8sc00854j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023] Open
Abstract
The effect of temperature on the patterning of water molecules located remotely from a single SO42- ion in aqueous nanodrops was investigated for nanodrops containing between 30 and 55 water molecules using instrument temperatures between 135 and 360 K. Magic number clusters with 24, 36 and 39 water molecules persist at all temperatures. Infrared photodissociation spectroscopy between 3000 and 3800 cm-1 was used to measure the appearance of water molecules that have a free O-H stretch at the nanodroplet surface and to infer information about the hydrogen bonding network of water in the nanodroplet. These data suggest that the hydrogen bonding network of water in nanodrops with 45 water molecules is highly ordered at 135 K and gradually becomes more amorphous with increasing temperature. An SO42- dianion clearly affects the hydrogen bonding network of water to at least ∼0.71 nm at 135 K and ∼0.60 nm at 340 K, consistent with an entropic drive for reorientation of water molecules at the surface of warmer nanodrops. These distances represent remote interactions into at least a second solvation shell even with elevated instrumental temperatures. The results herein provide new insight into the extent to which ions can structurally perturb water molecules even at temperatures relevant to Earth's atmosphere, where remote interactions may assist in nucleation and propagation of nascent aerosols.
Collapse
Affiliation(s)
- Matthew J DiTucci
- Department of Chemistry , University of California, Berkeley , B42 Hildebrand Hall , Berkeley , CA 94270 , USA .
| | - Christiane N Stachl
- Department of Chemistry , University of California, Berkeley , B42 Hildebrand Hall , Berkeley , CA 94270 , USA .
| | - Evan R Williams
- Department of Chemistry , University of California, Berkeley , B42 Hildebrand Hall , Berkeley , CA 94270 , USA .
| |
Collapse
|
19
|
Wang X, Zong Z, Tian C, Chen Y, Luo C, Li J, Zhang G, Luo Y. Combining Positive Matrix Factorization and Radiocarbon Measurements for Source Apportionment of PM 2.5 from a National Background Site in North China. Sci Rep 2017; 7:10648. [PMID: 28878221 PMCID: PMC5587569 DOI: 10.1038/s41598-017-10762-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022] Open
Abstract
To explore the utility of combining positive matrix factorization (PMF) with radiocarbon (14C) measurements for source apportionment, we applied PM2.5 data collected for 14 months at a national background station in North China to PMF models. The solutions were compared to 14C results of four seasonally averaged samples and three outlier samples. Comparing the most readily interpretable PMF solutions and 14C results revealed that PMF modeling was well able to capture the source patterns of PM2.5 with two and three irrelevant source classifications for the seasonal and outlier samples. The contribution of sources that could not be classified as either fossil or non-fossil sources in the PMF solution, and the errors between the modeled and measured concentrations weakened the effectiveness of the comparison. Based on these two factors, we developed an index for selecting the most suitable 14C measurement samples for combining with the PMF model. Then we examined the potential for coupling PMF modeling and 14C data with a constrained PMF run using the 14C data as a priori information. The restricted run could provide a more reliable solution; however, the PMF model must provide a flexible dialog to input the priori restrictions for executing the constraint simulation.
Collapse
Affiliation(s)
- Xiaoping Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zheng Zong
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Chongguo Tian
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yingjun Chen
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change in Shanghai (CMA), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yongming Luo
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
20
|
Han X, Guo Q, Strauss H, Liu C, Hu J, Guo Z, Wei R, Peters M, Tian L, Kong J. Multiple Sulfur Isotope Constraints on Sources and Formation Processes of Sulfate in Beijing PM 2.5 Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7794-7803. [PMID: 28605583 DOI: 10.1021/acs.est.7b00280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently air pollution is seriously threatening the health of millions of people in China. The multiple sulfur isotopic composition of sulfate in PM2.5 samples collected in Beijing is used to better constrain potential sources and formation processes of sulfate aerosol. The Δ33S values of sulfate in PM2.5 show a pronounced seasonality with positive values in spring, summer and autumn and negative values in winter. Positive Δ33S anomalies are interpreted to result from SO2 photolysis with self-shielding, and may reflect air mass transport between the troposphere and the stratosphere. The negative Δ33S signature (-0.300‰ < Δ33S < 0‰) in winter is possibly related to incomplete combustion of coal in residential stoves during the heating season, implying that sulfur dioxide released from residential stoves in more rural areas is an important contributor to atmospheric sulfate. However, negative Δ33S anomalies (-0.664‰ < Δ33S ← 0.300‰) in winter and positive Δ33S anomalies (0.300‰ < Δ33S < 0.480‰) in spring, summer, and autumn suggest sulfur isotopic equilibrium on an annual time frame, which may provide an implication for the absence of mass-independent fractionation of sulfur isotopes (S-MIF) in younger sediments. Results obtained here reveal that reducing the usage of coal and improving the heating system in rural areas will be important for efficiently decreasing the emissions of sulfur in China and beyond.
Collapse
Affiliation(s)
- Xiaokun Han
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , 11A Datun Road, Chaoyang, Beijing 100101, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , 11A Datun Road, Chaoyang, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Harald Strauss
- Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster , Corrensstrasse 24, 48149 Münster, Germany
| | - Congqiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang Guizhou 550002, China
| | - Jian Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang Guizhou 550002, China
| | - Zhaobing Guo
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing 210044, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , 11A Datun Road, Chaoyang, Beijing 100101, China
| | - Marc Peters
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , 11A Datun Road, Chaoyang, Beijing 100101, China
| | - Liyan Tian
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , 11A Datun Road, Chaoyang, Beijing 100101, China
| | - Jing Kong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , 11A Datun Road, Chaoyang, Beijing 100101, China
| |
Collapse
|
21
|
Zong Z, Wang X, Tian C, Chen Y, Fang Y, Zhang F, Li C, Sun J, Li J, Zhang G. First Assessment of NO x Sources at a Regional Background Site in North China Using Isotopic Analysis Linked with Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5923-5931. [PMID: 28516763 DOI: 10.1021/acs.est.6b06316] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nitrogen oxides (NOx, including NO and NO2) play an important role in the formation of atmospheric particles. Thus, NOx emission reduction is critical for improving air quality, especially in severely air-polluted regions (e.g., North China). In this study, the source of NOx was investigated by the isotopic composition (δ15N) of particulate nitrate (p-NO3-) at Beihuangcheng Island (BH), a regional background site in North China. It was found that the δ15N-NO3- (n = 120) values varied between -1.7‰ and +24.0‰ and the δ18O-NO3- values ranged from 49.4‰ to 103.9‰. On the basis of the Bayesian mixing model, 27.78 ± 8.89%, 36.53 ± 6.66%, 22.01 ± 6.92%, and 13.68 ± 3.16% of annual NOx could be attributed to biomass burning, coal combustion, mobile sources, and biogenic soil emissions, respectively. Seasonally, the four sources were similar in spring and fall. Biogenic soil emissions were augmented in summer in association with the hot and rainy weather. Coal combustion increased significantly in winter with other sources showing an obvious decline. This study confirmed that isotope-modeling by δ15N-NO3- is a promising tool for partitioning NOx sources and provides guidance to policymakers with regard to options for NOx reduction in North China.
Collapse
Affiliation(s)
- Zheng Zong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou, Guangdong 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, Shandong 264003, China
| | - Yingjun Chen
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change in Shanghai (CMA), College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences , Shenyang, Liaoning 110164, China
| | - Fan Zhang
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change in Shanghai (CMA), College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | - Cheng Li
- College of Environmental Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510006, China
| | - Jianzhong Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, Shandong 264003, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou, Guangdong 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou, Guangdong 510640, China
| |
Collapse
|