1
|
Lameirinhas NS, Teixeira MC, Carvalho JPF, Valente BFA, Luís JL, Duarte IF, Pinto RJB, Oliveira H, Oliveira JM, Silvestre AJD, Vilela C, Freire CSR. Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis. ACS Biomater Sci Eng 2025. [PMID: 40241282 DOI: 10.1021/acsbiomaterials.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2). This formulation combines the biological characteristics of Gel with the exceptional mechanical and rheological attributes of NFC. Gel/NFC ink formulations with different Gel/NFC mass compositions, viz., 90:10, 80:20, 70:30, and 60:40, were prepared and characterized. The corresponding cross-linked hydrogels were obtained using 1.5% (w/w) genipin as the cross-linking agent. The rheological and mechanical performances of the inks were enhanced by the addition of NFC, as evidenced by the rise in the yield stress from 70.9 ± 28.6 to 627.9 ± 74.8 Pa, compressive stress at 80% strain from 0.5 ± 0.1 to 1.5 ± 0.2 MPa, and Young's modulus from 4.7 ± 0.9 to 12.1 ± 1.1 MPa, for 90:10 and 60:40 inks, respectively. Moreover, higher NFC contents translated into 3D structures with better shape fidelity and the possibility of printing more intricate structures. These hydrogels were noncytotoxic toward HepG2 cells for up to 48 h, with cell viabilities consistently above 80%. The ink 70:30 was loaded with HepG2 cells (2 × 106 cells mL-1) and bioprinted. Cell viability remained elevated (90 ± 4%) until day 14 postbioprinting, with cells maintaining their metabolic activity shown by 1H NMR metabolomics, proving the enormous potential of Gel/NFC-based bioinks for bioprinting HepG2 cells without jeopardizing their viability and metabolism.
Collapse
Affiliation(s)
- Nicole S Lameirinhas
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria C Teixeira
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - João P F Carvalho
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno F A Valente
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Jorge L Luís
- EMaRT Group─Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Iola F Duarte
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- CESAM─Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José M Oliveira
- EMaRT Group─Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Armando J D Silvestre
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Vilela
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carmen S R Freire
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
2
|
Aina M, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. From conception to consumption: Applications of semi-solid extrusion 3D printing in oral drug delivery. Int J Pharm 2025; 674:125436. [PMID: 40097055 DOI: 10.1016/j.ijpharm.2025.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Semi-Solid Extrusion 3D printing (SSE 3DP) has emerged as a promising technology for fabricating oral drug formulations, offering significant opportunities for personalized medicine and tailored therapeutic outcomes. SSE 3DP is particularly advantageous for producing soft and chewable drug products and is well-suited for formulations containing thermosensitive drugs due to its low-temperature printing process. Among various 3D printing techniques, SSE 3DP holds considerable potential for point-of-care applications, enabling the on-demand production of patient-specific dosage forms. Despite these advantages, SSE 3DP faces certain limitations that affect its overall development and widespread adoption. This review provides a comprehensive overview of SSE 3DP's fundamental principles, current applications, and future prospects in oral drug delivery. It also addresses the challenges and limitations associated with SSE 3DP and examines the current outlook of this technique in oral drug delivery applications. An example of such a challenge is the lack of a harmonized method for evaluating rheological properties. To address this issue, the review describes a methodology for obtaining information related to extrudability and shape fidelity from rheological properties. Overall, this review aims to highlight the transformative potential of SSE 3DP in the pharmaceutical landscape, paving the way for tailored, and patient-centric therapies.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France.
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| | - Noelia M Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| |
Collapse
|
3
|
Banigo AT, Nauta L, Zoetebier B, Karperien M. Hydrogel-Based Bioinks for Coaxial and Triaxial Bioprinting: A Review of Material Properties, Printing Techniques, and Applications. Polymers (Basel) 2025; 17:917. [PMID: 40219306 PMCID: PMC11991663 DOI: 10.3390/polym17070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Three-dimensional bioprinting technology has emerged as a rapidly advancing multidisciplinary field with significant potential for tissue engineering applications. This technology enables the formation of complex tissues and organs by utilizing hydrogels, with or without cells, as scaffolds or structural supports. Among various bioprinting methods, advanced bioprinting using coaxial and triaxial nozzles stands out as a promising technique. Coaxial bioprinting technique simultaneously deposits two material streams through a coaxial nozzle, enabling controlled formation of an outer shell and inner core construct. In contrast, triaxial bioprinting utilizes three material streams namely the outer shell, inner shell and inner core to fabricate more complex constructs. Despite the growing interest in 3D bioprinting, the development of suitable cell-laden bioinks for creating complex tissues remains unclear. To address this gap, a systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart, collecting 1621 papers from various databases, including Web of Science, PUBMED, SCOPUS, and Springer Link. After careful selection, 85 research articles focusing on coaxial and triaxial bioprinting were included in the review. Specifically, 77 research articles concentrated on coaxial bioprinting and 11 focused on triaxial bioprinting, with 3 covering both techniques. The search, conducted between 1 April and 30 September 2023, had no restrictions on publication date, and no meta-analyses were carried out due to the heterogeneity of studies. The primary objective of this review is to assess and identify the most commonly occurring cell-laden bioinks critical for successful advancements in bioprinting technologies. Specifically, the review focuses on delineating the commonly explored bioinks utilized in coaxial and triaxial bioprinting approaches. It focuses on evaluating the inherent merits of these bioinks, systematically comparing them while emphasizing their classifications, essential attributes, properties, and potential limitations within the domain of tissue engineering. Additionally, the review considers the applications of these bioinks, offering comprehensive insights into their efficacy and utility in the field of bioprinting technology. Overall, this review provides a comprehensive overview of some conditions of the relevant hydrogel bioinks used for coaxial and triaxial bioprinting of tissue constructs. Future research directions aimed at advancing the field are also briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology and TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (A.T.B.); (L.N.); (B.Z.)
| |
Collapse
|
4
|
Uysal B, Madduma-Bandarage USK, Jayasinghe HG, Madihally S. 3D-Printed Hydrogels from Natural Polymers for Biomedical Applications: Conventional Fabrication Methods, Current Developments, Advantages, and Challenges. Gels 2025; 11:192. [PMID: 40136897 PMCID: PMC11942323 DOI: 10.3390/gels11030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are network polymers with high water-bearing capacity resembling the extracellular matrix. Recently, many studies have focused on synthesizing hydrogels from natural sources as they are biocompatible, biodegradable, and readily available. However, the structural complexities of biological tissues and organs limit the use of hydrogels fabricated with conventional methods. Since 3D printing can overcome this barrier, more interest has been drawn toward the 3D printing of hydrogels. This review discusses the structure of hydrogels and their potential biomedical applications with more emphasis on natural hydrogels. There is a discussion on various formulations of alginates, chitosan, gelatin, and hyaluronic acid. Furthermore, we discussed the 3D printing techniques available for hydrogels and their advantages and limitations.
Collapse
Affiliation(s)
- Berk Uysal
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| | | | - Hasani G. Jayasinghe
- Mathematics, Physical and Natural Sciences Division, University of New Mexico-Gallup, 705 Gurley Ave., Gallup, NM 87301, USA;
| | - Sundar Madihally
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
5
|
Gorroñogoitia I, Olza S, Alonso-Varona A, Zaldua AM. The Effect of Alginate/Hyaluronic Acid Proportion on Semi-Interpenetrating Hydrogel Properties for Articular Cartilage Tissue Engineering. Polymers (Basel) 2025; 17:528. [PMID: 40006190 PMCID: PMC11859035 DOI: 10.3390/polym17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
One of the emergent regenerative treatments for the restoration of the articular cartilage is tissue engineering (TE), in which hydrogels can functionally imitate the extracellular matrix (ECM) of the native tissue and create an optimal microenvironment for the restoration of the defective tissue. Hyaluronic acid (HA) is known for its potential in the field of TE as a regenerative material for many tissues. It is one of the major components of the articular cartilage ECM contributing to cell proliferation and migration. HA is the only non-sulphated glycosaminoglycan (GAG). However, herein, we use a HA presenting a high amount of sulphated glycosaminoglycans (sGAGs), altering the intrinsic properties of the material particularly in terms of biological response. Alginate (Alg) is another polysaccharide widely used in TE that allows stiff and stable hydrogels to be obtained when crosslinked with CaCl2. Taking the benefit of the favourable characteristics of each biomaterial, semi-interpenetrating (semi-IPN) hydrogels had been developed by the combination of both materials, in which alginate is gelled, and HA remains uncrosslinked within the hydrogel. Varying the concentration of alginate and HA, the final rheological, viscoelastic, and mechanical properties of the hydrogel can be tailored, always seeking a trade-off between biological and physico-mechanical properties. All developed semi-IPN hydrogels have great potential for biomedical applications.
Collapse
Affiliation(s)
- Izar Gorroñogoitia
- Leartiker S. Coop., 48270 Makina-Xemein, Spain;
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (S.O.); (A.A.-V.)
| | - Sheila Olza
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (S.O.); (A.A.-V.)
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l‘Adour, 64600 Anglet, France
- MANTA-Marine Materials Research Group, E2S UPPA, Universit’e de Pau et des Pays de l’Adour, 64600 Anglet, France
| | - Ana Alonso-Varona
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (S.O.); (A.A.-V.)
| | | |
Collapse
|
6
|
Sarah R, Schimmelpfennig K, Rohauer R, Lewis CL, Limon SM, Habib A. Characterization and Machine Learning-Driven Property Prediction of a Novel Hybrid Hydrogel Bioink Considering Extrusion-Based 3D Bioprinting. Gels 2025; 11:45. [PMID: 39852017 PMCID: PMC11765179 DOI: 10.3390/gels11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning. While a few component-based efforts have been reported to predict the viscosity of bioinks, the impact of shear rate has been vastly ignored. To address this gap, our research presents predictive models using machine learning (ML) algorithms, including polynomial fit (PF), decision tree (DT), and random forest (RF), to estimate bioink viscosity based on component weights and shear rate. We utilized novel bioinks composed of varying percentages of alginate (2-5.25%), gelatin (2-5.25%), and TEMPO-Nano fibrillated cellulose (0.5-1%) at shear rates from 0.1 to 100 s-1. Our study analyzed 169 rheological measurements using 80% training and 20% validation data. The results, based on the coefficient of determination (R2) and mean absolute error (MAE), showed that the RF algorithm-based model performed best: [(R2, MAE) RF = (0.99, 0.09), (R2, MAE) PF = (0.95, 0.28), (R2, MAE) DT = (0.98, 0.13)]. These predictive models serve as valuable tools for bioink formulation optimization, allowing researchers to determine effective viscosities without extensive experimental trials to accelerate tissue engineering.
Collapse
Affiliation(s)
- Rokeya Sarah
- Sustainable Product Design and Architecture, Keene State College, Keene, NH 03431, USA;
| | - Kory Schimmelpfennig
- Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA; (K.S.); (C.L.L.)
| | - Riley Rohauer
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Christopher L. Lewis
- Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA; (K.S.); (C.L.L.)
| | - Shah M. Limon
- Industrial & Systems Engineering, Slippery Rock University of Pennsylvania, Slippery Rock, PA 16057, USA;
| | - Ahasan Habib
- Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA; (K.S.); (C.L.L.)
| |
Collapse
|
7
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Souto EB, Gálvez-Martín P, Clares-Naveros B. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res 2025; 15:291-311. [PMID: 38662335 PMCID: PMC11614963 DOI: 10.1007/s13346-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.
Collapse
Grants
- Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp
- FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- FCT—Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- Universidade do Porto
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
- R&D Human and Animal Health, Bioibérica S.A.U., 08029, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Feng P, Liu L, Yang F, Min R, Wu P, Shuai C. Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. Biofabrication 2024; 17:012005. [PMID: 39514965 DOI: 10.1088/1758-5090/ad905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process. As additive manufacturing is promising in building artificial bone scaffold, only combining excellent structural design with appropriate additive manufacturing process can produce bone scaffold with ideal biological and mechanical properties. In this article, we sum up and analyze state of art design and additive manufacturing methods for bone scaffold to realize shape/properties collaborative intelligent manufacturing. Scaffold design can be mainly classified into design based on unit cells and whole structure, while basic additive manufacturing and 3D bioprinting are the recommended suitable additive manufacturing methods for bone scaffold fabrication. The challenges and future perspectives in additive manufactured bone scaffold are also discussed.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Lingxi Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Rui Min
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
9
|
Zhou C, Liu C, Liao Z, Pang Y, Sun W. AI for biofabrication. Biofabrication 2024; 17:012004. [PMID: 39433065 DOI: 10.1088/1758-5090/ad8966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Biofabrication is an advanced technology that holds great promise for constructing highly biomimeticin vitrothree-dimensional human organs. Such technology would help address the issues of immune rejection and organ donor shortage in organ transplantation, aiding doctors in formulating personalized treatments for clinical patients and replacing animal experiments. Biofabrication typically involves the interdisciplinary application of biology, materials science, mechanical engineering, and medicine to generate large amounts of data and correlations that require processing and analysis. Artificial intelligence (AI), with its excellent capabilities in big data processing and analysis, can play a crucial role in handling and processing interdisciplinary data and relationships and in better integrating and applying them in biofabrication. In recent years, the development of the semiconductor and integrated circuit industries has propelled the rapid advancement of computer processing power. An AI program can learn and iterate multiple times within a short period, thereby gaining strong automation capabilities for a specific research content or issue. To date, numerous AI programs have been applied to various processes around biofabrication, such as extracting biological information, designing and optimizing structures, intelligent cell sorting, optimizing biomaterials and processes, real-time monitoring and evaluation of models, accelerating the transformation and development of these technologies, and even changing traditional research patterns. This article reviews and summarizes the significant changes and advancements brought about by AI in biofabrication, and discusses its future application value and direction.
Collapse
Affiliation(s)
- Chang Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
| | - Changru Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
| | - Zhendong Liao
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, United States of America
| |
Collapse
|
10
|
Greco I, Machrafi H, Iorio CS. Double-Network Hydrogel 3D BioPrinting Biocompatible with Fibroblast Cells for Tissue Engineering Applications. Gels 2024; 10:684. [PMID: 39590040 PMCID: PMC11594167 DOI: 10.3390/gels10110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA ensuring biocompatibility. Fibroblast cells were included in the bioink and printed with a Reg4Life bioprinter employing micro-extrusion technology. The optimisation of printing parameters included needle size and flow velocities. This led to precise structure development and yielded results with a negligible deviation in printed angles and better control of line widths. The rheological characteristics of the bioink were evaluated, demonstrating appropriate viscosity and shear-thinning behaviour for efficient extrusion. The mechanical characterisation revealed an average compressive modulus of 0.38 MPa, suitable for tissue engineering applications. The printability of the bioink was further confirmed through the evaluations of morphology and diffusion rates, confirming structural integrity. Biocompatibility assessments demonstrated a high cell viability rate of 82.65% following 48 h of incubation, supporting the bioink's suitability for facilitating cell survival. This study introduced a reliable technique for producing tissue-engineered scaffolds that exhibit outstanding mechanical characteristics and cell viability, highlighting the promise of PEGDA-SA hydrogels in bioprinting applications.
Collapse
Affiliation(s)
- Immacolata Greco
- Center for Research and Engineering in Space Technologies, Université Libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.S.I.)
| | - Hatim Machrafi
- Center for Research and Engineering in Space Technologies, Université Libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.S.I.)
- GIGA-In Silico Medicine, Université de Liège, 4000 Liège, Belgium
| | - Carlo S. Iorio
- Center for Research and Engineering in Space Technologies, Université Libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.S.I.)
| |
Collapse
|
11
|
Feng H, Song Y, Lian X, Zhang S, Bai J, Gan F, Lei Q, Wei Y, Huang D. Study on Printability Evaluation of Alginate/Silk Fibroin/Collagen Double-Cross-Linked Inks and the Properties of 3D Printed Constructs. ACS Biomater Sci Eng 2024; 10:6581-6593. [PMID: 39321210 DOI: 10.1021/acsbiomaterials.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In recent years, biological 3D printing has garnered increasing attention for tissue and organ repair. The challenge with 3D-printing inks is to combine mechanical properties as well as biocompatibility. Proteins serve as vital structural components in living systems, and utilizing protein-based inks can ensure that the materials maintain the necessary biological activity. In this study, we incorporated two natural biomaterials, silk fibroin (SF) and collagen (COL), into a low-concentration sodium alginate (SA) solution to create novel composite inks. SF and COL were modified with glycidyl methacrylate (GMA) to impart photo-cross-linking properties. The UV light test and 1H NMR results demonstrated successful curing of silk fibroin (SF) and collagen (COL) after modification and grafting. Subsequently, the printability of modified silk fibroin (RSFMA)/SA with varying concentration gradients was assessed using a set of three consecutive printing models, and the material's properties were tested. The research results prove that the addition of RSFMA and ColMA enhances the printability of low-concentration SA solutions, with the Pr values increasing from 0.85 ± 0.02 to 0.90 ± 0.03 and 0.92 ± 0.02, respectively, and the mechanical strength increasing from 0.19 ± 0.01 to 0.28 ± 0.01 and 0.38 ± 0.01 MPa; cytocompatibility has also been improved. Furthermore, rheological tests indicated that all of the inks exhibited shear thinning properties. CCK-8 experiments demonstrated that the addition of ColMA increased the cytocompatibility of the ink system. Overall, the utilization of SF and COL-modified SA materials as inks represents a promising advancement in 3D-printed ink technology.
Collapse
Affiliation(s)
- Haonan Feng
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yufan Song
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Siruo Zhang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, PR China
| | - Jinxuan Bai
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Fangjin Gan
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
12
|
Quigley C, Limon SM, Sarah R, Habib A. Factorial Design of Experiment Method to Characterize Bioprinting Process Parameters to Obtain the Targeted Scaffold Porosity. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1899-e1908. [PMID: 39741536 PMCID: PMC11683430 DOI: 10.1089/3dp.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Due to its inbuilt ability to release biocompatible materials encapsulating living cells in a predefined location, 3D bioprinting is a promising technique for regenerating patient-specific tissues and organs. Among various 3D bioprinting techniques, extrusion-based 3D bioprinting ensures a higher percentage of cell release, ensuring suitable external and internal scaffold architectures. Scaffold architecture is mainly defined by filament geometry and width. A systematic selection of a set of process parameters, such as nozzle diameter, print speed, print distance, extrusion pressure, and material viscosity, can control the filament geometry and width, eventually confirming the user-defined scaffold porosity. For example, carefully selecting two sets of process parameters can result in a similar filament width (FW). However, the lack of availability of sufficient analytical relationships between printing process parameters and FW creates a barrier to achieving defined scaffold architectures with available resources. In this article, the factorial design of experiment (DoE) method has been adopted to obtain a relationship among scaffold properties that is, FW with 3D printing process parameters. The FW was determined using an image processing technique and an analytical relationship was developed, including various process parameters to maintain defined FW variation for different hydrogels within an acceptable range to confirm the overall geometric fidelity of the scaffold. The validation experiment results showed that our analytical relationship obtained from the DoE effectively predicts the scaffold's architectural property. Furthermore, the proposed analytical relationships can help achieve defined scaffold architectures with available resources.
Collapse
Affiliation(s)
| | - Shah M. Limon
- Slippery Rock University of Pennsylvania, Slippery Rock, Pennsylvania, USA
| | | | | |
Collapse
|
13
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Bocheng X, França R. Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Biomed Phys Eng Express 2024; 10:062002. [PMID: 39260389 DOI: 10.1088/2057-1976/ad795c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancements in 3D printing technology have revolutionized the field of tissue engineering, particularly in the development of neural tissues for the treatment of nervous system diseases. Brain neural tissue, composed of neurons and glial cells, plays a crucial role in the functioning of the brain, spinal cord, and peripheral nervous system by transmitting nerve impulses and processing information. By leveraging 3D bioprinting and bioinks, researchers can create intricate neural scaffolds that facilitate the proliferation and differentiation of nerve cells, thereby promoting the repair and regeneration of damaged neural tissues. This technology allows for the precise spatial arrangement of various cell types and scaffold materials, enabling the construction of complex neural tissue models that closely mimic the natural architecture of the brain. Human-induced pluripotent stem cells (hiPSCs) have emerged as a groundbreaking tool in neuroscience research and the potential treatment of neurological diseases. These cells can differentiate into diverse cell types within the nervous system, including neurons, astrocytes, microglia, oligodendrocytes, and Schwann cells, providing a versatile platform for studying neural networks, neurodevelopment, and neurodegenerative disorders. The use of hiPSCs also opens new avenues for personalized medicine, allowing researchers to model diseases and develop targeted therapies based on individual patient profiles. Despite the promise of direct hiPSC injections for therapeutic purposes, challenges such as poor localization and limited integration have led to the exploration of biomaterial scaffolds as supportive platforms for cell delivery and tissue regeneration. This paper reviews the integration of 3D bioprinting technologies and bioink materials in neuroscience applications, offering a unique platform to create complex brain and tissue architectures that mimic the mechanical, architectural, and biochemical properties of native tissues. These advancements provide robust tools for modelling, repair, and drug screening applications. The review highlights current research, identifies research gaps, and offers recommendations for future studies on 3D bioprinting in neuroscience. The investigation demonstrates the significant potential of 3D bioprinting to fabricate brain-like tissue constructs, which holds great promise for regenerative medicine and drug testing models. This approach offers new avenues for studying brain diseases and potential treatments.
Collapse
Affiliation(s)
- Xu Bocheng
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, R3E 0W2, Canada
| | - Rodrigo França
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, R3E 0W2, Canada
- Rady Faculty of Health Science, Dental Biomaterials Research Lab, University of Manitoba, Winnipeg, R3E 0W2, Canada
| |
Collapse
|
15
|
Fatima R, Almeida B. Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. J Mater Chem B 2024; 12:8505-8522. [PMID: 39149830 DOI: 10.1039/d4tb00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hydrogels are water-swollen polymeric matrices with properties that are remarkably similar in function to the extracellular matrix. For example, the polymer matrix provides structural support and adhesion sites for cells in much of the same way as the fibers of the extracellular matrix. In addition, depending on the polymer used, bioactive sites on the polymer may provide signals to initiate certain cell behavior. However, despite their potential as biomaterials for tissue engineering and regenerative medicine applications, fabricating hydrogels that truly mimic the physicochemical properties of the extracellular matrix to physiologically-relevant values is a challenge. Recent efforts in the field have sought to improve the physicochemical properties of hydrogels using advanced materials science and engineering methods. In this review, we highlight some of the most promising methods, including crosslinking strategies and manufacturing approaches such as 3D bioprinting and granular hydrogels. We also provide a brief perspective on the future outlook of this field and how these methods may lead to the clinical translation of hydrogel biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
16
|
Garciamendez-Mijares CE, Aguilar FJ, Hernandez P, Kuang X, Gonzalez M, Ortiz V, Riesgo RA, Ruiz DSR, Rivera VAM, Rodriguez JC, Mestre FL, Castillo PC, Perez A, Cruz LM, Lim KS, Zhang YS. Design considerations for digital light processing bioprinters. APPLIED PHYSICS REVIEWS 2024; 11:031314. [PMID: 39221036 PMCID: PMC11284760 DOI: 10.1063/5.0187558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs.
Collapse
Affiliation(s)
- Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Javier Aguilar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Pavel Hernandez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Mauricio Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Vanessa Ortiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Ricardo A. Riesgo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - David S. Rendon Ruiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Juan Carlos Rodriguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Lugo Mestre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Penelope Ceron Castillo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Abraham Perez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Lourdes Monserrat Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Khoon S. Lim
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Ketabat F, Alcorn J, Kelly ME, Badea I, Chen X. Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization. SMALL SCIENCE 2024; 4:2400079. [PMID: 40212070 PMCID: PMC11935279 DOI: 10.1002/smsc.202400079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Indexed: 04/13/2025] Open
Abstract
Cardiac tissue engineering has been rapidly evolving with diverse applications, ranging from the repair of fibrotic tissue caused by "adverse remodeling," to the replacement of specific segments of heart tissue, and ultimately to the creation of a whole heart. The repair or replacement of cardiac tissue often involves the development of tissue scaffolds or constructs and the subsequent assessment of their performance and functionality. For this, the design and/or selection of biomaterials, and cell types, scaffold fabrication, and in vitro characterizations are the first starting points, yet critical, to ensure success in subsequent implantation in vivo. This highlights the importance of scaffold fabrication and in vitro experiments/characterization with protocols for cardiac tissue engineering. Yet, a comprehensive and critical review of these has not been established and documented. As inspired, herein, the latest development and advances in scaffold fabrication and in vitro characterization for cardiac tissue engineering are critically reviewed, with focus on biomaterials, cell types, additive manufacturing techniques for scaffold fabrication, and common in vitro characterization techniques or methods. This article would be of benefit to the ones who are working on cardiac tissue engineering by providing insights into the scaffold fabrication and in vitro investigations.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| | - Jane Alcorn
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Michael E. Kelly
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Surgery, College of MedicineUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5Canada
| | - Ildiko Badea
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Mechanical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| |
Collapse
|
18
|
Mohaghegh S, Nokhbatolfoghahaei H, Baniameri S, Farajpour H, Fakhr MJ, Shokrolahi F, Khojasteh A. Physicochemical and Biological Characterization of Gelatin/Alginate Scaffolds Reinforced with β-TCP, FDBA, and SrHA: Insights into Stem Cell Behavior and Osteogenic Differentiation. Int J Biomater 2024; 2024:1365080. [PMID: 39376511 PMCID: PMC11458296 DOI: 10.1155/2024/1365080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/30/2024] [Accepted: 07/12/2024] [Indexed: 10/09/2024] Open
Abstract
Bone tissue engineering necessitates the development of scaffolds with optimal properties to provide a suitable microenvironment for cell adhesion, proliferation, and osteogenic differentiation. The selection of appropriate scaffold materials remains a critical challenge in this field. In this study, we aimed to address this challenge by evaluating and comparing the performance of hydrogel scaffolds reinforced with β-tricalcium phosphate (β-TCP), allograft, and a combination of allograft and strontium hydroxyapatite (SrHA). In this study, scaffolds containing the following compounds with a weight ratio of 75 : 25 : 50 were made using a 3D printer: group (1) alginate + gelatin + β-TCP (TCP), group (2) alginate + gelatin + allograft (Allo), and group (3) alginate + gelatin + allograft + strontium hydroxyapatite (Str). Stem cells extracted from rat bone marrow (rBMSCs) were cultured on scaffolds, and cell proliferation and differentiation tests were performed. Also, the physical and chemical properties of the scaffolds were investigated. The two/one-way analysis of variance (ANOVA) by Tukey's post hoc test was performed. There was no significant difference between scaffolds with pore size and porosity. TCP scaffolds' mechanical strength and degradation rate were significantly lower than the other two groups (P < 0.05). Also, the swelling ratio of Allo scaffolds was higher than in other samples. The amount of cell proliferation in the samples of the TCP group was lower than the other two, and the Allo samples had the best results in this concern (P < 0.01). However, the scaffolds containing strontium hydroxyapatite had significantly higher bone differentiation compared to the other two groups, and the lowest results were related to the scaffolds containing β-TCP. Hydrogel scaffolds reinforced with allograft or its combination with strontium showed better physicochemical and biological behavior compared to those reinforced with β-TCP. Besides, adding strontium had a limited impact on the physicochemical features of allograft-containing scaffolds while improving their potential to induce osteogenic differentiation.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Baniameri
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hekmat Farajpour
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | | | | | - Arash Khojasteh
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Nurul Alam AMM, Kim CJ, Kim SH, Kumari S, Lee EY, Hwang YH, Joo ST. Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development. Food Res Int 2024; 189:114549. [PMID: 38876607 DOI: 10.1016/j.foodres.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.
Collapse
Affiliation(s)
- A M M Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| |
Collapse
|
20
|
Kripamol R, Velayudhan S, Anil Kumar PR. Evaluation of allylated gelatin as a bioink supporting spontaneous spheroid formation of HepG2 cells. Int J Biol Macromol 2024; 274:133259. [PMID: 38908647 DOI: 10.1016/j.ijbiomac.2024.133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
The spheroid culture system has gained significant attention as an effective in vitro model to mimic the in vivo microenvironment. Even though numerous studies were focused on developing spheroids, the structural organization of encapsulated cells within hydrogels remains a challenge. Allylated gelatin or GelAGE is used as a bioink due to its excellent physicochemical properties. In this study, GelAGE was evaluated for its capacity to induce spontaneous spheroid formation in encapsulated HepG2 cells. GelAGE was synthesized and characterized using 1HNMR spectroscopy and ninhydrin assay. Then the physicochemical and biological attributes of GelAGE hydrogel was examined. The results demonstrate that GelAGE has remarkable ability to induce the encapsulated cells to self-organize into spheroids.
Collapse
Affiliation(s)
- R Kripamol
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Shiny Velayudhan
- Division of Dental Products, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P R Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
21
|
Cheng C, Williamson EJ, Chiu GTC, Han B. Engineering biomaterials by inkjet printing of hydrogels with functional particulates. MED-X 2024; 2:9. [PMID: 38975024 PMCID: PMC11222244 DOI: 10.1007/s44258-024-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Hydrogels with particulates, including proteins, drugs, nanoparticles, and cells, enable the development of new and innovative biomaterials. Precise control of the spatial distribution of these particulates is crucial to produce advanced biomaterials. Thus, there is a high demand for manufacturing methods for particle-laden hydrogels. In this context, 3D printing of hydrogels is emerging as a promising method to create numerous innovative biomaterials. Among the 3D printing methods, inkjet printing, so-called drop-on-demand (DOD) printing, stands out for its ability to construct biomaterials with superior spatial resolutions. However, its printing processes are still designed by trial and error due to a limited understanding of the ink behavior during the printing processes. This review discusses the current understanding of transport processes and hydrogel behaviors during inkjet printing for particulate-laden hydrogels. Specifically, we review the transport processes of water and particulates within hydrogel during ink formulation, jetting, and curing. Additionally, we examine current inkjet printing applications in fabricating engineered tissues, drug delivery devices, and advanced bioelectronics components. Finally, the challenges and opportunities for next-generation inkjet printing are also discussed. Graphical Abstract
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - Eric J Williamson
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - George T.-C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Mechanical Science and Engineering, Materials Research Laboratory and Cancer Center at Illinois, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801 USA
| |
Collapse
|
22
|
Ning L, Zanella S, Tomov ML, Amoli MS, Jin L, Hwang B, Saadeh M, Chen H, Neelakantan S, Dasi LP, Avazmohammadi R, Mahmoudi M, Bauser‐Heaton HD, Serpooshan V. Targeted Rapamycin Delivery via Magnetic Nanoparticles to Address Stenosis in a 3D Bioprinted in Vitro Model of Pulmonary Veins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400476. [PMID: 38696618 PMCID: PMC11234432 DOI: 10.1002/advs.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Indexed: 05/04/2024]
Abstract
Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off-target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin-loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of Mechanical EngineeringCleveland State UniversityClevelandOH44115USA
| | - Stefano Zanella
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Mehdi Salar Amoli
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Maher Saadeh
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Huang Chen
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Sunder Neelakantan
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Reza Avazmohammadi
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- J. Mike Walker ’66 Department of Mechanical EngineeringTexas A&M UniversityCollege StationTX77840USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LandingMI48824USA
| | - Holly D. Bauser‐Heaton
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
- Sibley Heart Center at Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
23
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Ochieng BO, Zhao L, Ye Z. Three-Dimensional Bioprinting in Vascular Tissue Engineering and Tissue Vascularization of Cardiovascular Diseases. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:340-358. [PMID: 37885200 DOI: 10.1089/ten.teb.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In the 21st century, significant progress has been made in repairing damaged materials through material engineering. However, the creation of large-scale artificial materials still faces a major challenge in achieving proper vascularization. To address this issue, researchers have turned to biomaterials and three-dimensional (3D) bioprinting techniques, which allow for the combination of multiple biomaterials with improved mechanical and biological properties that mimic natural materials. Hydrogels, known for their ability to support living cells and biological components, have played a crucial role in this research. Among the recent developments, 3D bioprinting has emerged as a promising tool for constructing hybrid scaffolds. However, there are several challenges in the field of bioprinting, including the need for nanoscale biomimicry, the formulation of hydrogel blends, and the ongoing complexity of vascularizing biomaterials, which requires further research. On a positive note, 3D bioprinting offers a solution to the vascularization problem due to its precise spatial control, scalability, and reproducibility compared with traditional fabrication methods. This paper aims at examining the recent advancements in 3D bioprinting technology for creating blood vessels, vasculature, and vascularized materials. It provides a comprehensive overview of the progress made and discusses the limitations and challenges faced in current 3D bioprinting of vascularized tissues. In addition, the paper highlights the future research directions focusing on the development of 3D bioprinting techniques and bioinks for creating functional materials.
Collapse
Affiliation(s)
- Ben Omondi Ochieng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Leqian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Generalova AN, Vikhrov AA, Prostyakova AI, Apresyan SV, Stepanov AG, Myasoedov MS, Oleinikov VA. Polymers in 3D printing of external maxillofacial prostheses and in their retention systems. Int J Pharm 2024; 657:124181. [PMID: 38697583 DOI: 10.1016/j.ijpharm.2024.124181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Maxillofacial defects, arising from trauma, oncological disease or congenital abnormalities, detrimentally affect daily life. Prosthetic repair offers the aesthetic and functional reconstruction with the help of materials mimicking natural tissues. 3D polymer printing enables the design of patient-specific prostheses with high structural complexity, as well as rapid and low-cost fabrication on-demand. However, 3D printing for prosthetics is still in the early stage of development and faces various challenges for widespread use. This is because the most suitable polymers for maxillofacial restoration are soft materials that do not have the required printability, mechanical strength of the printed parts, as well as functionality. This review focuses on the challenges and opportunities of 3D printing techniques for production of polymer maxillofacial prostheses using computer-aided design and modeling software. Review discusses the widely used polymers, as well as their blends and composites, which meet the most important assessment criteria, such as the physicochemical, biological, aesthetic properties and processability in 3D printing. In addition, strategies for improving the polymer properties, such as their printability, mechanical strength, and their ability to print multimaterial and architectural structures are highlighted. The current state of the prosthetic retention system is presented with a focus on actively used polymer adhesives and the recently implemented prosthesis-supporting osseointegrated implants, with an emphasis on their creation from 3D-printed polymers. The successful prosthetics is discussed in terms of the specificity of polymer materials at the restoration site. The approaches and technological prospects are also explored through the examples of the nasal, auricle and ocular prostheses, ranging from prototypes to end-use products.
Collapse
Affiliation(s)
- Alla N Generalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, 119333 Moscow, Russia.
| | - Alexander A Vikhrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna I Prostyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Samvel V Apresyan
- Institute of Digital Dentistry, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Alexander G Stepanov
- Institute of Digital Dentistry, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Maxim S Myasoedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
26
|
Ozbek I, Saybasili H, Ulgen KO. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomater Sci Eng 2024; 10:2616-2635. [PMID: 38664996 PMCID: PMC11094688 DOI: 10.1021/acsbiomaterials.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Primary brain tumor is one of the most fatal diseases. The most malignant type among them, glioblastoma (GBM), has low survival rates. Standard treatments reduce the life quality of patients due to serious side effects. Tumor aggressiveness and the unique structure of the brain render the removal of tumors and the development of new therapies challenging. To elucidate the characteristics of brain tumors and examine their response to drugs, realistic systems that mimic the tumor environment and cellular crosstalk are desperately needed. In the past decade, 3D GBM models have been presented as excellent platforms as they allowed the investigation of the phenotypes of GBM and testing innovative therapeutic strategies. In that scope, 3D bioprinting technology offers utilities such as fabricating realistic 3D bioprinted structures in a layer-by-layer manner and precisely controlled deposition of materials and cells, and they can be integrated with other technologies like the microfluidics approach. This Review covers studies that investigated 3D bioprinted brain tumor models, especially GBM using 3D bioprinting techniques and essential parameters that affect the result and quality of the study like frequently used cells, the type and physical characteristics of hydrogel, bioprinting conditions, cross-linking methods, and characterization techniques.
Collapse
Affiliation(s)
- Ilkay
Irem Ozbek
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| | - Hale Saybasili
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
27
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
28
|
Makode S, Maurya S, Niknam SA, Mollocana-Lara E, Jaberi K, Faramarzi N, Tamayol A, Mortazavi M. Three dimensional (bio)printing of blood vessels: from vascularized tissues to functional arteries. Biofabrication 2024; 16:022005. [PMID: 38277671 DOI: 10.1088/1758-5090/ad22ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Shubham Makode
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed A Niknam
- Department of Industrial Engineering, Western New England University, Springfield, MA, United States of America
| | - Evelyn Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Kiana Jaberi
- Department of Nutritional Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Faramarzi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Mehdi Mortazavi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| |
Collapse
|
29
|
Budi HS, Jameel Al-azzawi MF, Al-Dolaimy F, Alahmari MM, Abullais SS, Ebrahimi S, Khlewee IH, Alawady AHR, Alsaalamy AH, Shayan FK. Injectable and 3D-printed hydrogels: State-of-the-art platform for bone regeneration in dentistry. INORG CHEM COMMUN 2024; 161:112026. [DOI: 10.1016/j.inoche.2024.112026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
|
30
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
31
|
Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion-Based 3D Bioprinting Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306470. [PMID: 38145962 PMCID: PMC10885663 DOI: 10.1002/advs.202306470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - David Kilian
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Daniel Ramos Mejia
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ricardo J. Rios
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ashal Ali
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| |
Collapse
|
32
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
33
|
Ouro PMS, Costa DCS, Amaral AJR, Mano JF. A Supramolecular Injectable Methacryloyl Chitosan-Tricine-Based Hydrogel with 3D Printing Potential for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2300058. [PMID: 37154384 DOI: 10.1002/mabi.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Printable hydrogels have attracted significant attention as versatile, tunable, and spatiotemporally controlled biomaterials for tissue engineering (TE) applications. Several chitosan-based systems are reported presenting low or no solubility in aqueous solutions at physiological pH. Herein, a novel neutrally charged, biomimetic, injectable, and cytocompatible dual-crosslinked (DC) hydrogel system based on a double functionalized chitosan (CHT) with methacryloyl and tricine moieties (CHTMA-Tricine), completely processable at physiological pH, with promising three-dimensional (3D) printing potential is presented. Tricine, an amino acid typically used in biomedicine, is capable of establishing supramolecular interactions (H-bonds) and is never explored as a hydrogel component for TE. CHTMA-Tricine hydrogels demonstrate significantly greater toughness (ranging from 656.5 ± 82.2 to 1067.5 ± 121.5 kJ m-3 ) compared to CHTMA hydrogels (ranging from 382.4 ± 44.1 to 680.8 ± 104.5 kJ m-3 ), highlighting the contribution of the supramolecular interactions for the overall reinforced 3D structure provided by tricine moieties. Cytocompatibility studies reveal that MC3T3-E1 pre-osteoblasts cells remain viable for 6 days when encapsulated in CHTMA-Tricine constructs, with semi-quantitative analysis showing ≈80% cell viability. This system's interesting viscoelastic properties allow the fabrication of multiple structures, which couple with a straightforward approach, will open doors for the design of advanced chitosan-based biomaterials through 3D bioprinting for TE.
Collapse
Affiliation(s)
- Pedro M S Ouro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Dora C S Costa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Adérito J R Amaral
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
34
|
Barrulas RV, Corvo MC. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Gels 2023; 9:986. [PMID: 38131974 PMCID: PMC10742728 DOI: 10.3390/gels9120986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Rheological characterisation plays a crucial role in developing and optimising advanced materials in the form of hydrogels and aerogels, especially if 3D printing technologies are involved. Applications ranging from tissue engineering to environmental remediation require the fine-tuning of such properties. Nonetheless, their complex rheological behaviour presents unique challenges in additive manufacturing. This review outlines the vital rheological parameters that influence the printability of hydrogel and aerogel inks, emphasising the importance of viscosity, yield stress, and viscoelasticity. Furthermore, the article discusses the latest developments in rheological modifiers and printing techniques that enable precise control over material deposition and resolution in 3D printing. By understanding and manipulating the rheological properties of these materials, researchers can explore new possibilities for applications such as biomedicine or nanotechnology. An optimal 3D printing ink requires strong shear-thinning behaviour for smooth extrusion, forming continuous filaments. Favourable thixotropic properties aid viscosity recovery post-printing, and adequate yield stress and G' are crucial for structural integrity, preventing deformation or collapse in printed objects, and ensuring high-fidelity preservation of shapes. This insight into rheology provides tools for the future of material design and manufacturing in the rapidly evolving field of 3D printing of hydrogels and aerogels.
Collapse
Affiliation(s)
| | - Marta C. Corvo
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
35
|
Dimitrova M, Vlahova A, Kalachev Y, Zlatev S, Kazakova R, Capodiferro S. Recent Advances in 3D Printing of Polymers for Application in Prosthodontics. Polymers (Basel) 2023; 15:4525. [PMID: 38231950 PMCID: PMC10708542 DOI: 10.3390/polym15234525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Contemporary mass media frequently depict 3D printing as a technology with widespread utilization in the creation of dental prosthetics. This paper endeavors to provide an evidence-based assessment of the current scope of 3D printing's integration within dental laboratories and practices. Its primary objective is to offer a systematic evaluation of the existing applications of 3D-printing technology within the realm of dental prosthetic restorations. Furthermore, this article delves into potential prospects, while also critically examining the sustained relevance of conventional dental laboratory services and manufacturing procedures. The central focus of this article is to expound upon the extent to which 3D printing is presently harnessed for crafting dental prosthetic appliances. By presenting verifiable data and factual insights, this article aspires to elucidate the actual implementation of 3D printing in prosthetic dentistry and its seamless integration into dental practices. The aim of this narrative review is twofold: firstly, to provide an informed and unbiased evaluation of the role that 3D printing currently plays within dental laboratories and practices; and secondly, to instigate contemplation on the transformative potential of this technology, both in terms of its contemporary impact and its future implications, while maintaining a balanced consideration of traditional dental approaches.
Collapse
Affiliation(s)
- Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yavor Kalachev
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
| | - Stefan Zlatev
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Saverio Capodiferro
- Department of Interdisciplinary Medicine, Aldo Moro, University of Bari, 70100 Bari, Italy;
| |
Collapse
|
36
|
Seymour AJ, Kilian D, Navarro RS, Hull SM, Heilshorn SC. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater Sci 2023; 11:7598-7615. [PMID: 37824082 PMCID: PMC10842430 DOI: 10.1039/d3bm00721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.
Collapse
Affiliation(s)
- Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Renato S Navarro
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
38
|
Xuan Z, Gurevich L, Christiansen JDC, Zachar V, Pennisi CP. Stable hydrogel adhesion to polydimethylsiloxane enables cyclic mechanical stimulation of 3D-bioprinted smooth muscle constructs. Biotechnol Bioeng 2023; 120:3396-3408. [PMID: 37526327 DOI: 10.1002/bit.28516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
During normal urination, smooth muscle cells (SMCs) in the lower urinary tract (LUT) are exposed to mechanical signals that have a critical impact on tissue structure and function. Nevertheless, the mechanisms underlying the maintenance of the contractile phenotype of SMCs remain poorly understood. This is due, in part, to a lack of studies that have examined the effects of mechanical loading using three-dimensional (3D) models. In this study, surface modifications of polydimethylsiloxane (PDMS) membrane were evaluated to investigate the effects of cyclic mechanical stimulation on SMC maturation in 3D constructs. Commercially available cell stretching plates were modified with amino or methacrylate groups to promote adhesion of 3D constructs fabricated by bioprinting. After 6 days of stimulation, the effects of mechanical stimulation on the expression of contractile markers at the mRNA and protein levels were analyzed. Methacrylate-modified surfaces supported stable adhesion of the 3D constructs to the membrane and facilitated cyclic mechanical stimulation, which significantly increased the expression of contractile markers at the mRNA and protein levels. These effects were found to be mediated by activation of the p38 MAPK pathway, as inhibition of this pathway abolished the effects of stimulation in a dose-dependent manner. These results provide valuable insights into the role of mechanical signaling in maintaining the contractile phenotype of bladder SMCs, which has important implications for the development of future treatments for LUT diseases.
Collapse
Affiliation(s)
- Zongzhe Xuan
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | | | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Lu Y, Rai R, Nitin N. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Food Res Int 2023; 173:113384. [PMID: 37803721 DOI: 10.1016/j.foodres.2023.113384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.
Collapse
Affiliation(s)
- Yixing Lu
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA.
| | - Rewa Rai
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA.
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
40
|
Zeng L, Ling S, Du D, He H, Li X, Zhang C. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303716. [PMID: 37740446 PMCID: PMC10646286 DOI: 10.1002/advs.202303716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Indexed: 09/24/2023]
Abstract
Despite tremendous efforts that have been dedicated to high-performance electrochemical energy storage devices (EESDs), traditional electrode fabrication processes still face the daunting challenge of limited energy/power density or compromised mechanical compliance. 3D thick electrodes can maximize the utilization of z-axis space to enhance the energy density of EESDs but still suffer from limitations in terms of poor mechanical stability and sluggish electron/ion transport. Direct ink writing (DIW), an eminent branch of 3D printing technology, has gained popularity in the manufacture of 3D electrodes with intricately designed architectures and rationally regulated porosity, promoting a triple boost in areal mass loading, ion diffusion kinetics, and mechanical flexibility. This focus review highlights the fundamentals of printable inks and typical configurations of 3D-printed devices. In particular, preparation strategies for high-performance and multifunctional 3D-printed EESDs are systemically discussed and classified according to performance evaluation metrics such as high areal energy density, high power density, high volumetric energy density, and mechanical flexibility. Challenges and prospects for the fabrication of high-performance 3D-printed EESDs are outlined, aiming to provide valuable insights into this thriving field.
Collapse
Affiliation(s)
- Li Zeng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Shangwen Ling
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Dayue Du
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Hanna He
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
41
|
Grijalva Garces D, Strauß S, Gretzinger S, Schmieg B, Jüngst T, Groll J, Meinel L, Schmidt I, Hartmann H, Schenke-Layland K, Brandt N, Selzer M, Zimmermann S, Koltay P, Southan A, Tovar GEM, Schmidt S, Weber A, Ahlfeld T, Gelinsky M, Scheibel T, Detsch R, Boccaccini AR, Naolou T, Lee-Thedieck C, Willems C, Groth T, Allgeier S, Köhler B, Friedrich T, Briesen H, Buchholz J, Paulus D, von Gladiss A, Hubbuch J. On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field. Biofabrication 2023; 16:015002. [PMID: 37769669 DOI: 10.1088/1758-5090/acfe3b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.
Collapse
Affiliation(s)
- David Grijalva Garces
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Svenja Strauß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Gretzinger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Barbara Schmieg
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Isabelle Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nico Brandt
- Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Selzer
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Koltay
- Laboratory for MEMS Applications, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
- Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
- Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Sarah Schmidt
- Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Achim Weber
- Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint, and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Center for Translational Bone, Joint, and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Thomas Scheibel
- Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
- Chair of Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Toufik Naolou
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Christian Willems
- Department Biomedical Materials, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Groth
- Department Biomedical Materials, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Allgeier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Bernd Köhler
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Tiaan Friedrich
- Process Systems Engineering, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Janine Buchholz
- Institute for Computational Visualistics, Active Vision Group, University of Koblenz, Koblenz, Germany
| | - Dietrich Paulus
- Institute for Computational Visualistics, Active Vision Group, University of Koblenz, Koblenz, Germany
| | - Anselm von Gladiss
- Institute for Computational Visualistics, Active Vision Group, University of Koblenz, Koblenz, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
42
|
Shen KH, Chiu TH, Teng KC, Yu J, Yeh YC. Fabrication of triple-crosslinked gelatin/alginate hydrogels for controlled release applications. Int J Biol Macromol 2023; 250:126133. [PMID: 37543263 DOI: 10.1016/j.ijbiomac.2023.126133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Hydrogels have been demonstrated as smart drug carriers to recognize the tumor microenvironment for cancer treatment, where the dynamic crosslinks in the hydrogel network contribute to the stimuli-responsive features but also result in poor stability and weak mechanical property of the hydrogels. Here, phenylboronic acid-grafted polyethyleneimine (PBA-PEI)-modified gelatin (PPG) was synthesized to crosslink alginate dialdehyde (ADA) through imine bonds and boronate ester bonds, and then calcium ions (Ca2+) were added to introduce the third calcium-carboxylate crosslinking in the network to form the triple-crosslinked PPG/ADA-Ca2+ hydrogels. Given the three types of dynamic bonds in the network, PPG/ADA-Ca2+ hydrogels possessed a self-healing manner, stimuli-responsiveness, and better mechanical properties compared to single- or double-crosslinked hydrogels. The controlled release capability of PPG/ADA-Ca2+ hydrogels was also demonstrated, showing the encapsulated molecules can be rapidly released from the hydrogel network in the presence of hydrogen peroxide while the release rate can be slowed down at acidic pH. Furthermore, PPG/ADA-Ca2+ hydrogels presented selected cytotoxicity and drug delivery to cancer cells due to the regulated degradation by the cellular microenvironment. Taken together, PPG/ADA-Ca2+ hydrogels have been demonstrated as promising biomaterials with multiple desirable properties and dynamic features to perform controlled molecule release for biomedical applications.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuang-Chih Teng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
43
|
Koumentakou I, Noordam MJ, Michopoulou A, Terzopoulou Z, Bikiaris DN. 3D-Printed Chitosan-Based Hydrogels Loaded with Levofloxacin for Tissue Engineering Applications. Biomacromolecules 2023; 24:4019-4032. [PMID: 37604780 DOI: 10.1021/acs.biomac.3c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH3 vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.
Collapse
Affiliation(s)
- Ioanna Koumentakou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Thessaloniki 57001, Greece
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| |
Collapse
|
44
|
Sanaei K, Zamanian A, Mashayekhan S, Ramezani T. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. IRANIAN BIOMEDICAL JOURNAL 2023; 27:280-93. [PMID: 37873644 PMCID: PMC10707813 DOI: 10.61186/ibj.27.5.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 12/17/2023]
Abstract
Background In the present study, a novel bioink was suggested based on the oxidized alginate (OAlg), gelatin (GL), and silk fibroin (SF) hydrogels. Methods The composition of the bioink was optimized by the rheological and printability measurements, and the extrusion-based 3D bioprinting process was performed by applying the optimum OAlg-based bioink. Results The results demonstrated that the viscosity of bioink was continuously decreased by increasing the SF/GL ratio, and the bioink displayed a maximum achievable printability (92 ± 2%) at 2% (w/v) of SF and 4% (w/v) of GL. Moreover, the cellular behavior of the scaffolds investigated by MTT assay and live/dead staining confirmed the biocompatibility of the prepared bioink. Conclusion The bioprinted OAlg-GL-SF scaffold could have the potential for using in skin tissue engineering applications, which needs further exploration.
Collapse
Affiliation(s)
- Khadijeh Sanaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Tayebe Ramezani
- Faculty of biological sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
45
|
Zhang R, Chang SJ, Jing Y, Wang L, Chen CJ, Liu JT. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr Polym 2023; 314:120890. [PMID: 37173038 DOI: 10.1016/j.carbpol.2023.120890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Cartilage tissue engineering involves the invention of novel implantable cartilage replacement materials to help heal cartilage injuries that do not heal themselves, aiming to overcome the shortcomings of current clinical cartilage treatments. Chitosan has been widely used in cartilage tissue engineering because of its similar structure to glycine aminoglycan, which is widely distributed in connective tissues. The molecular weight, as an important structural parameter of chitosan, affects not only the method of chitosan composite scaffold preparation but also the effect on cartilage tissue healing. Thus, this review identifies methods for the preparation of chitosan composite scaffolds with low, medium and high molecular weights, as well as a range of chitosan molecular weights appropriate for cartilage tissue repair, by summarizing the application of different molecular weights of chitosan in cartilage repair in recent years.
Collapse
Affiliation(s)
- Runjie Zhang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yanzhen Jing
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiYuan Wang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
da Costa DS, dos Santos LN, Ferreira NR, Takeuchi KP, Lopes AS. Mairá-Potato ( Casimirella sp.): Botanical, Food, Pharmacological, and Phytochemical Aspects. Molecules 2023; 28:6069. [PMID: 37630321 PMCID: PMC10458469 DOI: 10.3390/molecules28166069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Millions of people in the world live in food insecurity, so identifying a tuber with characteristics capable of meeting the demand for food and also identifying active compounds that can be used to minimize harm to human health is of great value. The aim was to carry out a review based on systematic review tools and the main objective was to seek information on botanical, food, pharmacological, and phytochemical aspects of Casimirella sp. and propose possible applications. This review showed papers that addressed botanical, food, pharmacological, and phytochemical aspects of the Mairá-potato and presented suggestions for using this tuber allied to the information described in the works found in the Google Academic, Scielo, Science Direct, Scopus, PubMed, and Web of Science databases. This review synthesized knowledge about the Mairá-potato that can contribute to the direction of further research on the suggested technological applications, both on the use of this tuber as a polymeric material and its use as biomaterial, encapsulation, bioactive use, and 3D printing, because this work collected information about this non-conventional food plant (PANC) that shows great potential for use in various areas of study.
Collapse
Affiliation(s)
- Danusa Silva da Costa
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Lucely Nogueira dos Santos
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Nelson Rosa Ferreira
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Katiuchia Pereira Takeuchi
- Department of Food and Nutrition, Faculty of Nutrition, UFMT (Federal University of Mato Grosso), Cuiabá 78060-900, MT, Brazil;
| | - Alessandra Santos Lopes
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| |
Collapse
|
47
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
48
|
Wu CA, Zhu Y, Woo YJ. Advances in 3D Bioprinting: Techniques, Applications, and Future Directions for Cardiac Tissue Engineering. Bioengineering (Basel) 2023; 10:842. [PMID: 37508869 PMCID: PMC10376421 DOI: 10.3390/bioengineering10070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in the United States. Cardiac tissue engineering is a direction in regenerative medicine that aims to repair various heart defects with the long-term goal of artificially rebuilding a full-scale organ that matches its native structure and function. Three-dimensional (3D) bioprinting offers promising applications through its layer-by-layer biomaterial deposition using different techniques and bio-inks. In this review, we will introduce cardiac tissue engineering, 3D bioprinting processes, bioprinting techniques, bio-ink materials, areas of limitation, and the latest applications of this technology, alongside its future directions for further innovation.
Collapse
Affiliation(s)
- Catherine A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Herrada-Manchón H, Fernández MA, Aguilar E. Essential Guide to Hydrogel Rheology in Extrusion 3D Printing: How to Measure It and Why It Matters? Gels 2023; 9:517. [PMID: 37504396 PMCID: PMC10379134 DOI: 10.3390/gels9070517] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Rheology plays a crucial role in the field of extrusion-based three-dimensional (3D) printing, particularly in the context of hydrogels. Hydrogels have gained popularity in 3D printing due to their potential applications in tissue engineering, regenerative medicine, and drug delivery. The rheological properties of the printing material have a significant impact on its behaviour throughout the 3D printing process, including its extrudability, shape retention, and response to stress and strain. Thus, understanding the rheological characteristics of hydrogels, such as shear thinning behaviour, thixotropy, viscoelasticity, and gelling mechanisms, is essential for optimising the printing process and achieving desired product quality and accuracy. This review discusses the theoretical foundations of rheology, explores different types of fluid and their properties, and discusses the essential rheological tests necessary for characterising hydrogels. The paper emphasises the importance of terminology, concepts, and the correct interpretation of results in evaluating hydrogel formulations. By presenting a detailed understanding of rheology in the context of 3D printing, this review paper aims to assist researchers, engineers, and practitioners in the field of hydrogel-based 3D printing in optimizing their printing processes and achieving desired product outcomes.
Collapse
Affiliation(s)
- Helena Herrada-Manchón
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda, Jardín Botánico 1345, 33203 Gijón, Spain
| | - Manuel Alejandro Fernández
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda, Jardín Botánico 1345, 33203 Gijón, Spain
| | - Enrique Aguilar
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto Universitario de Química Organometálica "Enrique Moles", Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
50
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|