1
|
Fu CF, Yang LF, Tian L, Deng S, Zhang Q, Yao B. Anlotinib-induced sick sinus syndrome: Two case reports. World J Clin Cases 2025; 13:98084. [PMID: 40012818 PMCID: PMC11612677 DOI: 10.12998/wjcc.v13.i6.98084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/12/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND This manuscript describes the first known cases of sick sinus syndrome (SSS) associated with the use of anlotinib in non-small cell lung cancer patients, highlighting the need for increased vigilance and cardiac monitoring. CASE SUMMARY Two patients with non-small cell lung cancer developed SSS after 15 months and 5 months of anlotinib treatment, respectively, presenting with syncope and palpitations. Electrocardiogram confirmed SSS, and different treatment approaches were taken for each patient. One patient received a dual-chamber permanent pacemaker, while the other discontinued the medication and experienced symptom resolution. CONCLUSION Anlotinib can induce SSS, suggesting that cardiac monitoring is crucial during anlotinib treatment. Individualized management strategies are necessary for affected individuals.
Collapse
Affiliation(s)
- Cheng-Feng Fu
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Li-Fen Yang
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Lei Tian
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Song Deng
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang 550000, Guizhou Province, China
| | - Biao Yao
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| |
Collapse
|
2
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Mardon AK, Whitaker L, Farooqi T, Girling J, Henry C, Ee C, Tewhaiti-Smith J, Armour M. Investigational drugs for the treatment of dysmenorrhea. Expert Opin Investig Drugs 2024; 33:347-357. [PMID: 38436301 DOI: 10.1080/13543784.2024.2326627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Dysmenorrhea is the most common cause of gynecological pain among women that has considerable impact on quality of life and psychosocial wellbeing. Non-steroidal anti-inflammatory drugs (NSAIDs) and hormonal therapies are most commonly used to treat dysmenorrhea. However, given these drugs are often associated with bothersome side effects and are less effective when there is an underlying cause contributing to dysmenorrhea (e.g. endometriosis), a patient-centered approach to managing dysmenorrhea is important. Various new drugs are currently being investigated for the treatment of primary and secondary dysmenorrhea. AREAS COVERED This review provides an updated overview on new therapeutic targets and investigational drugs for the treatment of primary and secondary dysmenorrhea. The authors describe the clinical development and implications of these drugs. EXPERT OPINION Among the investigative drugs discussed in this review, anti-inflammatories show the most promising results for the treatment of dysmenorrhea. However, given some trials have considerable methodological limitations, many drugs cannot be currently recommended. Research focused on understanding the mechanisms involved in menstruation and its associated symptoms will be important to identify new therapeutic targets for dysmenorrhea. Further robust clinical trials are required to better understand the efficacy and safety of investigational drugs for treating primary and secondary dysmenorrhea.
Collapse
Affiliation(s)
- Amelia K Mardon
- NICM Health Research Institute, Western Sydney University, NSW Australia; IIMPACT in Health, University of South Australia, Australia
| | - Lucy Whitaker
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, UK
| | - Toobah Farooqi
- NICM Health Research Institute, Western Sydney University NSW, Australia
| | - Jane Girling
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Claire Henry
- Department of Surgery & Anaesthesia, University of Otago Wellington Aotearoa, New Zealand
| | - Carolyn Ee
- NICM Health Research Institute, Western Sydney University, Australia
| | | | - Mike Armour
- Reproductive Health, NICM Health Research Institute, Western Sydney University, Australia
| |
Collapse
|
4
|
Wilhelmi P, Haake V, Zickgraf FM, Giri V, Ternes P, Driemert P, Nöth J, Scholz S, Barenys M, Flick B, Birk B, Kamp H, Landsiedel R, Funk-Weyer D. Molecular signatures of angiogenesis inhibitors: a single-embryo untargeted metabolomics approach in zebrafish. Arch Toxicol 2024; 98:943-956. [PMID: 38285066 PMCID: PMC10861732 DOI: 10.1007/s00204-023-03655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.
Collapse
Affiliation(s)
- Pia Wilhelmi
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany.
- University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain.
| | - Volker Haake
- BASF Metabolome Solutions, 10589, Berlin, Germany
| | - Franziska M Zickgraf
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany.
| | - Varun Giri
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
| | | | | | - Julia Nöth
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Marta Barenys
- University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Burkhard Flick
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
- Preclinical Compound Profiling, Toxicology, NUVISAN ICB GmbH, 13353, Berlin, Germany
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
- Institute of Pharmacy, Pharmacology and Toxicology, Free University of Berlin, 14195, Berlin, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056, Ludwigshafen Am Rhein, Germany
| |
Collapse
|
5
|
Lima GDS, Pereira I, Maciel LIL, Lima NM, Araujo GL, de Aguiar DVA, Dos Santos GF, Vaz BG. Combining LAESI Imaging and Tissue Spray Ionization Mass Spectrometry To Unveil Pesticides Contaminants in Fruits. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2461-2468. [PMID: 37804228 DOI: 10.1021/jasms.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
There is an increasing need for developing a strategy to analyze the penetration of pesticides in cultures during postharvest control with minimal or no sample preparation. This study explores the combined use of laser ablation electrospray ionization mass spectrometry imaging (LAESI imaging) and tissue spray ionization mass spectrometry (TSI-MS) to investigate the penetration of thiabendazole (TBZ) in fruits, simulating a postharvest procedure. Slices of guava and apple were prepared, and an infrared laser beam was used, resulting in the ablation of TBZ directly ionized by electrospray and analyzed by mass spectrometry. The experiments were conducted for 5 days of fruit storage after TBZ administration to simulate a postharvest treatment. During postharvest treatment, TBZ is applied directly to the fruit peel after harvesting. Consequently, TBZ residues may remain on the peel if the consumer does not wash the fruit properly before its consumption. To evaluate the effectiveness of household washing procedures, TSI-MS was employed as a rapid and straightforward technique to monitor the remaining amount of TBZ in guava and apple peels following fruit washing. This study highlights the advantages of LAESI imaging for evaluating TBZ penetration in fruits. Moreover, the powerful capabilities of TSI-MS are demonstrated in monitoring and estimating TBZ residues after pesticide application, enabling the comprehensive unveiling of pesticide contaminants in fruits.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiánia, Goiás 74690-900, Brazil
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiánia, Goiás 74690-900, Brazil
| |
Collapse
|
6
|
Dabral S, Khan IA, Pant T, Khan S, Prakash P, Parvez S, Saha N. Deciphering the Precise Target for Saroglitazar Associated Antiangiogenic Effect: A Computational Synergistic Approach. ACS OMEGA 2023; 8:14985-15002. [PMID: 37151537 PMCID: PMC10157850 DOI: 10.1021/acsomega.2c07570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Antidiabetic drugs that have a secondary pharmacological effect on angiogenesis inhibition may help diabetic patients delay or avoid comorbidities caused by angiogenesis including malignancies. In recent studies, saroglitazar has exhibited antiangiogenic effects in diabetic retinopathy. The current study investigates the antiangiogenic effects of saroglitazar utilizing the chicken chorioallantoic membrane (CAM) assay and then identifies its precise mode of action on system-level protein networks. To determine the regulatory effect of saroglitazar on the protein-protein interaction network (PIN), 104 target genes were retrieved and tested using an acid server and Swiss target prediction tools. A string-based interactome was created and analyzed using Cytoscape. It was determined that the constructed network was scale-free, making it biologically relevant. Upon topological analysis of the network, 37 targets were screened on the basis of centrality values. Submodularization of the interactome resulted in the formation of four clusters. A total of 20 common targets identified in topological analysis and modular analysis were filtered. A total of 20 targets were compiled and were integrated into the pathway enrichment analysis using ShinyGO. The majority of hub genes were associated with cancer and PI3-AKT signaling pathways. Molecular docking was utilized to reveal the most potent target, which was validated by using molecular dynamic simulations and immunohistochemical staining on the chicken CAM. The comprehensive study offers an alternate research paradigm for the investigation of antiangiogenic effects using CAM assays. This was followed by the identification of the precise off-target use of saroglitazar using system biology and network pharmacology to inhibit angiogenesis.
Collapse
Affiliation(s)
- Swarna Dabral
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Imran Ahmd Khan
- Department
of Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Tarun Pant
- Department
of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Sabina Khan
- Department
of Pathology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prem Prakash
- Protein
Assembly Laboratory, JH-Institute of Molecular Medicine, Jamia Hamdard University, New Delhi 110062, India
| | - Suhel Parvez
- Department
of Medical Elementology and Toxicology, School of Chemical and Life
Science, Jamia Hamdard University, New Delhi 110062, India
| | - Nilanjan Saha
- Centre
for Translational and Clinical Research, School of Chemical and Life
Science, Jamia Hamdard UniversityNew Delhi 110062, India
- . Phone: 9873013366
| |
Collapse
|
7
|
Design, Synthesis and Structure-Activity Relationship Studies of Nicotinamide Derivatives as Potent Antifungal Agents by Disrupting Cell Wall. Molecules 2023; 28:molecules28031135. [PMID: 36770802 PMCID: PMC9919825 DOI: 10.3390/molecules28031135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Fungal infections pose a serious challenge to human health due to the limited paucity of antifungal treatments. Starting as a hit compound screened from our compound library, a series of nicotinamide derivatives have been successfully synthesized via a facile one-step coupling reaction of aromatic carboxylic acid and amine. The synthesized compounds were evaluated for their antifungal activity against Candida albicans SC5314. Among the 37 nicotinamide derivatives screened, compound 16g was found to be the most active against C. albicans SC5314, with an MIC value of 0.25 μg/mL and without significant cytotoxicity. The rudimentary structure-activity relationships study revealed that the position of the amino and isopropyl groups of 16g was critical for its antifungal activity. In particular, compound 16g showed potent activity against six fluconazole-resistant C. albicans strains with MIC values ranging from 0.125-1 μg/mL and showed moderate activity against the other seven species of Candida, three strains of Cryptococcus neoformans, and three strains of Trichophyton. Furthermore, compound 16g showed fungicidal, anti-hyphal, and anti-biofilm activities in vitro, which were related to its ability to disrupt the cell wall of C. albicans. Taken together, 16g is a promising compound that is fungal-specific by targeting the cell wall and could be used as a lead compound for further investigation.
Collapse
|
8
|
A low-molecular-weight chitosan fluorometric-based assay for evaluating antiangiogenic drugs. Int J Biol Macromol 2022; 224:927-937. [DOI: 10.1016/j.ijbiomac.2022.10.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
9
|
Ghimire S, Zhang X, Zhang J, Wu C. Use of Chicken Embryo Model in Toxicity Studies of Endocrine-Disrupting Chemicals and Nanoparticles. Chem Res Toxicol 2022; 35:550-568. [PMID: 35286071 DOI: 10.1021/acs.chemrestox.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lab animals such as mice and rats are widely used in toxicity research of food additive and pharmaceutics, despite the well-recognized research limitation such as the inability to simulate human neurological diseases, faster absorption of chemicals, big variations among species, and high cost when using a large number of animals. The Society of Toxicology's guidance now focuses on minimizing discomfort and distress of lab animals, finding alternative ways to reduce animal number, replacing animals with in vitro models, and complying to the animal welfare policies. The chicken embryonic model can be a better alternative to mice and rats because of its abundant availability and cost-effectiveness. It can be studied in both laboratory and natural environment, with easy manipulation in ovo or in vivo. The objective of this review paper is to evaluate the use of chicken embryonic model in toxicity evaluation for endocrine-disrupting chemicals (EDCs) and nanoparticles (NPs) by different end points to determine more comprehensive toxic responses. The end points include chicken embryonic mortality and hatchability, developmental malformation analysis, hormonal imbalance, physiological changes in endocrine organs, and antiangiogenesis. Major research methodologies using chicken embryos are also summarized to demonstrate their versatile practice and valuable application in modern toxicity evaluation of EDCs and NPs.
Collapse
Affiliation(s)
- Shweta Ghimire
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Xinwen Zhang
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Changqing Wu
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Zhang X, Wu C. In Silico, In Vitro, and In Vivo Evaluation of the Developmental Toxicity, Estrogenic Activity, and Mutagenicity of Four Natural Phenolic Flavonoids at Low Exposure Levels. ACS OMEGA 2022; 7:4757-4768. [PMID: 35187296 PMCID: PMC8851455 DOI: 10.1021/acsomega.1c04239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids are bioactive phenolic compounds widely present in plant food and used in various nutraceutical, pharmaceutical, and cosmetic products. However, recent studies showed rising concerns of endocrine disruptions and developmental toxicities for many flavonoids. To understand the impacts of flavonoid structure on toxicity, we used a new multitiered platform to investigate the toxicities of four common flavonoids, luteolin, apigenin, quercetin, and genistein, from flavone, flavonol, and isoflavone. Weak estrogenic activity was detected for four flavonoids (genistein, apigenin, quercetin, and luteolin) at 10-12 to 10-7 M by the MCF-7 cell proliferation assay, which agreed with the molecular docking results. Consistent with the simulation results of Toxicity Estimation Software Tool, genistein and luteolin showed high developmental toxicity in the chicken embryonic assay (45-477 μg/kg) with mortality rate up to 50%. Luteolin, quercetin, and apigenin showed signs of mutagenicity at 5 × 10-3 pmol/plate. The findings showed nonmonotonic dose responses for the chemicals.
Collapse
|
11
|
Konala VBR, Nandakumar S, Surendran H, Datar S, Bhonde R, Pal R. Neuronal and cardiac toxicity of pharmacological compounds identified through transcriptomic analysis of human pluripotent stem cell-derived embryoid bodies. Toxicol Appl Pharmacol 2021; 433:115792. [PMID: 34742744 DOI: 10.1016/j.taap.2021.115792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Concurrent with the '3R' principle, the embryonic stem cell test (EST) using mouse embryonic stem cells, developed in 2000, remains the solely accepted in vitro method for embryotoxicity testing. However, the scope and implementation of EST for embryotoxicity screening, compliant with regulatory requirements, are limited. This is due to its technical complexity, long testing period, labor-intensive methodology, and limited endpoint data, leading to misclassification of embryotoxic potential. In this study, we used human induced pluripotent stem cell (hiPSC)-derived embryoid bodies (EB) as an in vitro model to investigate the embryotoxic effects of a carefully selected set of pharmacological compounds. Morphology, viability, and differentiation potential were investigated after exposing EBs to folic acid, all-trans-retinoic acid, dexamethasone, and valproic acid for 15 days. The results showed that the compounds differentially repressed cell growth, compromised morphology, and triggered apoptosis in the EBs. Further, transcriptomics was employed to compare subtle temporal changes between treated and untreated cultures. Gene ontology and pathway analysis revealed that dysregulation of a large number of genes strongly correlated with impaired neuroectoderm and cardiac mesoderm formation. This aberrant gene expression pattern was associated with several disorders of the brain like mental retardation, multiple sclerosis, stroke and of the heart like dilated cardiomyopathy, ventricular tachycardia, and ventricular arrhythmia. Lastly, these in vitro findings were validated using in ovo chick embryo model. Taken together, pharmacological compound or drug-induced defective EB development from hiPSCs could potentially be used as a suitable in vitro platform for embryotoxicity screening.
Collapse
Affiliation(s)
- Vijay Bhaskar Reddy Konala
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Swapna Nandakumar
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Harshini Surendran
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Savita Datar
- Department of Zoology, S. P. College, Pune 411030, Maharashtra, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Rajarshi Pal
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India.
| |
Collapse
|
12
|
Bałaban J, Zielińska M, Wierzbicki M, Ostaszewska T, Fajkowska M, Rzepakowska M, Daniluk K, Sosnowska M, Chwalibog A, Sawosz E. Effect of Muscle Extract and Graphene Oxide on Muscle Structure of Chicken Embryos. Animals (Basel) 2021; 11:ani11123467. [PMID: 34944245 PMCID: PMC8697969 DOI: 10.3390/ani11123467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Genetic selection of broilers increased muscle growth; however, very fast growth can lead to pathological conditions caused by the deficiency of nutrients. The number of muscle cells is mainly formed during the embryonic period, and consequently, in ovo supplementation of proteins to embryos may impact future muscle structure. We hypothesized that proteins from chicken embryo muscle extract (CEME) caused by the unique, natural composition and biocompatibility can supply additional proteins. However, supplemented proteins are actively metabolized, which may reduce their utilization for improved muscle synthesis. Nevertheless, CEME can be transported and protected by graphene oxide (GO). The objective of the present work was to investigate the effects of in ovo-injected CEME and the complex of GO-CEME on embryonic cell cultures and the growth of chicken embryo hind limb muscle. Toxicity and cell proliferation were measured in vitro with cell cultures and mortality, morphology, histology, and blood biochemistry in vivo with embryos. CEME increased the number of cells and nuclei in muscle, but the complex GO-CEME did not further improve the muscle structure. The results indicate a vital role of CEME as in ovo enhancer of muscle development in broilers. Abstract The effects of CEME and it complex with GO injected in ovo on the growth and development of chicken embryo hindlimb muscle were investigated. First, the preliminary in vitro study on primary muscle precursor cell culture obtained from a nine-day-old chicken embryo was performed to assess toxicity (MTT assay) of CEME, GO (100 ppm) and it complex with different concentrations (1, 2, 5, and 10 wt.%). The effect on cell proliferation was investigated by BrdU assay. CEME at concentrations 1–5% increased cell proliferation, but not the complex with GO. In vitro cytotoxicity was highest in 10% and GO groups. Next, the main experiment with chicken embryos was performed with CEME, GO and it complex injected in ovo on day one of embryogenesis. On day 20 of embryogenesis survival, morphological development, histological structure of the muscle, and biochemical parameters of blood serum of the embryos were measured. No negative effect on mortality, body weight, or biochemistry of blood after use of CEME or GO-CEME complexes was observed. Interestingly, the slight toxicity of GO, observed in in vitro studies, was not observed in vivo. The use of CEME at the levels of 2% and 5% improved the structure of the lower limb muscle by increasing the number of cells, and the administration of 2% CEME increased the number of nuclei visible in the stained cross-section of the muscle. The complex GO-CEME did not further improve the muscle structure. The results indicate that CEME can be applied as an in ovo enhancer of muscle development in broilers.
Collapse
Affiliation(s)
- Jaśmina Bałaban
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (J.B.); (M.Z.); (M.W.); (K.D.); (M.S.); (E.S.)
| | - Marlena Zielińska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (J.B.); (M.Z.); (M.W.); (K.D.); (M.S.); (E.S.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (J.B.); (M.Z.); (M.W.); (K.D.); (M.S.); (E.S.)
| | - Teresa Ostaszewska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (T.O.); (M.F.); (M.R.)
| | - Magdalena Fajkowska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (T.O.); (M.F.); (M.R.)
| | - Małgorzata Rzepakowska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (T.O.); (M.F.); (M.R.)
| | - Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (J.B.); (M.Z.); (M.W.); (K.D.); (M.S.); (E.S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (J.B.); (M.Z.); (M.W.); (K.D.); (M.S.); (E.S.)
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (J.B.); (M.Z.); (M.W.); (K.D.); (M.S.); (E.S.)
| |
Collapse
|
13
|
Yang P, Meng G, Shu Q, Dong Y, Li C, Lu Y, Li J. A Short-Term Efficacy of Anlotinib in the Treatment of Refractory Nasopharyngeal Inverted Papilloma: A Case Report. Front Oncol 2021; 11:648895. [PMID: 34497754 PMCID: PMC8419350 DOI: 10.3389/fonc.2021.648895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
To our knowledge, no studies have reported the use of anlotinib in the treatment of locally cancerous nasopharyngeal inverted papillomas that cannot be operated on or treated with radiotherapy. Here, we report a case of a 53-year-old woman diagnosed with recurrent local canceration of nasopharynx papilloma. Magnetic resonance imaging (MRI) showed that the right parapharyngeal space, nasopharynx, and ethmoid sinus were changed, and recurrence was considered. There was no indication for surgery or radiotherapy. Imaging showed that the tumor had obvious enhancement and abundant blood vessels. Immunohistochemistry showed that vascular endothelial growth factor receptor (VEGFR) 2 expression was positive in papilloma tissue and in local canceration tissue of the papilloma. After the patient’s consent was obtained, anlotinib treatment was started in May and ended in November 2019. Then, the patient was treated with intensity-modulated radiotherapy (IMRT) with planning gross tumor volume (PGTV) 66 Gy, planning clinical tumor volume 1 (PCTV1) 60 Gy, and planning clinical tumor volume 2 (PCTV2) 54 Gy in 33 fractions. No disease recurrence was reported at 4 months after radiotherapy.
Collapse
Affiliation(s)
- Pan Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qiuxia Shu
- Department of Oncology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chong Li
- Department of Oncology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yujiao Lu
- Genecast Biotechnology Co., Ltd, Chongqing, China
| | - Jianjun Li
- Department of Oncology, First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhang X, Levia DF, Ebikade EO, Chang J, Vlachos DG, Wu C. The impact of differential lignin S/G ratios on mutagenicity and chicken embryonic toxicity. J Appl Toxicol 2021; 42:423-435. [PMID: 34448506 DOI: 10.1002/jat.4229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/25/2022]
Abstract
Lignin and lignin-based materials have received considerable attention in various fields due to their promise as sustainable feedstocks. Guaiacol (G) and syringol (S) are two primary monolignols that occur in different ratios for different plant species. As methoxyphenols, G and S have been targeted as atmospheric pollutants and their acute toxicity examined. However, there is a rare understanding of the toxicological properties on other endpoints and mixture effects of these monolignols. To fill this knowledge gap, our study investigated the impact of different S/G ratios (0.5, 1, and 2) and three lignin depolymerization samples from poplar, pine, and miscanthus species on mutagenicity and developmental toxicity. A multitiered method consisted of in silico simulation, in vitro Ames test, and in vivo chicken embryonic assay was employed. In the Ames test, syringol showed a sign of mutagenicity, whereas guaiacol did not, which agreed with the T.E.S.T. simulation. For three S and G mixture and lignin monomers, mutagenic activity was related to the proportion of syringol. In addition, both S and G showed developmental toxicity in the chicken embryonic assay and T.E.S.T. simulation, and guaiacol had a severe effect on lipid peroxidation. A similar trend and comparable developmental toxicity levels were detected for S and G mixtures and the three lignin depolymerized monomers. This study provides data and insights on the differential toxicity of varying S/G ratios for some important building blocks for bio-based materials.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Delphis F Levia
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | | | - Jeffrey Chang
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
15
|
Wachholz GE, Rengel BD, Vargesson N, Fraga LR. From the Farm to the Lab: How Chicken Embryos Contribute to the Field of Teratology. Front Genet 2021; 12:666726. [PMID: 34367238 PMCID: PMC8339958 DOI: 10.3389/fgene.2021.666726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 02/04/2023] Open
Abstract
Congenital anomalies and its causes, particularly, by external factors are the aim of the field called teratology. The external factors studied by teratology are known as teratogens and can be biological or environmental factors for example, chemicals, medications, recreational drugs, environmental pollutants, physical agents (e.g., X-rays and maternal hyperthermia) and maternal metabolic conditions. Proving the teratogenicity of a factor is a difficult task requiring epidemiology studies as well as experimental teratology evidence from the use of animal models, one of which is the chicken embryo. This model in particular has the advantage of being able to follow development live and in vivo, with rapid development hatching around 21 days, is cheap and easy to manipulate and to observe development. All this allows the chicken embryo to be used in drug screening studies, teratogenic evaluation and studies of mechanisms of teratogenicity. The chicken embryo shares morphological, biochemical and genetic similarities with humans as well as mammalian species, making them ideal to ascertain the actions of teratogens, as well as screen drugs to test for their safety. Pre-clinical trials for new drugs are carried out in rodents and rabbits, however, chicken embryos have been used to screen new compounds or analogs of thalidomide as well as to investigate how some drugs can lead to congenital malformations. Indeed, the chicken embryo has proved valuable in understanding how many congenital anomalies, seen in humans, arise following teratogen exposure. The aim of this review is to highlight the role of the chicken embryo as an experimental model for studies in teratology, exploring its use in drug screening studies, phenotypic evaluation and studies of teratogenic mechanisms of action. Here, we discuss many known teratogens, that have been evaluated using the chicken embryo model including some medicines, such as, thalidomide, valproic acid; recreational drugs including alcohol; environmental influences, such as viruses, specifically ZIKV, which is a newly discovered human teratogen. In addition, we discuss how the chicken embryo has provided insight on the mechanisms of teratogenesis of many compounds and also how this impact on drug safety.
Collapse
Affiliation(s)
- Gabriela Elis Wachholz
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Abstract
Sarcomatoid carcinoma is a rare type of gallbladder cancer with no specific clinical manifestation. The final diagnosis depends on pathological and immunohistochemical examination. Sarcomatoid carcinoma is characterized by early lymphatic metastasis, rapid progression, a high short-term recurrence rate, and a worse prognosis than adenocarcinoma. This report describes a 60-year-old woman with poorly differentiated adenocarcinoma of the gallbladder. She underwent treatment with chemotherapy and surgery. Palliative surgery was performed for treatment of tumor recurrence in April 2018. Postoperative pathology showed infiltration of poorly differentiated carcinomas, most of which were sarcomatoid. After four cycles of chemotherapy, the disease continued to progress. Anlotinib tablets were given from August 2018 to November 2018 but were then stopped because of gastrointestinal bleeding. The patient died in April 2019. This paper reports the whole process of diagnosis and treatment in this case of gallbladder sarcomatoid carcinoma, thus providing a reference for treatment.
Collapse
Affiliation(s)
- Yunfu Shi
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,The First School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiabin Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hua Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiufang Hong
- Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
17
|
Vandetanib versus Cabozantinib in Medullary Thyroid Carcinoma: A Focus on Anti-Angiogenic Effects in Zebrafish Model. Int J Mol Sci 2021; 22:ijms22063031. [PMID: 33809722 PMCID: PMC8002338 DOI: 10.3390/ijms22063031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.
Collapse
|
18
|
Kumar P, Ghosh A, Sundaresan L, Kathirvel P, Sankaranarayanan K, Chatterjee S. Ectopic release of nitric oxide modulates the onset of cardiac development in avian model. In Vitro Cell Dev Biol Anim 2020; 56:593-603. [PMID: 32959218 DOI: 10.1007/s11626-020-00495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Heart development is one of the earliest developmental events, and its pumping action is directly linked to the intensity of development of other organs. Heart contractions mediate the circulation of the nutrients and signalling molecules to the focal points of developing embryos. In the present study, we used in vivo, ex vivo, in vitro, and in silico methods for chick embryo model to characterize and identify molecular targets under the influence of ectopic nitric oxide in reference to cardiogenesis. Spermine NONOate (SpNO) treatment of 10 μM increased the percentage of chick embryos having beating heart at 40th h of incubation by 2.2-fold (p < 0.001). In an ex vivo chick embryo culture, SpNO increased the percentage of embryos having beats by 1.56-fold (p < 0.05) compared with control after 2 h of treatment. Total body weight of SpNO-treated chick embryos at the Hamburger and Hamilton (HH) stage 29 was increased by 1.22-fold (p < 0.005). Cardiac field potential (FP) recordings of chick embryo at HH29 showed 2.5-fold (p < 0.001) increased in the amplitude, 3.2-fold (p < 0.001) increased in frequency of SpNO-treated embryos over that of the control group, whereas FP duration was unaffected. In cultured cardiac progenitors cells (CPCs), SpNO treatment decreased apoptosis and cell death by twofold (p < 0.001) and 1.7-fold (p < 0.001), respectively. Transcriptome analysis of chick embryonic heart isolated from HH15 stage pre-treated with SpNO at HH8 stage showed upregulation of genes involved in heart morphogenesis, heart contraction, cardiac cell development, calcium signalling, structure, and development whereas downregulated genes were enriched under the terms extracellular matrix, wnt pathway, and BMP pathway. The key upstream molecules predicted to be activated were p38 MAPK, MEF2C, TBX5, and GATA4 while KDM5α, DNMT3A, and HNF1α were predicted to be inhibited. This study suggests that the ectopic nitric oxide modulates the onset of cardiac development.
Collapse
Affiliation(s)
- Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India
| | - Anuran Ghosh
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Lakshmikirupa Sundaresan
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India.,Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | | | - Suvro Chatterjee
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India. .,Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
19
|
Challa AP, Beam AL, Shen M, Peryea T, Lavieri RR, Lippmann ES, Aronoff DM. Machine learning on drug-specific data to predict small molecule teratogenicity. Reprod Toxicol 2020; 95:148-158. [PMID: 32428651 PMCID: PMC7577422 DOI: 10.1016/j.reprotox.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
Abstract
Pregnant women are an especially vulnerable population, given the sensitivity of a developing fetus to chemical exposures. However, prescribing behavior for the gravid patient is guided on limited human data and conflicting cases of adverse outcomes due to the exclusion of pregnant populations from randomized, controlled trials. These factors increase risk for adverse drug outcomes and reduce quality of care for pregnant populations. Herein, we propose the application of artificial intelligence to systematically predict the teratogenicity of a prescriptible small molecule from information inherent to the drug. Using unsupervised and supervised machine learning, our model probes all small molecules with known structure and teratogenicity data published in research-amenable formats to identify patterns among structural, meta-structural, and in vitro bioactivity data for each drug and its teratogenicity score. With this workflow, we discovered three chemical functionalities that predispose a drug towards increased teratogenicity and two moieties with potentially protective effects. Our models predict three clinically-relevant classes of teratogenicity with AUC = 0.8 and nearly double the predictive accuracy of a blind control for the same task, suggesting successful modeling. We also present extensive barriers to translational research that restrict data-driven studies in pregnancy and therapeutically "orphan" pregnant populations. Collectively, this work represents a first-in-kind platform for the application of computing to study and predict teratogenicity.
Collapse
Affiliation(s)
- Anup P Challa
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville 37203, TN, United States; Department of Biomedical Informatics, Harvard Medical School, Boston 02115, MA, United States; National Center for Advancing Translational Sciences, National Institutes of Health, Rockville 20850, MD, United States; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville 37212, TN, United States.
| | - Andrew L Beam
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115, MA, United States; Department of Biomedical Informatics, Harvard Medical School, Boston 02115, MA, United States
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville 20850, MD, United States
| | - Tyler Peryea
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville 20850, MD, United States
| | - Robert R Lavieri
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville 37203, TN, United States
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville 37212, TN, United States
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville 37203, TN, United States; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville 37203, TN, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville 37203, TN, United States
| |
Collapse
|
20
|
Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 2020; 204:112583. [PMID: 32731186 DOI: 10.1016/j.ejmech.2020.112583] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μM). At doses as high as 250 μM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Noémie Voutier
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
21
|
Chang Y, Yuan Y, Zhang Q, Rong Y, Yang Y, Chi M, Liu Z, Zhang Y, Yu P, Teng Y. Effects of an isatin derivative on tumor cell migration and angiogenesis. RSC Adv 2020. [DOI: 10.1039/c9ra08448g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compound5-61, a 5-(2-carboxyethenyl)isatin derivative was previously shown to have potent anticancer activity. Its effect on angiogenesis was further explored in this study.
Collapse
|
22
|
Zhang A, Liu B, Xu D, Sun Y. Advanced intrahepatic cholangiocarcinoma treated using anlotinib and microwave ablation: A case report. Medicine (Baltimore) 2019; 98:e18435. [PMID: 31876723 PMCID: PMC6946271 DOI: 10.1097/md.0000000000018435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma (ICC) accounts for 10% to 15% of all primary hepatic carcinomas. However, there are no effective drug treatment strategies against ICC, and surgery is currently the only curative treatment. Here, we present a case of ICC successfully treated with anlotinib, a novel oral agent. PATIENT CONCERNS The patient was a 66-year-old Han Chinese woman, and she was a retired worker. The patient had no history of hepatitis B infection or hypertension. Physical examination showed no abnormalities, and the patient showed no conscious discomfort. However, ultrasound revealed liver occupation. DIAGNOSIS Liver ultrasound and enhanced computed tomography (CT) indicated liver cancer with intrahepatic metastasis. Serum carbohydrate antigen 199 and alpha fetoprotein levels were high at 4270 and 1561 ng/mL, respectively. Pathologic findings of CT-guided liver biopsy revealed an adenocarcinoma. Owing to further immunohistochemical staining and clinical results, a diagnosis of ICC was made. INTERVENTIONS The patient had received 5 cycles of transhepatic arterial chemotherapy and embolization and 1 cycle of microwave ablation. Due to rapid tumor progression and loss of liver function, systemic chemotherapy was contraindicated. As second-line therapy, she received anlotinib, a novel tyrosine kinase inhibitor that inhibits tumor angiogenesis and proliferative signaling and has been used to treat refractory advanced non-small-cell lung cancer that shows progression despite treatment with ≥2 chemotherapy regimens. OUTCOMES This patient showed a partial response after 2 cycles of treatment with anlotinib (12 mg daily, days 1-14 of a 21-day cycle). Drug-related side effects, such as hypertension and hand foot skin reaction, were observed. After 4 cycles of anlotinib, the efficacy appeared to be stable, and the patient showed a progression-free survival period of almost 4 months. However, the patient's condition worsened and she died of liver failure 6 months after treatment (overall survival, almost 6 months). CONCLUSION Some cases of ICC may be responsive to the antiangiogenic drug, anlotinib, when combined with microwave ablation. Randomized clinical studies are required to further confirm the efficacy and safety of anlotinib in the clinical treatment of ICC.
Collapse
|
23
|
Deng Y, Zhong Z, Tan X, Wang S, Qian K. Satisfactory short-term outcome after anlotinib and docetaxel chemotherapy in tongue cancer with N3 cervical lymph node metastasis: A case report. Clin Case Rep 2019; 7:1923-1927. [PMID: 31624610 PMCID: PMC6787789 DOI: 10.1002/ccr3.2390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023] Open
Abstract
Patients with tongue squamous cell carcinoma (TSCC) and cervical lymph node metastasis are particularly difficult to treat. This is the first report of about anlotinib combined with docetaxel chemotherapy for chemotherapy-refractory TSCC with cervical lymph node metastasis, may provide a new, suitable therapeutic option for these patients.
Collapse
Affiliation(s)
- Yi Deng
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Zhao‐Yang Zhong
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Xiao‐Rong Tan
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Shuai Wang
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Kai Qian
- Department of Thoracic SurgeryInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
24
|
Li L, Zhang T, Xu J, Wu J, Wang Y, Qiu X, Zhang Y, Hou W, Yan L, An M, Jiang Y. The Synergism of the Small Molecule ENOblock and Fluconazole Against Fluconazole-Resistant Candida albicans. Front Microbiol 2019; 10:2071. [PMID: 31555252 PMCID: PMC6742966 DOI: 10.3389/fmicb.2019.02071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is the most common opportunistic fungal pathogen which can cause life-threatening bloodstream infections known as candidaemia. It is very important to discover new drugs and targets for the treatment of candidaemia. In this study, we first investigated the combination antifungal effects of the small molecule ENOblock and fluconazole (FLC) against FLC-resistant C. albicans. A checkerboard microdilution assay showed that ENOblock has a significant synergistic effect in combination with FLC against FLC-resistant C. albicans. The time-kill curve further confirmed the synergism of this compound with FLC against FLC-resistant C. albicans. Moreover, we demonstrated the significant inhibitory effects of ENOblock alone and in combination with FLC against C. albicans hypha and biofilm formation. Furthermore, the XTT assay showed that ENOblock has relatively low toxicity to human umbilical vein endothelial cells. The in vivo antifungal efficacy of ENOblock was further assessed in a murine model of systemic C. albicans infection. Although ENOblock alone was not sufficient to treat C. albicans infection, the combination of FLC and ENOblock showed significant in vivo activity against FLC-resistant C. albicans. Finally, using surface plasmon resonance analysis as well as an inhibition assay, we determined that ENOblock directly interacted with CaEno1 and significantly inhibited the transglutaminase activity of this enzyme, which is involved in the growth and morphogenesis of C. albicans. In summary, these results demonstrate the synergistic effects of FLC and ENOblock against FLC-resistant C. albicans, and indicate that inhibition of the transglutaminase activity of CaEno1 by ENOblock might confer an advantage for the synergism of FLC and ENOblock, suggesting the potential of ENOblock as a new antifungal candidate.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Teng Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiran Qiu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weitong Hou
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Yan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Maomao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Barra F, Grandi G, Tantari M, Scala C, Facchinetti F, Ferrero S. A comprehensive review of hormonal and biological therapies for endometriosis: latest developments. Expert Opin Biol Ther 2019; 19:343-360. [DOI: 10.1080/14712598.2019.1581761] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giovanni Grandi
- Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Tantari
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Carolina Scala
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Fabio Facchinetti
- Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
26
|
Abstract
Thalidomide remains notorious as a result of the damage it caused to children born to mothers who used it to treat morning sickness between 1957 and 1961. The re-emergence of the drug to treat a range of conditions including erythema nodosum leprosum (a complication of leprosy) has led to a new generation of thalidomide damaged children being born in Brazil. Although thalidomide affects most of the developing tissues and organs of the body, the damage to the limbs is striking. Indeed phocomelia, the severe reduction or loss of the proximal long bones with retention of the distal hand/foot plate remains the stereotypical image of thalidomide. This review focuses on the type and range of damage thalidomide caused to the limbs, reviews current understanding of the mechanisms underlying thalidomide-induced limb malformations and outlines some of the challenges remaining in elucidating its teratogenicity.
Collapse
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
27
|
Chen HM, Feng G. Use of anlotinib in intra-abdominal desmoplastic small round cell tumors: a case report and literature review. Onco Targets Ther 2018; 12:57-61. [PMID: 30588030 PMCID: PMC6302812 DOI: 10.2147/ott.s190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Intra-abdominal desmoplastic small round cell tumor (IADSRCT) is a highly invasive malignant tumor that is rare in clinical practice. Anlotinib is a multitarget receptor tyrosine kinase inhibitor which inhibits vascular endothelial growth factor receptor (VEGFR) 1-3, fibroblast growth factor receptor (FGFR) 1-4, platelet-derived growth factor receptors (PDGFR) α/β, c-Kit, and Met. In our study, we present a record of IADSRCT which was validly treated by anlotinib. Case presentation A 38-year-old man was admitted due to anterior abdominal wall nodule for 1 month. The nodule and intraperitoneal mass were resected and diagnosed IADSRCT. The patient received six cycles of adjuvant chemotherapy and his CT scan revealed metastasis in the right inguinal lymph node and omental lymph node. Anlotinib was then recommended. Anlotinib significantly reduced the lymph nodes after four cycles. The patient continued to use anlotinib as maintenance therapy, and the patient was in good condition. The side effects of anlotinib were high triglycerides and fatigue. However, its toxicity was controllable and tolerable. Conclusion This is the first report about anlotinib being effective in the treatment of IADSRCT. This report may provide a new option for the treatment of metastatic IADSRCT.
Collapse
Affiliation(s)
- Hui-Min Chen
- Nanjing Jiangbei People's Hospital, Nantong University, Nanjing 220000, People's Republic of China,
| | - Ge Feng
- Nanjing Jiangbei People's Hospital, Nantong University, Nanjing 220000, People's Republic of China,
| |
Collapse
|
28
|
Su Y, Meng Z, Xu X, Wang X, Zuo R, Hou Y, Li K, Chen P. [A Case Report of Advanced Lung Adenocarcinoma Harboring KRAS Mutation
Treated with Anlotinib]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:428-430. [PMID: 29764596 PMCID: PMC5999919 DOI: 10.3779/j.issn.1009-3419.2018.05.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, the number of advanced non-small cell lung cancer (NSCLC) patients has gradually increased, and the treatment methods have also been significantly increased. However, there are no standard treatment plans at home and abroad for third-line and above patients who are refractory to targeted therapy epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) or chemotherapy. The clinical treatment effect is also not satisfactory. Anlotinib is a novel TKI targeting the vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR) and c-Kit. ALTER0303 trail, phase III study has demonstrated that Anlotinib significantly prolonged overall survival (OS) and progression-free survival (PFS) in advanced NSCLC patients as 3rd line treatment.Here we report a case of advanced lung adenocarcinoma harboring KRAS mutation treated with Anlotinib.
.
Collapse
Affiliation(s)
- Yudong Su
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhaoting Meng
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoyan Xu
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - XinYue Wang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ran Zuo
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yunxia Hou
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kai Li
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
29
|
Steinebach C, Ambrożak A, Dosa S, Beedie SL, Strope JD, Schnakenburg G, Figg WD, Gütschow M. Synthesis, Structural Characterization, and Antiangiogenic Activity of Polyfluorinated Benzamides. ChemMedChem 2018; 13:2080-2089. [PMID: 30134015 DOI: 10.1002/cmdc.201800263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Indexed: 11/09/2022]
Abstract
The introduction of fluorine into bioactive molecules is a matter of importance in medicinal chemistry. In this study, representatives of various chemical entities of fluoroaromatic compounds were synthesized. Depending on the reaction conditions, either tetrafluorophthalimides or ammonium tetrafluorophthalamates are accessible from tetrafluorophthalic anhydride and primary amines. Tetrafluorophthalamic acids undergo thermal decarboxylation to yield tetrafluorobenzamides. These could be successfully converted upon treatment with primary amines, in the course of an aromatic nucleophilic substitution, to 2,3,5-trifluorobenzamides with respective amino substituents at the 4-position. The five structure types were characterized by means of spectroscopic and crystallographic methods. The synthesized compounds were evaluated as inhibitors of angiogenesis by measuring microvessel outgrowth in a rat aortic ring assay. The biological activity was maintained throughout these different polyfluorinated chemotypes.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Agnieszka Ambrożak
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Stefan Dosa
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Shaunna L Beedie
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
30
|
Shan Y, Wang B, Zhang J. New strategies in achieving antiangiogenic effect: Multiplex inhibitors suppressing compensatory activations of RTKs. Med Res Rev 2018; 38:1674-1705. [DOI: 10.1002/med.21517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanyuan Shan
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Binghe Wang
- Department of Chemistry; Center for Diagnostics and Therapeutics; Georgia State University; Atlanta GA USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
31
|
Colla L, Diena D, Rossetti M, Manzione AM, Marozio L, Benedetto C, Biancone L. Immunosuppression in pregnant women with renal disease: review of the latest evidence in the biologics era. J Nephrol 2018; 31:361-383. [DOI: 10.1007/s40620-018-0477-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
|
32
|
The Primodos components Norethisterone acetate and Ethinyl estradiol induce developmental abnormalities in zebrafish embryos. Sci Rep 2018; 8:2917. [PMID: 29440757 PMCID: PMC5811427 DOI: 10.1038/s41598-018-21318-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Primodos was a hormone pregnancy test used between 1958-1978 that has been implicated with causing a range of birth defects ever since. Though Primodos is no longer used, it's components, Norethisterone acetate and Ethinyl estradiol, are used in other medications today including treatments for endometriosis and contraceptives. However, whether Primodos caused birth defects or not remains controversial, and has been little investigated. Here we used the developing zebrafish embryo, a human cell-line and mouse retinal explants to investigate the actions of the components of Primodos upon embryonic and tissue development. We show that Norethisterone acetate and Ethinyl estradiol cause embryonic damage in a dose and time responsive manner. The damage occurs rapidly after drug exposure, affecting multiple organ systems. Moreover, we found that the Norethisterone acetate and Ethinyl estradiol mixture can affect nerve outgrowth and blood vessel patterning directly and accumulates in the forming embryo for at least 24 hrs. These data demonstrate that Norethisterone acetate and Ethinyl estradiol are potentially teratogenic, depending on dose and embryonic stage of development in the zebrafish. Further work in mammalian model species are now required to build on these findings and determine if placental embryos also are affected by synthetic sex hormones and their mechanisms of action.
Collapse
|
33
|
Clinical pharmacology of anti-angiogenic drugs in oncology. Crit Rev Oncol Hematol 2017; 119:75-93. [PMID: 28916378 DOI: 10.1016/j.critrevonc.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormal vasculature proliferation is one of the so-called hallmarks of cancer. Angiogenesis inhibitor therapies are one of the major breakthroughs in cancer treatment in the last two decades. Two types of anti-angiogenics have been approved: monoclonal antibodies and derivatives, which are injected and target the extracellular part of a receptor, and protein kinase inhibitors, which are orally taken small molecules targeting the intra-cellular Adenosine Triphosphate -pocket of different kinases. They have become an important part of some tumors' treatment, both in monotherapy or in combination. In this review, we discuss the key pharmacological concepts and the major pitfalls of anti-angiogenic prescriptions. We also review the pharmacokinetic and pharmacodynamics profile of all approved anti-angiogenic protein kinase inhibitors and the potential role of surrogate markers and of therapeutic drug monitoring.
Collapse
|
34
|
Vargesson N. Developmental angiogenesis. Reprod Toxicol 2017; 70:1-2. [PMID: 28602455 DOI: 10.1016/j.reprotox.2017.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 5EZ, Aberdeen, United Kingdom.
| |
Collapse
|
35
|
Arterial dysgenesis and limb defects: Clinical and experimental examples. Reprod Toxicol 2017; 70:21-29. [DOI: 10.1016/j.reprotox.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 11/21/2022]
|
36
|
Beedie SL, Diamond AJ, Fraga LR, Figg WD, Vargesson N. Vertebrate embryos as tools for anti-angiogenic drug screening and function. Reprod Toxicol 2017; 70:49-59. [PMID: 27888069 PMCID: PMC6357960 DOI: 10.1016/j.reprotox.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
The development of new angiogenic inhibitors highlights a need for robust screening assays that adequately capture the complexity of vessel formation, and allow for the quantitative evaluation of the teratogenicity of new anti-angiogenic agents. This review discusses the use of screening assays in vertebrate embryos, specifically focusing upon chicken and zebrafish embryos, for the detection of anti-angiogenic agents.
Collapse
Affiliation(s)
- Shaunna L Beedie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK; Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Alexandra J Diamond
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Lucas Rosa Fraga
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
37
|
Activity of Sanguinarine against Candida albicans Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.02259-16. [PMID: 28223387 DOI: 10.1128/aac.02259-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022] Open
Abstract
Candida albicans biofilms show resistance to many clinical antifungal agents and play a considerable contributing role in the process of C. albicans infections. New antifungal agents against C. albicans biofilms are sorely needed. The aim of this study was to evaluate sanguinarine (SAN) for its activity against Candida albicans biofilms and explore the underlying mechanism. The MIC50 of SAN was 3.2 μg/ml, while ≥0.8 μg/ml of SAN could suppress C. albicans biofilms. Further study revealed that ≥0.8 μg/ml of SAN could decrease cellular surface hydrophobicity (CSH) and inhibited hypha formation. Real-time reverse transcription-PCR (RT-PCR) results indicated that the exposure of C. albicans to SAN suppressed the expression of some adhesion- and hypha-specific/essential genes related to the cyclic AMP (cAMP) pathway, including ALS3, HWP1, ECE1, HGC1, and CYR1 Consistently, the endogenous cAMP level of C. albicans was downregulated after SAN treatment, and the addition of cAMP rescued the SAN-induced filamentation defect. In addition, SAN showed relatively low toxicity to human umbilical vein endothelial cells, the 50% inhibitory concentration (IC50) being 7.8 μg/ml. Collectively, the results show that SAN exhibits strong activity against C. albicans biofilms, and the activity was associated with its inhibitory effect on adhesion and hypha formation due to cAMP pathway suppression.
Collapse
|
38
|
Dauti A, Gerstl B, Chong S, Chisholm O, Anazodo A. Improvements in Clinical Trials Information Will Improve the Reproductive Health and Fertility of Cancer Patients. J Adolesc Young Adult Oncol 2017; 6:235-269. [PMID: 28207285 DOI: 10.1089/jayao.2016.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are a number of barriers that result in cancer patients not being referred for oncofertility care, which include knowledge about reproductive risks of antineoplastic agents. Without this information, clinicians do not always make recommendations for oncofertility care. The objective of this study was to describe the level of reproductive information and recommendations that clinicians have available in clinical trial protocols regarding oncofertility management and follow-up, and the information that patients may receive in clinical trials patient information sheets or consent forms. A literature review of the 71 antineoplastic drugs included in the 68 clinical trial protocols showed that 68% of the antineoplastic drugs had gonadotoxic animal data, 32% had gonadotoxic human data, 83% had teratogenic animal data, and 32% had teratogenic human data. When the clinical trial protocols were reviewed, only 22% of the protocols reported the teratogenic risks and 32% of the protocols reported the gonadotoxic risk. Only 56% of phase 3 protocols had gonadotoxic information and 13% of phase 3 protocols had teratogenic information. Nine percent of the protocols provided fertility preservation recommendations and 4% provided reproductive information in the follow-up and survivorship period. Twenty-six percent had a section in the clinical trials protocol, which identified oncofertility information easily. When gonadotoxic and teratogenic effects of treatment were known, they were not consistently included in the clinical trial protocols and the lack of data for new drugs was not reported. Very few protocols gave recommendations for oncofertility management and follow-up following the completion of cancer treatment. The research team proposes a number of recommendations that should be required for clinicians and pharmaceutical companies developing new trials.
Collapse
Affiliation(s)
- Angela Dauti
- 1 College of Arts and Sciences, Department of Chemistry, New York University , New York City, New York.,2 Population Sciences Department, Dana-Farber Cancer Institute , Boston, Massachusetts.,3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Brigitte Gerstl
- 4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia
| | - Serena Chong
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Orin Chisholm
- 5 Department of Pharmaceutical Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Antoinette Anazodo
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia .,4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia .,6 Nelune Comprehensive Cancer Centre, Prince of Wales Hospital , Randwick, Australia
| |
Collapse
|
39
|
Ambrożak A, Steinebach C, Gardner ER, Beedie SL, Schnakenburg G, Figg WD, Gütschow M. Synthesis and Antiangiogenic Properties of Tetrafluorophthalimido and Tetrafluorobenzamido Barbituric Acids. ChemMedChem 2016; 11:2621-2629. [PMID: 27805767 PMCID: PMC6438167 DOI: 10.1002/cmdc.201600496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/18/2016] [Indexed: 01/24/2023]
Abstract
The development of novel thalidomide derivatives as immunomodulatory and anti-angiogenic agents has revived over the last two decades. Herein we report the design and synthesis of three chemotypes of barbituric acids derived from the thalidomide structure: phthalimido-, tetrafluorophthalimido-, and tetrafluorobenzamidobarbituric acids. The latter were obtained by a new tandem reaction, including a ring opening and a decarboxylation of the fluorine-activated phthalamic acid intermediates. Thirty compounds of the three chemotypes were evaluated for their anti-angiogenic properties in an ex vivo assay by measuring the decrease in microvessel outgrowth in rat aortic ring explants. Tetrafluorination of the phthalimide moiety in tetrafluorophthalimidobarbituric acids was essential, as all of the nonfluorinated counterparts lost anti-angiogenic activity. An opening of the five-membered ring and the accompanying increased conformational freedom, in case of the corresponding tetrafluorobenzamidobarbituric acids, was well tolerated. Their activity was retained, although their molecular structures differ in torsional flexibility and possible hydrogen-bond networking, as revealed by comparative X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Agnieszka Ambrożak
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der lmmenburg 4, 53121 Bonn (Germany),
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der lmmenburg 4, 53121 Bonn (Germany),
| | - Erin R. Gardner
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892 (USA)
| | - Shaunna L. Beedie
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD 20892 (USA)
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn (Germany)
| | - William D. Figg
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD 20892 (USA)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der lmmenburg 4, 53121 Bonn (Germany),
| |
Collapse
|
40
|
Toimela T, Huttala O, Sabell E, Mannerström M, Sarkanen JR, Ylikomi T, Heinonen T. Intra-laboratory validated human cell-based in vitro vasculogenesis/angiogenesis test with serum-free medium. Reprod Toxicol 2016; 70:116-125. [PMID: 27915012 DOI: 10.1016/j.reprotox.2016.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 01/27/2023]
Abstract
Vasculogenesis and angiogenesis are the processes by which new blood vessels are formed. We have developed a serum-free human adipose stromal cell and umbilical cord vein endothelial cell based vasculogenesis/angiogenesis test. In this study, the test was validated in our GLP laboratory following the OECD Guidance Document 34 [1] using erlotinib, acetylic salicylic acid, levamisole, 2-methoxyestradiol, anti-VEGF, methimazole, and D-mannitol to show its reproducibility, repeatability, and predictivity for humans. The results were obtained from immunostained tubule structures and cytotoxicity assessment. The performance of the test was evaluated using 26 suspected teratogens and non-teratogens. The positive predictive value was 71.4% and the negative predictive value was 50.0%, indicating that inhibition of vasculogenesis is a significant mechanism behind teratogenesis. In conclusion, this test has great potential to be a screening test for prioritization purposes of chemicals and to be a test in a battery to predict developmental hazards in a regulatory context.
Collapse
Affiliation(s)
- T Toimela
- FICAM, University of Tampere, Finland.
| | - O Huttala
- FICAM, University of Tampere, Finland
| | - E Sabell
- FICAM, University of Tampere, Finland
| | | | - J R Sarkanen
- Cell Biology, University of Tampere, Finland; Science Center, Tampere University Hospital, Finland
| | - T Ylikomi
- Cell Biology, University of Tampere, Finland; Science Center, Tampere University Hospital, Finland
| | | |
Collapse
|