1
|
Ren J, Zhang M, Guo X, Zhou X, Ding N, Lei C, Jia C, Wang Y, Zhao J, Dong Z, Lu D. Furfural tolerance of mutant Saccharomyces cerevisiae selected via ionizing radiation combined with adaptive laboratory evolution. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:117. [PMID: 39175057 PMCID: PMC11342514 DOI: 10.1186/s13068-024-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Lignocellulose is a renewable and sustainable resource used to produce second-generation biofuel ethanol to cope with the resource and energy crisis. Furfural is the most toxic inhibitor of Saccharomyces cerevisiae cells produced during lignocellulose treatment, and can reduce the ability of S. cerevisiae to utilize lignocellulose, resulting in low bioethanol yield. In this study, multiple rounds of progressive ionizing radiation was combined with adaptive laboratory evolution to improve the furfural tolerance of S. cerevisiae and increase the yield of ethanol. RESULTS In this study, the strategy of multiple rounds of progressive X-ray radiation combined with adaptive laboratory evolution significantly improved the furfural tolerance of brewing yeast. After four rounds of experiments, four mutant strains resistant to high concentrations of furfural were obtained (SCF-R1, SCF-R2, SCF-R3, and SCF-R4), with furfural tolerance concentrations of 4.0, 4.2, 4.4, and 4.5 g/L, respectively. Among them, the mutant strain SCF-R4 obtained in the fourth round of radiation had a cellular malondialdehyde content of 49.11 nmol/mg after 3 h of furfural stress, a weakening trend in mitochondrial membrane potential collapse, a decrease in accumulated reactive oxygen species, and a cell death rate of 12.60%, showing better cell membrane integrity, stable mitochondrial function, and an improved ability to limit reactive oxygen species production compared to the other mutant strains and the wild-type strain. In a fermentation medium containing 3.5 g/L furfural, the growth lag phase of the SCF-R4 mutant strain was shortened, and its growth ability significantly improved. After 96 h of fermentation, the ethanol production of the mutant strain SCF-R4 was 1.86 times that of the wild-type, indicating that with an increase in the number of irradiation rounds, the furfural tolerance of the mutant strain SCF-R4 was effectively enhanced. In addition, through genome-transcriptome analysis, potential sites related to furfural detoxification were identified, including GAL7, MAE1, PDC6, HXT1, AUS1, and TPK3. CONCLUSIONS These results indicate that multiple rounds of progressive X-ray radiation combined with adaptive laboratory evolution is an effective mutagenic strategy for obtaining furfural-tolerant mutants and that it has the potential to tap genes related to the furfural detoxification mechanism.
Collapse
Affiliation(s)
- Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, No. 36 Peng Jiaping, Lanzhou, 730050, Gansu, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Guo X, Ren J, Zhou X, Zhang M, Lei C, Chai R, Zhang L, Lu D. Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation. Crit Rev Biotechnol 2024; 44:735-752. [PMID: 37455421 DOI: 10.1080/07388551.2023.2226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/15/2023] [Indexed: 07/18/2023]
Abstract
Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingxi Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Sheng Y, Zhang S, Li X, Wang S, Liu T, Wang C, Yan L. Phenotypic and genomic insights into mutant with high nattokinase-producing activity induced by carbon ion beam irradiation of Bacillus subtilis. Int J Biol Macromol 2024; 271:132398. [PMID: 38754670 DOI: 10.1016/j.ijbiomac.2024.132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xintong Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shicheng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
4
|
Liu MH, Zhou X, Zhang MM, Wang YJ, Zhou B, Ding N, Wu QF, Lei CR, Dong ZY, Ren JL, Zhao JR, Jia CL, Liu J, Lu D, Zhong HY. Integration of food raw materials, food microbiology, and food additives: systematic research and comprehensive insights into sweet sorghum juice, Clostridium tyrobutyricum TGL-A236 and bio-butyric acid. Front Microbiol 2024; 15:1410968. [PMID: 38873149 PMCID: PMC11169884 DOI: 10.3389/fmicb.2024.1410968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Sweet sorghum juice is a typical production feedstock for natural, eco-friendly sweeteners and beverages. Clostridium tyrobutyricum is one of the widely used microorganisms in the food industry, and its principal product, bio-butyric acid is an important food additive. There are no published reports of Clostridium tyrobutyricum producing butyric acid using SSJ as the sole substrate without adding exogenous substances, which could reach a food-additive grade. This study focuses on tailoring a cost-effective, safe, and sustainable process and strategy for their production and application. Methods This study modeled the enzymolysis of non-reducing sugars via the first/second-order kinetics and added food-grade diatomite to the hydrolysate. Qualitative and quantitative analysis were performed using high-performance liquid chromatography, gas chromatography-mass spectrometer, full-scale laser diffraction method, ultra-performance liquid chromatography-tandem mass spectrometry, the cell double-staining assay, transmission electron microscopy, and Oxford nanopore technology sequencing. Quantitative real-time polymerase chain reaction, pathway and process enrichment analysis, and homology modeling were conducted for mutant genes. Results The treated sweet sorghum juice showed promising results, containing 70.60 g/L glucose and 63.09 g/L fructose, with a sucrose hydrolysis rate of 98.29% and a minimal sucrose loss rate of 0.87%. Furthermore, 99.62% of the colloidal particles and 82.13% of the starch particles were removed, and the concentrations of hazardous substances were effectively reduced. A food microorganism Clostridium tyrobutyricum TGL-A236 with deep utilization value was developed, which showed superior performance by converting 30.65% glucose and 37.22% fructose to 24.1364 g/L bio-butyric acid in a treated sweet sorghum juice (1:1 dilution) fermentation broth. This titer was 2.12 times higher than that of the original strain, with a butyric acid selectivity of 86.36%. Finally, the Genome atlas view, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and evolutionary genealogy of genes: Non-supervised Orthologous (eggNOG) functional annotations, three-dimensional structure and protein cavity prediction of five non-synonymous variant genes were obtained. Conclusion This study not only includes a systematic process flow and in-depth elucidation of relevant mechanisms but also provides a new strategy for green processing of food raw materials, improving food microbial performance, and ensuring the safe production of food additives.
Collapse
Affiliation(s)
- Mei-Han Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Zi-Yi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Jun-Le Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Jing-Ru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Cheng-Lin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, China
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Hai-Yan Zhong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
5
|
Wang B, Zhou X, Liu W, Liu MH, Mo D, Wu QF, Wang YJ, Zhang MM, Chen L, Yuan S, Zhou B, Li X, Lu D. Construction of Clostridium tyrobutyricum strain and ionic membrane technology combination pattern for refinery final molasses recovery and butyric acid production. Front Microbiol 2023; 14:1065953. [PMID: 36825085 PMCID: PMC9941566 DOI: 10.3389/fmicb.2023.1065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Clostridium tyrobutyricum has considerable prospect in the production of organic acids. Globally, refinery final molasses is rich in sugar and reported to have high levels of accumulation and high emission costs, recognized as an excellent substrate for C. tyrobutyricum fermentation, but there is no suitable method available at present. Methods In this study, an acid-base treatment combined with a new green membrane treatment technology - a dynamic ion-exchange membrane -was used to pretreat refinery final molasses, so that it could be used for C. tyrobutyricum to produce butyric acid. A high-performance liquid chromatography method was established to determine the conversion of a large amount of sucrose into fermentable sugars (71.88 g/L glucose and 38.06 g/L fructose) in the treated refinery final molasses. The process of sequential filtration with 3, 1, and 0.45 μm-pore diameter dynamic ion-exchange membranes could remove impurities, pigments, and harmful substances from the refinery final molasses, and retain the fermentable sugar. Results and discussion This means that refinery final molasses from the sugar industry could be utilized as a high-value by-product and used for the growth of C. tyrobutyricum, with industrial feasibility and economic competitiveness. Using the treated refinery final molasses as a carbon source, C. tyrobutyricum was screened by the method of adaptive evolution. The strain with butyric acid yielded 52.54 g/L, and the yield of the six carbon sugar was increased from 0.240 to 0.478 g/g. The results showed that combination of C. tyrobutyricum and ionic membrane technology broke through the bottleneck of its utilization of refinery final molasses. This study provided an innovative idea for the C. tyrobutyricum fermentation to produce butyric acid.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiang Zhou, ,
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Mei-Han Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Dan Mo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lei Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shan Yuan
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China,Xin Li,
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China,Dong Lu,
| |
Collapse
|
6
|
Du Y, Luo S, Li X, Yang J, Cui T, Li W, Yu L, Feng H, Chen Y, Mu J, Chen X, Shu Q, Guo T, Luo W, Zhou L. Identification of Substitutions and Small Insertion-Deletions Induced by Carbon-Ion Beam Irradiation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1851. [PMID: 29163581 PMCID: PMC5665000 DOI: 10.3389/fpls.2017.01851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/11/2017] [Indexed: 05/06/2023]
Abstract
Heavy-ion beam irradiation is one of the principal methods used to create mutants in plants. Research on mutagenic effects and molecular mechanisms of radiation is an important subject that is multi-disciplinary. Here, we re-sequenced 11 mutagenesis progeny (M3) Arabidopsis thaliana lines derived from carbon-ion beam (CIB) irradiation, and subsequently focused on substitutions and small insertion-deletion (INDELs). We found that CIB induced more substitutions (320) than INDELs (124). Meanwhile, the single base INDELs were more prevalent than those in large size (≥2 bp). In details, the detected substitutions showed an obvious bias of C > T transitions, by activating the formation of covalent linkages between neighboring pyrimidine residues in the DNA sequence. An A and T bias was observed among the single base INDELs, in which most of these were induced by replication slippage at either the homopolymer or polynucleotide repeat regions. The mutation rate of 200-Gy CIB irradiation was estimated as 3.37 × 10-7 per site. Different from previous researches which mainly focused on the phenotype, chromosome aberration, genetic polymorphism, or sequencing analysis of specific genes only, our study revealed genome-wide molecular profile and rate of mutations induced by CIB irradiation. We hope our data could provide valuable clues for explaining the potential mechanism of plant mutation breeding by CIB irradiation.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shanwei Luo
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiangyan Yang
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tao Cui
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lixia Yu
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hui Feng
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuze Chen
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinhu Mu
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Chen
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Wenlong Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Libin Zhou
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Libin Zhou
| |
Collapse
|