1
|
Hägele L, Trachtmann N, Takors R. The knowledge driven DBTL cycle provides mechanistic insights while optimising dopamine production in Escherichia coli. Microb Cell Fact 2025; 24:111. [PMID: 40380156 DOI: 10.1186/s12934-025-02729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Dopamine is a promising organic compound with several key applications in emergency medicine, diagnosis and treatment of cancer, production of lithium anodes, and wastewater treatment. Since studies on in vivo dopamine production are limited, this study demonstrates the development and optimisation of a dopamine production strain by the help of the knowledge driven design-build-test-learn (DBTL) cycle for rational strain engineering. RESULTS The knowledge driven DBTL cycle, involving upstream in vitro investigation, is an automated workflow that enables both mechanistic understanding and efficient DBTL cycling. Following the in vitro cell lysate studies, the results were translated to the in vivo environment through high-throughput ribosome binding site (RBS) engineering. As a result, we developed a dopamine production strain capable of producing dopamine at concentrations of 69.03 ± 1.2 mg/L which equals 34.34 ± 0.59 mg/gbiomass. Compared to state-of-the-art in vivo dopamine production, our approach improved performance by 2.6 and 6.6-fold, respectively. CONCLUSION In essence, a highly efficient dopamine production strain was developed by implementing the knowledge driven DBTL cycle involving upstream in vitro investigation. The fine-tuning of the dopamine pathway by high-throughput RBS engineering clearly demonstrated the impact of GC content in the Shine-Dalgarno sequence on the RBS strength.
Collapse
Affiliation(s)
- Lorena Hägele
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Natalia Trachtmann
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
2
|
Li X, Liu Y, Ma L, Jiang W, Shi T, Li L, Li C, Chen Z, Fan X, Xu Q. Metabolic engineering of Escherichia coli for high-yield dopamine production via optimized fermentation strategies. Appl Environ Microbiol 2025:e0015925. [PMID: 40338089 DOI: 10.1128/aem.00159-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Dopamine (DA) is a high-value metabolic product; however, its biosynthesis has multiple limitations due to metabolic regulation and fermentation strategies. This study aimed to construct a high-yield dopamine-producing Escherichia coli strain devoid of plasmids and defects using E. coli W3110 as the chassis strain. We constitutively expressed the DmDdC gene from Drosophila melanogaster in E. coli, which was combined with the hpaBC gene from E. coli BL21 (DE3), successfully constructed a dopamine biosynthesis module, and achieved preliminary dopamine synthesis in E. coli. By optimizing the promoters of the key enzyme genes, we achieved a coordinated balance between the generation and utilization of intermediate metabolites. Subsequently, we used metabolic engineering strategies, such as increasing the carbon flux through the dopamine synthesis pathway, elevating the gene copy number of key enzymes, and constructing an FADH2-NADH supply module to create a high-yield strain, DA-29. In this study, a two-stage pH fermentation strategy was developed to enhance fermentation. The first stage ensures the normal growth of the strain, whereas the second stage reduces dopamine degradation by maintaining a low pH. Finally, using a combined Fe2+ and ascorbic acid feeding strategy, we obtained 22.58 g/L of dopamine in a 5 L bioreactor, demonstrating that the constructed strain DA-29 possesses high dopamine production capacity, providing strong support for the industrial-scale dopamine production. IMPORTANCE In this study, we developed a plasmid-free, defect-free Escherichia coli strain with high dopamine production. We further optimized the fermentation process for this strain by applying the dual-stage pH fermentation strategy developed in this research, combined with an Fe²⁺-ascorbic acid co-feeding strategy. This approach significantly increased dopamine yield and addressed the issue of dopamine oxidation during fermentation. The yield reached 22.58 g/L, marking the highest known yield to date and laying a solid foundation for future scale-up production. This research explores the metabolic pathway of dopamine and the efficient fermentation methods for its production, providing a novel fermentation strategy. It offers new insights into microbial production of aromatic amino acid derivatives, advancing research in this field.
Collapse
Affiliation(s)
- Xu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yanghao Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Ling Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Tangen Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Lanxiao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Changgeng Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zhichao Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaoguang Fan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Shen J, Liu P, Zhang B, Ye B, Xu S, Su W, Chu X. Expanding the application of tyrosine: engineering microbes for the production of tyrosine and its derivatives. Front Bioeng Biotechnol 2025; 13:1519764. [PMID: 40343203 PMCID: PMC12058496 DOI: 10.3389/fbioe.2025.1519764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Aromatic compounds are widely used in the fields of medicine, chemical industry, and food, with a considerable market size. Tyrosine, an aromatic amino acid, boasts not only a wide range of applications but also serves as a valuable precursor for synthesizing a diverse array of high-value aromatic compounds. Amid growing concerns over environmental and resource challenges, the adoption of green, clean, and sustainable biotechnology for producing aromatic compounds is gaining increasing recognition as a viable alternative to traditional chemical synthesis and plant extraction methods. This article provides an overview of the current status of tyrosine biomanufacturing and explores the methods for generating derivatives, including resveratrol, levodopa, p-coumaric acid, caffeic acid, zosteric acid, tyrosol, hydroxytyrosol, tanshinol, naringenin, eriodictyol, and salidroside, using tyrosine as a primary raw material. Furthermore, this review examines the current challenges and outlines future directions for microbial fermentation for the production of tyrosine and its derivatives.
Collapse
Affiliation(s)
- Jian Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bangce Ye
- East China University of Science and Technology, Shanghai, China
| | - Shunqing Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Ferreira S, Balola A, Sveshnikova A, Hatzimanikatis V, Vilaça P, Maia P, Carreira R, Stoney R, Carbonell P, Souza CS, Correia J, Lousa D, Soares CM, Rocha I. Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in Escherichia coli. Front Bioeng Biotechnol 2024; 12:1360740. [PMID: 38978715 PMCID: PMC11228882 DOI: 10.3389/fbioe.2024.1360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Developing efficient bioprocesses requires selecting the best biosynthetic pathways, which can be challenging and time-consuming due to the vast amount of data available in databases and literature. The extension of the shikimate pathway for the biosynthesis of commercially attractive molecules often involves promiscuous enzymes or lacks well-established routes. To address these challenges, we developed a computational workflow integrating enumeration/retrosynthesis algorithms, a toolbox for pathway analysis, enzyme selection tools, and a gene discovery pipeline, supported by manual curation and literature review. Our focus has been on implementing biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications in health and nutrition. We selected one pathway to produce L-DOPA and two different pathways for dopamine-one already described in the literature and a novel pathway. Our goal was either to identify the most suitable gene candidates for expression in Escherichia coli for the known pathways or to discover innovative pathways. Although not all implemented pathways resulted in the accumulation of target compounds, in our shake-flask experiments we achieved a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for known and novel pathways, respectively. In the case of L-DOPA, we utilized, for the first time, a mutant version of tyrosinase from Ralstonia solanacearum. Production of dopamine via the known biosynthesis route was accomplished by coupling the L-DOPA pathway with the expression of DOPA decarboxylase from Pseudomonas putida, resulting in a unique biosynthetic pathway never reported in literature before. In the context of the novel pathway, dopamine was produced using tyramine as the intermediate compound. To achieve this, tyrosine was initially converted into tyramine by expressing TDC from Levilactobacillus brevis, which, in turn, was converted into dopamine through the action of the enzyme encoded by ppoMP from Mucuna pruriens. This marks the first time that an alternative biosynthetic pathway for dopamine has been validated in microbes. These findings underscore the effectiveness of our computational workflow in facilitating pathway enumeration and selection, offering the potential to uncover novel biosynthetic routes, thus paving the way for other target compounds of biotechnological interest.
Collapse
Affiliation(s)
- Sofia Ferreira
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Alexandra Balola
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paulo Vilaça
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Paulo Maia
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Rafael Carreira
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Ruth Stoney
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC: Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Caio Silva Souza
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - João Correia
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Diana Lousa
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cláudio M Soares
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Godoy P, Udaondo Z, Duque E, Ramos JL. Biosynthesis of fragrance 2-phenylethanol from sugars by Pseudomonas putida. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:51. [PMID: 38566218 PMCID: PMC10986128 DOI: 10.1186/s13068-024-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Petrochemicals contribute to environmental issues, with concerns ranging from energy consumption and carbon emission to pollution. In contrast, microbial biorefineries offer eco-friendly alternatives. The solvent-tolerant Pseudomonas putida DOT-T1E serves as a suitable host for producing aromatic compounds, specifically L-phenylalanine and its derivative, 2-phenylethanol (2-PE), which find widespread applications in various industries. RESULTS This study focuses on enhancing 2-PE production in two L-phenylalanine overproducing strains of DOT-T1E, namely CM12-5 and CM12-5Δgcd (xylABE), which grow with glucose and glucose-xylose, respectively. To synthesize 2-PE from L-phenylalanine, these strains were transformed with plasmid pPE-1, bearing the Ehrlich pathway genes, and it was found higher 2-PE production with glucose (about 50-60 ppm) than with xylose (< 3 ppm). To understand the limiting factors, we tested the addition of phenylalanine and intermediates from the Ehrlich and shikimate pathways. The results identified intracellular L-phenylalanine as a key limiting factor for 2-PE production. To overcame this limitation, a chorismate mutase/prephenate dehydratase variant-insentive to feedback inhibition by aromatic amino acids-was introduced in the producing strains. This led to increased L-phenylalanine production and subsequently produced more 2-PE (100 ppm). Random mutagenesis of the strains also produced strains with higher L-phenylalanine titers and increased 2-PE production (up to 120 ppm). The improvements resulted from preventing dead-end product accumulation from shikimate and limiting the catabolism of potential pathway intermediates in the Ehrlich pathway. The study explored agricultural waste substrates, such as corn stover, sugarcane straw and corn-syrup as potential C sources. The best results were obtained using 2G substrates at 3% (between 82 and 100 ppm 2-PE), with glucose being the preferred sugar for 2-PE production among the monomeric sugars in these substrates. CONCLUSIONS The findings of this study offer strategies to enhance phenylalanine production, a key substrate for the synthesis of aromatic compounds. The ability of P. putida DOT-T1E to thrive with various C-sources and its tolerance to substrates, products, and potential toxicants in industrial wastes, are highlighted. The study identified and overcome possible bottlenecks for 2-PE production. Ultimately, the strains have potential to become efficient microbial platforms for synthesizing 2-PE from agro-industrial waste materials.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain.
| |
Collapse
|
6
|
Fatema N, Li X, Gan Q, Fan C. Characterizing lysine acetylation of glucokinase. Protein Sci 2024; 33:e4845. [PMID: 37996965 PMCID: PMC10731539 DOI: 10.1002/pro.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
7
|
Zhou M, Li Y, Cai Y, Sun Y, Chen W, Wang J, Shen F, Zhan Y, Ying J, Chen S. Development of an Inosine Hyperproducer from Bacillus licheniformis by Systems Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20210-20221. [PMID: 38079219 DOI: 10.1021/acs.jafc.3c07715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Inosine is widely used in food, chemical, and medicine. This study developed Bacillus licheniformis into an inosine hyperproducer through systems metabolic engineering. First, purine metabolism was activated by deleting inhibitors PurR and YabJ and overexpressing the pur operon. Then, the 5-phosphoribosyl-1-pyrophosphate (PRPP) supply was increased by optimizing the glucose transport system and pentose phosphate pathway, increasing the inosine titer by 97% and decreasing the titers of byproducts by 36%. Next, to prevent the degradation of inosine, genes deoD and pupG coding purine nucleoside phosphorylase were deleted, accumulating 0.91 g/L inosine in the culture medium. Additionally, the downregulation of adenosine 5'-monophosphate (AMP) synthesis pathway increased the inosine titer by 409%. Importantly, enhancing the glycine and aspartate supply increased the inosine titer by 298%. Finally, the guanosine synthesis pathway was blocked, leading to strain IR-8-2 producing 27.41 g/L inosine with a 0.46 g inosine/g glucose yield and a 0.38 g/(L·h) productivity in a shake flask.
Collapse
Affiliation(s)
- Menglin Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Youhua Cai
- Star Lake Bioscience Co. Inc, Zhaoging, Zhaoging, Guangdong 526000, PR China
| | - Yaqi Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Wu Chen
- Star Lake Bioscience Co. Inc, Zhaoging, Zhaoging, Guangdong 526000, PR China
| | - Jin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Feng Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jun Ying
- Star Lake Bioscience Co. Inc, Zhaoging, Zhaoging, Guangdong 526000, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, PR China
| |
Collapse
|
8
|
Chen C, Ren H, Tang W, Han M, Chen Q, Zhou H, Chen J, Gao Y, Liu W. Spherical porous iron-nitrogen-carbon nanozymes derived from a tannin coordination framework for the preparation of L-DOPA by emulating tyrosine hydroxylase. J Mater Chem B 2023; 11:11235-11250. [PMID: 37953738 DOI: 10.1039/d3tb01082a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is widely used in Parkinson's disease treatment and is therefore in high demand. Development of an efficient method for the production of L-DOPA is urgently required. Nanozymes emulating tyrosine hydroxylase have attracted enormous attention for biomimetic synthesis of L-DOPA, but suffered from heterogeneity. Herein, a spherical porous iron-nitrogen-carbon nanozyme was developed for production of L-DOPA. Tannic acid chelated with ferrous ions to form a tannin-iron coordination framework as a carbon precursor. Iron and nitrogen co-doped carbon nanospheres were assembled via an evaporation-induced self-assembly process using urea as a nitrogen source, F127 as a soft template, and formaldehyde as a crosslinker. The nanozyme was obtained after carbonization and acid etching. The nanozyme possessed a dispersive iron atom anchored in the Fe-N coordination structure as an active site to mimic the active center of tyrosine hydroxylase. The material showed spherical morphology, uniform size, high specific surface area, a mesoporous structure and easy magnetic separation. The structural properties could promote the density and accessibility of active sites and facilitate mass transport and electron transfer. The nanozyme exhibited high activity to catalyze the hydroxylation of tyrosine to L-DOPA as tyrosine hydroxylase in the presence of ascorbic acid and hydrogen peroxide. The titer of DOPA reached 1.2 mM. The nanozyme showed good reusability and comparable enzyme kinetics to tyrosine hydroxylase with a Michaelis-Menten constant of 2.3 mM. The major active species was the hydroxyl radical. Biomimetic simulation of tyrosine hydroxylase using a nanozyme with a fine structure provided a new route for the efficient production of L-DOPA.
Collapse
Affiliation(s)
- Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Haisheng Ren
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Zhou
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiadong Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuyue Gao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Wang H, Wang L, Chen J, Hu M, Fang F, Zhou J. Promoting FADH 2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16681-16690. [PMID: 37877749 DOI: 10.1021/acs.jafc.3c05477] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydroxytyrosol is a natural polyphenolic compound widely used in the food and drug industries. The current commercial production of hydroxytyrosol relies mainly on plant extracts, which involve long extraction cycles and various raw materials. Microbial fermentation has potential value as an environmentally friendly and low-cost method. Here, a de novo biosynthetic pathway of hydroxytyrosol has been designed and constructed in an Escherichia coli strain with released tyrosine feedback inhibition. By introduction of hpaBC from E. coli and ARO10 and ADH6 from Saccharomyces cerevisiae, the de novo biosynthesis of hydroxytyrosol was achieved. An important finding in cofactor engineering is that the introduction of L-amino acid deaminase (LAAD) promotes not only cofactor regeneration but also metabolic flow redistribution. To further enhance the hydroxylation process, different 4-hydroxyphenylacetate 3-monooxygenase (hpaB) mutants and HpaBC proteins from different sources were screened. Finally, after optimization of the carbon source, pH, and seed medium, the optimum engineered strain produced 9.87 g/L hydroxytyrosol in a 5 L bioreactor. This represents the highest titer reported to date for de novo biosynthesis of hydroxytyrosol in microorganisms.
Collapse
Affiliation(s)
- Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM. High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol 2023; 43:82-99. [PMID: 34957867 DOI: 10.1080/07388551.2021.2007351] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the rapid advances in biotechnological tools and strategies, microbial cell factory-constructing strategies have been established for the production of value-added compounds. However, optimizing the tradeoff between the biomass, yield, and titer remains a challenge in microbial production. Gene regulation is necessary to optimize and control metabolic fluxes in microorganisms for high-production performance. Various high-throughput genetic engineering tools have been developed for achieving rational gene regulation and genetic perturbation, diversifying the cellular phenotype and enhancing bioproduction performance. In this paper, we review the current high-throughput genetic engineering tools for gene regulation. In particular, technological approaches used in a diverse range of genetic tools for constructing microbial cell factories are introduced, and representative applications of these tools are presented. Finally, the prospects for high-throughput genetic engineering tools for gene regulation are discussed.
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Sumin Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyukjin Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Huang MY, Wang WY, Liang ZZ, Huang YC, Yi Y, Niu FX. Enhancing the Production of Pinene in Escherichia coli by Using a Combination of Shotgun, Product-Tolerance and I-SceI Cleavage Systems. BIOLOGY 2022; 11:1484. [PMID: 36290388 PMCID: PMC9598909 DOI: 10.3390/biology11101484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Tolerance breeding through genetic engineering, sequence and omics analyses, and gene identification processes are widely used to synthesize biofuels. The majority of related mechanisms have been shown to yield endogenous genes with high expression. However, the process was time-consuming and labor-intensive, meaning there is a need to address the problems associated with the low-throughput screening method and significant time and money consumption. In this study, a combination of the limit screening method (LMS method) and product-tolerance engineering was proposed and applied. The Escherichia coli MG1655 genomic DNA library was constructed using the shotgun method. Then, the cultures were incubated at concentrations of 0.25%, 0.5%, 0.75% and 1.0% of pinene with different inhibitory effects. Finally, the genes acrB, flgFG, motB and ndk were found to be associated with the enhanced tolerance of E. coli to pinene. Using the I-SceI cleavage system, the promoters of acrB, flgFG and ndk genes were replaced with P37. The final strain increased the production of pinene from glucose by 2.1 times.
Collapse
Affiliation(s)
- Ming-Yue Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
- Department of Basic Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Wei-Yang Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Zhen-Zhen Liang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yu-Chen Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Fu-Xing Niu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
13
|
Su Y, Lin HC, Teh LS, Chevance F, James I, Mayfield C, Golic KG, Gagnon JA, Rog O, Dale C. Rational engineering of a synthetic insect-bacterial mutualism. Curr Biol 2022; 32:3925-3938.e6. [PMID: 35963240 PMCID: PMC10080585 DOI: 10.1016/j.cub.2022.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Many insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations. We then engineered the nascent symbiont to overproduce the aromatic amino acids tyrosine and phenylalanine, which facilitate weevil cuticle strengthening and accelerated larval development, replicating the function of mutualistic symbionts that are widely distributed among weevils and other beetles in nature. Our work provides empirical support for the notion that mutualistic symbioses can be initiated in insects by the acquisition of environmental bacteria. It also shows that certain bacterial genera, including the Sodalis spp. used in our study, are predisposed to develop these associations due to their ability to maintain benign infections and undergo vertical transmission in diverse insect hosts, facilitating the partner-fidelity feedback that is critical for the evolution of obligate mutualism. These experimental advances provide a new platform for laboratory studies focusing on the molecular mechanisms and evolutionary processes underlying insect-bacterial symbiosis.
Collapse
Affiliation(s)
- Yinghua Su
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Ho-Chen Lin
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Li Szhen Teh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Fabienne Chevance
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ian James
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Clara Mayfield
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Dale
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
15
|
d'Oelsnitz S, Kim W, Burkholder NT, Javanmardi K, Thyer R, Zhang Y, Alper HS, Ellington AD. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat Chem Biol 2022; 18:981-989. [PMID: 35799063 PMCID: PMC11494455 DOI: 10.1038/s41589-022-01072-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 12/25/2022]
Abstract
A key bottleneck in the microbial production of therapeutic plant metabolites is identifying enzymes that can improve yield. The facile identification of genetically encoded biosensors can overcome this limitation and become part of a general method for engineering scaled production. We have developed a combined screening and selection approach that quickly refines the affinities and specificities of generalist transcription factors; using RamR as a starting point, we evolve highly specific (>100-fold preference) and sensitive (half-maximum effective concentration (EC50) < 30 μM) biosensors for the alkaloids tetrahydropapaverine, papaverine, glaucine, rotundine and noscapine. High-resolution structures reveal multiple evolutionary avenues for the malleable effector-binding site and the creation of new pockets for different chemical moieties. These sensors further enabled the evolution of a streamlined pathway for tetrahydropapaverine, a precursor to four modern pharmaceuticals, collapsing multiple methylation steps into a single evolved enzyme. Our methods for evolving biosensors enable the rapid engineering of pathways for therapeutic alkaloids.
Collapse
Affiliation(s)
- Simon d'Oelsnitz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | - Kamyab Javanmardi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ross Thyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Lyu M, Zeng J, Zhou Y, Zhang T, Wang A, Ma J, Wu Z, Castells-Garcia A, González-Almela E, Lin J, Wei T. Overlapping promoter library designed for rational heterogenous expression in Cordyceps militaris. Microb Cell Fact 2022; 21:107. [PMID: 35655187 PMCID: PMC9161592 DOI: 10.1186/s12934-022-01826-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cordyceps militaris, a kind of edible and medicinal fungus widely accepted in East Asia, has attracted much attention as a potential cell factory for producing adenosine analogs. Despite the rapid development in gene editing techniques and genome modeling, the diversity of DNA elements in C. militaris was too short to achieve rational heterogeneous expression for metabolic engineering studies. RESULTS In this study, PtrpC, a kind of promoter with a relatively appropriate expression level and small size, was selected as a monomer for promoter library construction. Through in vitro BioBricks assembly, 9 overlapping PtrpC promoters with different copy numbers as well as reporter gene gfp were connected and subsequently integrated into the genome of C. militaris. Both the mRNA transcription level and the expression level of gene gfp gradually increased along with the copy number of the overlapping promoter NPtrpC and peaked at 7. In the meantime, no significant difference was found in either the biomass or morphological characteristic of engineered and wild-type strains. CONCLUSIONS This study firstly expanded the overlapping promoter strategy used in model microorganism in C. militaris. It was a proof-of-concept in fungi synthetic biology and provide a general method to pushed the boundary of promoter engineering in edible mushroom.
Collapse
Affiliation(s)
- Mengdi Lyu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Jiapeng Zeng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Yue Zhou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Tongyu Zhang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Aiping Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Jiezhao Ma
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Ziyi Wu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | | | | | - Junfang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Du D, Su Y, Shang Q, Chen C, Tang W, Zhang L, Ren H, Liu W. Biomimetic synthesis of L-DOPA inspired by tyrosine hydroxylase. J Inorg Biochem 2022; 234:111878. [DOI: 10.1016/j.jinorgbio.2022.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
18
|
Park SY, Yang D, Ha SH, Lee SY. Production of phenylpropanoids and flavonolignans from glycerol by metabolically engineered Escherichia coli. Biotechnol Bioeng 2022; 119:946-962. [PMID: 34928495 DOI: 10.1002/bit.28008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Phenylpropanoids are a group of plant natural products with medicinal importance derived from aromatic amino acids. Here, we report the production of two representative phenylpropanoids-coniferyl alcohol (CA) and dihydroquercetin (DHQ)-from glycerol by engineered Escherichia coli. First, an E. coli strain capable of producing 187.7 mg/L of CA from glycerol was constructed by the introduction of hpaBC from E. coli and OMT1, 4CL4, and CCR1 from Arabidopsis thaliana to the p-coumaric acid producer. Next, an E. coli strain capable of producing 239.4 mg/L of DHQ from glycerol was constructed by the introduction of F3H, TT7, and CPR from A. thaliana to the naringenin producer, followed by engineering the signal peptide of a cytochrome P450 TT7. Furthermore, to demonstrate the production of flavonolignans, a group of heterodimeric phenylpropanoids, from glycerol, ascorbate peroxidase 1 from Silybum marianum was employed and engineered to produce 0.04 μg/L of silybin and 1.29 μg/L of isosilybin from glycerol by stepwise culture. Finally, a single strain harboring all the 16 necessary genes was constructed, resulting in 0.12 μg/L of isosilybin production directly from glycerol. The strategies described here will be useful for the production of pharmaceutically important yet complex natural products.
Collapse
Affiliation(s)
- Seon Young Park
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Dongsoo Yang
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Shin Hee Ha
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Lai Y, Chen H, Liu L, Fu B, Wu P, Li W, Hu J, Yuan J. Engineering a Synthetic Pathway for Tyrosol Synthesis in Escherichia coli. ACS Synth Biol 2022; 11:441-447. [PMID: 34985865 DOI: 10.1021/acssynbio.1c00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosol is an aromatic compound with great value that is widely used in the food and pharmaceutical industry. In this study, we reported a synthetic pathway for converting p-coumaric acid (p-CA) into tyrosol in Escherichia coli. We found that the enzyme cascade comprising ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae, styrene monooxygenase (SMO), styrene oxide isomerase (SOI) from Pseudomonas putida, and phenylacetaldehyde reductase (PAR) from Solanum lycopersicum could efficiently synthesize tyrosol from p-CA with a conversion rate over 90%. To further expand the range of substrates, we also introduced tyrosine ammonia-lyase (TAL) from Flavobacterium johnsoniae to connect the synthetic pathway with the endogenous l-tyrosine metabolism. We found that tyrosol could be efficiently produced from glycerol, reaching 545.51 mg/L tyrosol in a tyrosine-overproducing strain under shake flasks. In summary, we have established alternative routes for tyrosol synthesis from p-CA (a potential lignin-derived biomass), glucose, and glycerol.
Collapse
Affiliation(s)
- Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Haofeng Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Lingrui Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Bixia Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Peiling Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Wanrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Junyan Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361102, China
| |
Collapse
|
20
|
Zhan Y, Shi J, Xiao Y, Zhou F, Wang H, Xu H, Li Z, Yang S, Cai D, Chen S. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol. Metab Eng 2022; 70:43-54. [PMID: 35038552 DOI: 10.1016/j.ymben.2022.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
Due to its pleasant rose-like scent, 2-phenylethanol (2-PE) has been widely used in the fields of cosmetics and food. Microbial production of 2-PE offers a natural and sustainable production process. However, the current bioprocesses for de novo production of 2-PE suffer from low titer, yield, and productivity. In this work, a multilevel metabolic engineering strategy was employed for the high-level production of 2-PE. Firstly, the native alcohol dehydrogenase YugJ was identified and characterized for 2-PE production via genome mining and gene function analysis. Subsequently, the redirection of carbon flux into 2-PE biosynthesis by combining optimization of Ehrlich pathway, central metabolic pathway, and phenylpyruvate pathway enabled the production of 2-PE to a titer of 1.81 g/L. Specifically, AroK and AroD were identified as the rate-limiting enzymes of 2-PE production through transcription and metabolite analyses, and overexpression of aroK and aroD efficiently boosted 2-PE synthesis. The precursor competing pathways were blocked by eliminating byproduct formation pathways and modulating the glucose transport system. Under the optimal condition, the engineered strain PE23 produced 6.24 g/L of 2-PE with a yield and productivity of 0.14 g/g glucose and 0.13 g/L/h, respectively, using a complex medium in shake flasks. This work achieves the highest titer, yield, and productivity of 2-PE from glucose via the phenylpyruvate pathway. This study provides a promising platform that might be widely useful for improving the production of aromatic-derived chemicals.
Collapse
Affiliation(s)
- Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jiao Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yuan Xiao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Fei Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Huan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
21
|
Huang JJ, Wei T, Ye ZW, Zheng QW, Jiang BH, Han WF, Ye AQ, Han PY, Guo LQ, Lin JF. Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply. Front Microbiol 2022; 12:803490. [PMID: 35095813 PMCID: PMC8790024 DOI: 10.3389/fmicb.2021.803490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Given the rapid development of genome mining in this decade, the substrate channel of paclitaxel might be identified in the near future. A robust microbial cell factory with gene dbat, encoding a key rate-limiting enzyme 10-deacetylbaccatin III-10-O-transferase (DBAT) in paclitaxel biosynthesis to synthesize the precursor baccatin III, will lay out a promising foundation for paclitaxel de novo synthesis. Here, we integrated gene dbat into the wild-type Escherichia coli BW25113 to construct strain BWD01. Yet, it was relatively unstable in baccatin III synthesis. Mutant gene dbat S189V with improved thermostability was screened out from a semi-rational mutation library of DBAT. When it was over-expressed in an engineered strain N05 with improved acetyl-CoA generation, combined with carbon source optimization of fermentation engineering, the production level of baccatin III was significantly increased. Using this combination, integrated strain N05S01 with mutant dbat S189V achieved a 10.50-fold increase in baccatin III production compared with original strain BWD01. Our findings suggest that the combination of protein engineering and metabolic engineering will become a promising strategy for paclitaxel production.
Collapse
Affiliation(s)
- Jia-jun Huang
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-wei Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-wang Zheng
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wen-feng Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - An-qi Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Pei-yun Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-qiong Guo
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-fang Lin
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
22
|
Kurpejović E, Wendisch VF, Sariyar Akbulut B. Tyrosinase-based production of L-DOPA by Corynebacterium glutamicum. Appl Microbiol Biotechnol 2021; 105:9103-9111. [PMID: 34762142 DOI: 10.1007/s00253-021-11681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
An increase in the number of elderly people suffering from the symptoms of Parkinson's disease is leading to an expansion in the market size of 3,4-dihydroxyphenyl-L-alanine (L-DOPA), which is the most commonly used drug for the treatment of this disease. Need for better quality products through economically feasible and sustainable processes makes biotechnological approaches attractive. The current study is focused on heterologous expression of Ralstonia solanacearum tyrosinase in Corynebacterium glutamicum cells to produce L-DOPA during growth on glucose or glucose/xylose mixtures. Whole-cells pre-grown on glucose were further exploited for biotransformation of L-tyrosine to L-DOPA. To prevent L-DOPA oxidation, not only the most commonly used agent, ascorbic acid, but also for the first time, thymol was evaluated. The highest L-DOPA titer was 0.26 ± 0.02 g/L at the end of growth on a mixture of 1% xylose and 3% glucose in the presence of 200 μM thymol as the oxidation inhibitor. The ability to co-utilize glucose and xylose to reach this titer could make these cells ideal for L-DOPA production using hydrolyzed lignocellulosic biomass. When the pre-grown cells were further used for biotransformation, the highest L-DOPA yield was 0.61 ± 0.02 g/gDCW with 4 mM ascorbic acid. Since L-tyrosine biotransformation is primarily dependent on tyrosinase activity, yield in this route could be improved by optimizing reaction conditions. As the industrial workhorse for amino acid production, these C. glutamicum cells will clearly benefit from strain development efforts and bioprocess optimization towards sustainable and economically feasible L-DOPA production. KEY POINTS: • Fermentative l-DOPA production was achieved in C. glutamicum. • Tyrosinase produced by C. glutamicum cells successfully transformed l-Tyr. • Thymol proved to be a significant oxidation inhibitor for l-DOPA production.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Göztepe Campus, 34722, Kadikoy, Istanbul, Turkey
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Berna Sariyar Akbulut
- Department of Bioengineering, Marmara University, Göztepe Campus, 34722, Kadikoy, Istanbul, Turkey.
| |
Collapse
|
23
|
Yan ZB, Liang JL, Niu FX, Shen YP, Liu JZ. Enhanced Production of Pterostilbene in Escherichia coli Through Directed Evolution and Host Strain Engineering. Front Microbiol 2021; 12:710405. [PMID: 34690954 PMCID: PMC8530161 DOI: 10.3389/fmicb.2021.710405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Pterostilbene is a derivative of resveratrol with a higher bioavailability and biological activity, which shows antioxidant, anti-inflammatory, antitumor, and antiaging activities. Here, directed evolution and host strain engineering were used to improve the production of pterostilbene in Escherichia coli. First, the heterologous biosynthetic pathway enzymes of pterostilbene, including tyrosine ammonia lyase, p-coumarate: CoA ligase, stilbene synthase, and resveratrol O-methyltransferase, were successively directly evolved through error-prone polymerase chain reaction (PCR). Four mutant enzymes with higher activities of in vivo and in vitro were obtained. The directed evolution of the pathway enzymes increased the pterostilbene production by 13.7-fold. Then, a biosensor-guided genome shuffling strategy was used to improve the availability of the precursor L-tyrosine of the host strain E. coli TYR-30 used for the production of pterostilbene. A shuffled E. coli strain with higher L-tyrosine production was obtained. The shuffled strain harboring the evolved pathway produced 80.04 ± 5.58 mg/l pterostilbene, which is about 2.3-fold the highest titer reported in literatures.
Collapse
Affiliation(s)
- Zhi-Bo Yan
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing-Long Liang
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fu-Xing Niu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ping Shen
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
25
|
Niu FX, Yan ZB, Huang YB, Liu JZ. Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7938-7947. [PMID: 34237214 DOI: 10.1021/acs.jafc.1c03309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel cell-free biosynthesis system based on a mixture of chassis cell extracts and purified Spy-cyclized enzymes (CFBS-mixture) was developed. As a demonstration, the CFBS-mixture was applied to chlorogenic acid (CGA) biosynthesis. The mix-and-match and Plackett-Burman experiments demonstrated that Lonicera japonica hydroxycinnamate-CoA quinate transferase and p-hydroxyphenylacetate 3-hydroxylase were the key enzymes for the production of CGA. After optimization of the concentrations of the biosynthetic enzymes in the CFBS-mixture reaction using the Plackett-Burman experimental design and the path of the steepest ascent, 711.26 ± 15.63 mg/L CGA was produced after 16 h, which is 71.1-fold the yield obtained using the conventional crude extract-based CFBS and 9.1-fold the reported yield obtained using the living cells. Based on the CFBS-mixture results, the production of CGA was further enhanced in engineered Escherichia coli. The CFBS-mixture strategy is highly effective and will be useful for high-level CFBS of natural products.
Collapse
Affiliation(s)
- Fu-Xing Niu
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Bo Yan
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan-Bin Huang
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
26
|
Nakagawa A, Nakamura S, Matsumura E, Yashima Y, Takao M, Aburatani S, Yaoi K, Katayama T, Minami H. Selection of the optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:5433-5447. [PMID: 34181032 DOI: 10.1007/s00253-021-11401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
We have constructed an Escherichia coli-based platform producing (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids (BIAs), using up to 14 genes. (S)-reticuline was produced from a simple carbon source such as glucose and glycerol via L-DOPA, which is synthesized by hydroxylation of L-tyrosine, one of the rate-limiting steps of the reaction. There are three kinds of enzymes catalyzing tyrosine hydroxylation: tyrosinase (TYR), tyrosine hydroxylase (TH), and 4-hydroxyphenylacetate 3-monooxygenase (HpaBC). Here, to further improve (S)-reticuline production, we chose eight from these three kinds of tyrosine hydroxylation enzymes (two TYRs, four THs, and two HpaBCs) derived from various organisms, and examined which enzyme was optimal for (S)-reticuline production in E. coli. TH from Drosophila melanogaster was the most suitable for (S)-reticuline production under the experimental conditions tested. We improved the productivity by genome integration of a gene set for L-tyrosine overproduction, introducing the regeneration pathway of BH4, a cofactor of TH, and methionine addition to enhance the S-adenosylmethionine supply. As a result, the yield of (S)-reticuline reached up to 384 μM from glucose in laboratory-scale shake flask. Furthermore, we found three inconsistent phenomena: an inhibitory effect due to additional gene expression, conflicts among the experimental conditions, and interference of an upstream enzyme from an additional downstream enzyme. Based on these results, we discuss future perspectives and challenges of integrating multiple enzyme genes for material production using microbes. Graphical abstract The optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli KEY POINTS: • There are three types of enzymes catalyzing tyrosine hydroxylation reaction: tyrosinase, tyrosine hydroxylase, and 4-hydroxyphenylacetate 3-monooxygenase. • Tyrosine hydroxylase from Drosophila melanogaster exhibited the highest activity and was suitable for (S)-reticuline production in E. coli. • New insights were provided on constructing an alkaloid production system with multi-step reactions in E. coli.
Collapse
Affiliation(s)
- Akira Nakagawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, Japan
| | - Shinya Nakamura
- TechnoPro, Inc., Roppongi Hills Mori Tower 35th floor, 6-10-1 Roppongi, Minatoku, Tokyo, Japan
| | - Eitaro Matsumura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, Japan
| | - Yurino Yashima
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, Japan
| | - Mizuki Takao
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, Japan
| | - Sachiyo Aburatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Katsuro Yaoi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiromichi Minami
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, Japan.
| |
Collapse
|
27
|
Singh R, Chandel S, Ghosh A, Dey D, Chakravarti R, Roy S, Ravichandiran V, Ghosh D. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Mol Biotechnol 2021; 63:459-476. [PMID: 33774733 DOI: 10.1007/s12033-021-00310-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas protein technology area is rapidly growing technique for genome editing and modulation of transcription of several microbes. Successful engineering in microbes requires an emphasis on the aspect of efficiency and targeted aiming, which can be employed using CRISPR/Cas system. Hence, this type of system is used to modify the genome of several microbes such as yeast and bacteria. In recent years, CRISPR/Cas systems have been chosen for metabolic engineering in microbes due to their specificity, orthogonality, and efficacy. Therefore, we need to review the scheme which was acquired for the execution of the CRISPR/Cas system for the modification and metabolic engineering in yeast and bacteria. In this review, we highlighted the application of the CRISPR/Cas system which has been used for the production of small molecules in the microbial system that is chemically and biologically important.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Syamal Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India.
| |
Collapse
|
28
|
Xu Y, Li Y, Li L, Zhang L, Ding Z, Shi G. Reductase-catalyzed tetrahydrobiopterin regeneration alleviates the anti-competitive inhibition of tyrosine hydroxylation by 7,8-dihydrobiopterin. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01958e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Tyrosine hydroxylation by tyrosine hydroxylase is a significant reaction for preparing many nutraceutical and pharmaceutical chemicals.
Collapse
Affiliation(s)
- Yinbiao Xu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Youran Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Leyun Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
29
|
Han H, Zeng W, Zhang G, Zhou J. Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:563-571. [PMID: 32737623 PMCID: PMC7508748 DOI: 10.1007/s10295-020-02294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The formation of inclusion bodies (IBs) without enzyme activity in bacterial research is generally undesirable. Researchers have attempted to recovery the enzyme activities of IBs, which are commonly known as active IBs. Tyrosine phenol-lyase (TPL) is an important enzyme that can convert pyruvate and phenol into 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and IBs of TPL can commonly occur. To induce the correct folding and recover the enzyme activity of the IBs, peptides, such as ELK16, DKL6, L6KD, ELP10, ELP20, L6K2, EAK16, 18A, and GFIL16, were fused to the carboxyl terminus of TPL. The results showed that aggregate particles of TPL-DKL6, TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16 improved the enzyme activity by 40.9%, 50.7%, 48.9%, 86.6%, and 97.9%, respectively. The peptides TPL-DKL6, TPL-EAK16, TPL-18A, and TPL-GFIL16 displayed significantly improved thermostability compared with TPL. L-DOPA titer of TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16, with cells reaching 37.8 g/L, 53.8 g/L, 37.5 g/L, and 29.1 g/L, had an improvement of 111%, 201%, 109%, and 63%, respectively. A higher activity and L-DOPA titer of the TPL-EAK16 could be valuable for its industrial application to biosynthesize L-DOPA.
Collapse
Affiliation(s)
- Hongmei Han
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
30
|
Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, Mishra PK, Molina G. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 2020; 42:1799-1827. [DOI: 10.1007/s10529-020-02957-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
31
|
Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing Escherichia coli Strains That Can Be Applied in the Generation of Aromatic-Compound-Producing Bacteria. Appl Environ Microbiol 2020; 86:AEM.00525-20. [PMID: 32414798 DOI: 10.1128/aem.00525-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Many phenylalanine- and tyrosine-producing strains have used plasmid-based overexpression of pathway genes. The resulting strains achieved high titers and yields of phenylalanine and tyrosine. Chromosomally engineered, plasmid-free producers have shown lower titers and yields than plasmid-based strains, but the former are advantageous in terms of cultivation cost and public health/environmental risk. Therefore, we engineered here the Escherichia coli chromosome to create superior phenylalanine- and tyrosine-overproducing strains that did not depend on plasmid-based expression. Integration into the E. coli chromosome of two central metabolic pathway genes (ppsA and tktA) and eight shikimate pathway genes (aroA, aroB, aroC, aroD, aroE, aroGfbr , aroL, and pheAfbr ), controlled by the T7lac promoter, resulted in excellent titers and yields of phenylalanine; the superscript "fbr" indicates that the enzyme encoded by the gene was feedback resistant. The generated strain could be changed to be a superior tyrosine-producing strain by replacing pheAfbr with tyrAfbr A rational approach revealed that integration of seven genes (ppsA, tktA, aroA, aroB, aroC, aroGfbr , and pheAfbr ) was necessary as the minimum gene set for high-yield phenylalanine production in E. coli MG1655 (tyrR, adhE, ldhA, pykF, pflDC, and ascF deletant). The phenylalanine- and tyrosine-producing strains were further applied to generate phenyllactic acid-, 4-hydroxyphenyllactic acid-, tyramine-, and tyrosol-producing strains; yield of these aromatic compounds increased proportionally to the increase in phenylalanine and tyrosine yields.IMPORTANCE Plasmid-free strains for aromatic compound production are desired in the aspect of industrial application. However, the yields of phenylalanine and tyrosine have been considerably lower in plasmid-free strains than in plasmid-based strains. The significance of this research is that we succeeded in generating superior plasmid-free phenylalanine- and tyrosine-producing strains by engineering the E. coli chromosome, which was comparable to that in plasmid-based strains. The generated strains have a potential to generate superior strains for the production of aromatic compounds. Actually, we demonstrated that four kinds of aromatic compounds could be produced from glucose with high yields (e.g., 0.28 g tyrosol/g glucose).
Collapse
|
32
|
Shen YP, Niu FX, Yan ZB, Fong LS, Huang YB, Liu JZ. Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids. Front Bioeng Biotechnol 2020; 8:407. [PMID: 32432104 PMCID: PMC7214760 DOI: 10.3389/fbioe.2020.00407] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Aromatic compounds derived from aromatic amino acids are an important class of diverse chemicals with a wide range of industrial and commercial applications. They are currently produced via petrochemical processes, which are not sustainable and eco-friendly. In the past decades, significant progress has been made in the construction of microbial cell factories capable of effectively converting renewable carbon sources into value-added aromatics. Here, we systematically and comprehensively review the recent advancements in metabolic engineering and synthetic biology in the microbial production of aromatic amino acid derivatives, stilbenes, and benzylisoquinoline alkaloids. The future outlook concerning the engineering of microbial cell factories for the production of aromatic compounds is also discussed.
Collapse
Affiliation(s)
- Yu-Ping Shen
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Fu-Xing Niu
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bo Yan
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Lai San Fong
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Bin Huang
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Jian-Zhong Liu
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Ma X, Gözaydın G, Yang H, Ning W, Han X, Poon NY, Liang H, Yan N, Zhou K. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process. Proc Natl Acad Sci U S A 2020; 117:7719-7728. [PMID: 32213582 PMCID: PMC7149430 DOI: 10.1073/pnas.1919862117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chitin is the most abundant renewable nitrogenous material on earth and is accessible to humans in the form of crustacean shell waste. Such waste has been severely underutilized, resulting in both resource wastage and disposal issues. Upcycling chitin-containing waste into value-added products is an attractive solution. However, the direct conversion of crustacean shell waste-derived chitin into a wide spectrum of nitrogen-containing chemicals (NCCs) is challenging via conventional catalytic processes. To address this challenge, in this study, we developed an integrated biorefinery process to upgrade shell waste-derived chitin into two aromatic NCCs that currently cannot be synthesized from chitin via any chemical process (tyrosine and l-DOPA). The process involves a pretreatment of chitin-containing shell waste and an enzymatic/fermentative bioprocess using metabolically engineered Escherichia coli The pretreatment step achieved an almost 100% recovery and partial depolymerization of chitin from shrimp shell waste (SSW), thereby offering water-soluble chitin hydrolysates for the downstream microbial process under mild conditions. The engineered E. coli strains produced 0.91 g/L tyrosine or 0.41 g/L l-DOPA from 22.5 g/L unpurified SSW-derived chitin hydrolysates, demonstrating the feasibility of upcycling renewable chitin-containing waste into value-added NCCs via this integrated biorefinery, which bypassed the Haber-Bosch process in providing a nitrogen source.
Collapse
Affiliation(s)
- Xiaoqiang Ma
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore 138602, Singapore
| | - Gökalp Gözaydın
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Huiying Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenbo Ning
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xi Han
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Nga Yu Poon
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Hong Liang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore 138602, Singapore;
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
34
|
Zeng W, Xu B, Du G, Chen J, Zhou J. Integrating enzyme evolution and high-throughput screening for efficient biosynthesis of l-DOPA. ACTA ACUST UNITED AC 2019; 46:1631-1641. [DOI: 10.1007/s10295-019-02237-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023]
Abstract
Abstract
l-DOPA is a key pharmaceutical agent for treating Parkinson’s, and market demand has exploded due to the aging population. There are several challenges associated with the chemical synthesis of l-DOPA, including complicated operation, harsh conditions, and serious pollution. A biocatalysis route for l-DOPA production is promising, especially via a route catalyzed by tyrosine phenol lyase (TPL). In this study, using TPL derived from Erwinia herbicola (Eh-TPL), a mutant Eh-TPL was obtained by integrating enzyme evolution and high-throughput screening methods. l-DOPA production using recombinant Escherichia coli BL21 (DE3) cells harbouring mutant Eh-TPL was enhanced by 36.5% in shake flasks, and the temperature range and alkali resistance of the Eh-TPL mutant were promoted. Sequence analysis revealed two mutated amino acids in the mutant (S20C and N161S), which reduced the length of a hydrogen bond and generated new hydrogen bonds. Using a fed-batch mode for whole-cell catalysis in a 5 L bioreactor, the titre of l-DOPA reached 69.1 g L−1 with high productivity of 11.52 g L−1 h−1, demonstrating the great potential of Eh-TPL variants for industrial production of l-DOPA.
Collapse
Affiliation(s)
- Weizhu Zeng
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| | - Bingbing Xu
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 Jiangsu Provisional Research Center for Bioactive Product Processing Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| | - Guocheng Du
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Jian Chen
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 Jiangsu Provisional Research Center for Bioactive Product Processing Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| | - Jingwen Zhou
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 Jiangsu Provisional Research Center for Bioactive Product Processing Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| |
Collapse
|
35
|
Systems biology approach in the formulation of chemically defined media for recombinant protein overproduction. Appl Microbiol Biotechnol 2019; 103:8315-8326. [PMID: 31418052 DOI: 10.1007/s00253-019-10048-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
The cell culture medium is an intricate mixture of components which has a tremendous effect on cell growth and recombinant protein production. Regular cell culture medium includes various components, and the decision about which component should be included in the formulation and its optimum amount is an underlying issue in biotechnology industries. Applying conventional techniques to design an optimal medium for the production of a recombinant protein requires meticulous and immense research. Moreover, since the medium formulation for the production of one protein could not be the best choice for another protein, hence, the most suitable media should be determined for each recombinant cell line. Accordingly, medium formulation becomes a laborious, time-consuming, and costly process in biomanufacturing of recombinant protein, and finding alternative strategies for medium development seems to be crucial. In silico modeling is an attractive concept to be adapted for medium formulation due to its high potential to supersede laboratory examinations. By emerging the high-throughput datasets, scientists can disclose the knowledge about the effect of medium components on cell growth and metabolism, and via applying this information through systems biology approach, medium formulation optimization could be accomplished in silico with no need of significant amount of experimentation. This review demonstrates some of the applications of systems biology as a powerful tool for medium development and illustrates the effect of medium optimization with system-level analysis on the production of recombinant proteins in different host cells.
Collapse
|
36
|
Fordjour E, Adipah FK, Zhou S, Du G, Zhou J. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose. Microb Cell Fact 2019; 18:74. [PMID: 31023316 PMCID: PMC6482505 DOI: 10.1186/s12934-019-1122-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Production of l-tyrosine is gaining grounds as the market size of 3,4-dihydroxyphenyl-l-alanine (l-DOPA) is expected to increase due to increasing cases of Parkinson’s disease a neurodegenerative disease. Attempts to overproduce l-tyrosine for conversion to l-DOPA has stemmed on the overexpressing of critical pathway enzymes, an introduction of feedback-resistant enzymes, and deregulation of transcriptional regulators. Results An E. coli BL21 (DE3) was engineered by deleting tyrR, ptsG, crr, pheA and pykF while directing carbon flow through the overexpressing of galP and glk. TktA and PpsA were also overexpressed to enhance the accumulation of E4P and PEP. Directed evolution was then applied on HpaB to optimize its activity. Three mutants, G883R, G883A, L1231M, were identified to have improved activity as compared to the wild-type hpaB showing a 3.03-, 2.9- and 2.56-fold increase in l-DOPA production respectively. The use of strain LP-8 resulted in the production of 691.24 mg/L and 25.53 g/L of l-DOPA in shake flask and 5 L bioreactor, respectively. Conclusion Deletion of key enzymes to channel flux towards the shikimate pathway coupled with the overexpression of pathway enzymes enhanced the availability of l-tyrosine for L-DOPA production. Enhancing the activity of HpaB increased l-DOPA production from glucose and glycerol. This work demonstrates that increasing the availability of l-tyrosine and enhancing enzyme activity ensures maximum l-DOPA productivity. Electronic supplementary material The online version of this article (10.1186/s12934-019-1122-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Frederick Komla Adipah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
37
|
Shen YP, Fong LS, Yan ZB, Liu JZ. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:94. [PMID: 31044007 PMCID: PMC6477704 DOI: 10.1186/s13068-019-1438-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/13/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND 4-Hydroxyphenylacetic acid (4HPAA) is an important building block for synthesizing drugs, agrochemicals, biochemicals, etc. 4HPAA is currently produced exclusively via petrochemical processes and the process is environmentally unfriendly and unsustainable. Microbial cell factory would be an attractive approach for 4HPAA production. RESULTS In the present study, we established a microbial biosynthetic system for the de novo production of 4HPAA from glucose in Escherichia coli. First, we compared different biosynthetic pathways for the production of 4HPAA. The yeast Ehrlich pathway produced the highest level of 4HPAA among these pathways that were evaluated. To increase the pathway efficiency, the yeast Ehrlich pathway enzymes were directedly evolved via error-prone PCR. Two phenylpyruvate decarboxylase ARO10 and phenylacetaldehyde dehydrogenase FeaB variants that outperformed the wild-type enzymes were obtained. These mutations increased the in vitro and in vivo catalytic efficiency for converting 4-hydroxyphenylpyruvate to 4HPAA. A tunable intergenic region (TIGR) sequence was inserted into the two evolved genes to balance their expression. Regulation of TIGR for the evolved pathway enzymes further improved the production of 4HPAA, resulting in a 1.13-fold increase in titer compared with the fusion wild-type pathway. To prevent the toxicity of a heterologous pathway to the cell, an Esa quorum-sensing (QS) circuit with both activating and repressing functions was developed for inducer-free productions of metabolites. The Esa-PesaR activation QS system was used to dynamically control the biosynthetic pathway of 4HPAA in E. coli, which achieved 17.39 ± 0.26 g/L with a molar yield of 23.2% without addition of external inducers, resulting in a 46.4% improvement of the titer compared to the statically controlled pathway. CONCLUSION We have constructed an E. coli for 4HPAA production with the highest titer to date. This study also demonstrates that the combination of directed evolution of pathway enzymes and dynamic pathway regulation using a QS circuit is a powerful strategy of metabolic engineering for the productions of metabolites.
Collapse
Affiliation(s)
- Yu-Ping Shen
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Lai San Fong
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Zhi-Bo Yan
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
38
|
Li X, Shen X, Wang J, Ri HI, Mi CY, Yan Y, Sun X, Yuan Q. Efficient biosynthesis of 3, 4-dihydroxyphenylacetic acid in Escherichia coli. J Biotechnol 2019; 294:14-18. [DOI: 10.1016/j.jbiotec.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/15/2023]
|
39
|
Niu H, Li R, Gao J, Fan X, Li Q, Gu P. Different performance of Escherichia coli mutants with defects in the phosphoenolpyruvate: carbohydrate phosphotransferase system under low glucose condition. 3 Biotech 2019; 9:50. [PMID: 30729074 DOI: 10.1007/s13205-019-1584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/17/2019] [Indexed: 11/26/2022] Open
Abstract
In Escherichia coli, the transport and phosphorylation of glucose is mainly accomplished by the phosphoenolpyruvate-dependent glucose-specific phosphotransferase system (PTSGlc), which is, therefore, frequently selected as a target for engineering to increase the intracellular level of phosphoenolpyruvate. Here we characterized the effects of a low glucose concentration on the growth, glucose consumption, and acetate secretion of individual strains with a single PTSGlc mutation. We found that most mutants accumulated similar amounts of biomass, consumed glucose at lower rates, and secreted less acetate compared with the wild-type parental strain. The exception was the growth-impaired strain MG1655I harboring a ptsI deletion. In summary, the fermentation performance of mutant strains under 5 g/L glucose was obviously different with those strains under 20 g/L glucose. This study is a good complement to the knowledge of PTSGlc in E. coli and indicates that engineering the components of PTSGlc should be carefully optimized, particularly during fermentation in the presence of low concentrations of glucose.
Collapse
Affiliation(s)
- Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Ruirui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| |
Collapse
|
40
|
Kang SY, Heo KT, Hong YS. Optimization of Artificial Curcumin Biosynthesis in E. coli by Randomized 5'-UTR Sequences To Control the Multienzyme Pathway. ACS Synth Biol 2018; 7:2054-2062. [PMID: 30160937 DOI: 10.1021/acssynbio.8b00198] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the optimization strategies of an artificial biosynthetic metabolic flux with a multienzyme pathway is when the enzyme concentrations are present at the appropriate ratios rather than at their maximum expression. Thus, many recent research efforts have focused on the development of tools that fine-tune the enzyme expression, and these research efforts have facilitated the search for the optimum balance between pathway expression and cell viability. However, the rational approach has some limitations in finding the most optimized expression ratio in in vivo systems. In our study, we focused on fine-tuning the expression level of a six-enzyme reaction for the artificial biosynthesis of curcumin by screening a library of 5'-untranslational region (UTR) sequence mutants made by a multiplex automatic genome engineering (MAGE) tool. From the screening results, a variant (6M08rv) showed about a 38.2-fold improvement in the production of curcumin compared to the parent strain, in which the calculated expression levels of 4-coumarate:CoA ligase (4CL) and phenyldiketide-CoA synthase (DCS), two of the six enzymes, were much lower than those of the parent strain.
Collapse
Affiliation(s)
- Sun-Young Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea
| | - Kyung Taek Heo
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Soo Hong
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
41
|
Mohammadi Nargesi B, Trachtmann N, Sprenger GA, Youn JW. Production of p-amino-L-phenylalanine (L-PAPA) from glycerol by metabolic grafting of Escherichia coli. Microb Cell Fact 2018; 17:149. [PMID: 30241531 PMCID: PMC6148955 DOI: 10.1186/s12934-018-0996-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The non-proteinogenic aromatic amino acid, p-amino-L-phenylalanine (L-PAPA) is a high-value product with a broad field of applications. In nature, L-PAPA occurs as an intermediate of the chloramphenicol biosynthesis pathway in Streptomyces venezuelae. Here we demonstrate that the model organism Escherichia coli can be transformed with metabolic grafting approaches to result in an improved L-PAPA producing strain. RESULTS Escherichia coli K-12 cells were genetically engineered for the production of L-PAPA from glycerol as main carbon source. To do so, genes for a 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), and genes encoding a 4-amino-4-deoxychorismate mutase and a 4-amino-4-deoxyprephenate dehydrogenase (papB and papC, both from Streptomyces venezuelae) were cloned and expressed in E. coli W3110 (lab strain LJ110). In shake flask cultures with minimal medium this led to the formation of ca. 43 ± 2 mg l-1 of L-PAPA from 5 g l-1 glycerol. By expression of additional chromosomal copies of the tktA and glpX genes, and of plasmid-borne aroFBL genes in a tyrR deletion strain, an improved L-PAPA producer was obtained which gave a titer of 5.47 ± 0.4 g l-1 L-PAPA from 33.3 g l-1 glycerol (0.16 g L-PAPA/g of glycerol) in fed-batch cultivation (shake flasks). Finally, in a fed-batch fermenter cultivation, a titer of 16.7 g l-1 L-PAPA was obtained which is the highest so far reported value for this non-proteinogenic amino acid. CONCLUSION Here we show that E. coli is a suitable chassis strain for L-PAPA production. Modifying the flux to the product and improved supply of precursor, by additional gene copies of glpX, tkt and aroFBL together with the deletion of the tyrR gene, increased the yield and titer.
Collapse
Affiliation(s)
| | - Natalie Trachtmann
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Georg A. Sprenger
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jung-Won Youn
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
42
|
Niu FX, He X, Wu YQ, Liu JZ. Enhancing Production of Pinene in Escherichia coli by Using a Combination of Tolerance, Evolution, and Modular Co-culture Engineering. Front Microbiol 2018; 9:1623. [PMID: 30108554 PMCID: PMC6079208 DOI: 10.3389/fmicb.2018.01623] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 01/20/2023] Open
Abstract
α-Pinene is a natural and active monoterpene, which is widely used as a flavoring agent and in fragrances, pharmaceuticals, and biofuels. Although it has been successfully produced by genetically engineered microorganisms, the production level of pinene is much lower than that of hemiterpene (isoprene) and sesquiterpenes (farnesene) to date. We first improved pinene tolerance to 2.0% and pinene production by adaptive laboratory evolution after atmospheric and room temperature plasma (ARTP) mutagenesis and overexpression of the efflux pump to obtain the pinene tolerant strain Escherichia coli YZFP, which is resistant to fosmidomycin. Through error-prone PCR and DNA shuffling, we isolated an Abies grandis geranyl pyrophosphate synthase variant that outperformed the wild-type enzyme. To balance the expression of multiple genes, a tunable intergenic region (TIGR) was inserted between A. grandis GPPSD90G/L175P and Pinus taeda Pt1Q457L. In an effort to improve the production, an E. coli-E. coli modular co-culture system was engineered to modularize the heterologous mevalonate (MEV) pathway and the TIGR-mediated gene cluster of A. grandis GPPSD90G/L175P and P. taeda Pt1Q457L. Specifically, the MEV pathway and the TIGR-mediated gene cluster were integrated into the chromosome of the pinene tolerance strain E. coli YZFP and then evolved to a higher gene copy number by chemically induced chromosomal evolution, respectively. The best E. coli-E. coli co-culture system of fermentation was found to improve pinene production by 1.9-fold compared to the mono-culture approach. The E. coli-E. coli modular co-culture system of whole-cell biocatalysis further improved pinene production to 166.5 mg/L.
Collapse
Affiliation(s)
- Fu-Xing Niu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin He
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qin Wu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Das A, Tyagi N, Verma A, Akhtar S, Mukherjee KJ. Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol. Prep Biochem Biotechnol 2018; 48:671-682. [DOI: 10.1080/10826068.2018.1487851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Arunangshu Das
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Neetu Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sarfaraz Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
44
|
Lee SJ, Sim GY, Kang H, Yeo WS, Kim BG, Ahn JH. Synthesis of avenanthramides using engineered Escherichia coli. Microb Cell Fact 2018; 17:46. [PMID: 29566686 PMCID: PMC5863376 DOI: 10.1186/s12934-018-0896-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
Abstract
Background Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A–H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. Results We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Conclusions Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns. Electronic supplementary material The online version of this article (10.1186/s12934-018-0896-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Geun Young Sim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunook Kang
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won Seok Yeo
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bong-Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju-si, Gyeongsangman-do, 52725, South Korea
| | - Joong-Hoon Ahn
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
45
|
Oesterle S, Gerngross D, Schmitt S, Roberts TM, Panke S. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Sci Rep 2017; 7:12327. [PMID: 28951570 PMCID: PMC5615074 DOI: 10.1038/s41598-017-12395-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Steven Schmitt
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
46
|
Kuznetsov G, Goodman DB, Filsinger GT, Landon M, Rohland N, Aach J, Lajoie MJ, Church GM. Optimizing complex phenotypes through model-guided multiplex genome engineering. Genome Biol 2017; 18:100. [PMID: 28545477 PMCID: PMC5445303 DOI: 10.1186/s13059-017-1217-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/21/2017] [Indexed: 11/29/2022] Open
Abstract
We present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.∆A. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Collapse
Affiliation(s)
- Gleb Kuznetsov
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.,Program in Biophysics, Harvard University, Boston, MA, USA
| | - Daniel B Goodman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Gabriel T Filsinger
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.,Systems Biology Graduate Program, Harvard Medical School, Boston, MA, USA
| | - Matthieu Landon
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Systems Biology Graduate Program, Harvard Medical School, Boston, MA, USA.,Ecole des Mines de Paris, Mines Paristech, Paris, France
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Vervoort Y, Linares AG, Roncoroni M, Liu C, Steensels J, Verstrepen KJ. High-throughput system-wide engineering and screening for microbial biotechnology. Curr Opin Biotechnol 2017; 46:120-125. [PMID: 28346890 DOI: 10.1016/j.copbio.2017.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Genetic engineering and screening of large number of cells or populations is a crucial bottleneck in today's systems biology and applied (micro)biology. Instead of using standard methods in bottles, flasks or 96-well plates, scientists are increasingly relying on high-throughput strategies that miniaturize their experiments to the nanoliter and picoliter scale and the single-cell level. In this review, we summarize different high-throughput system-wide genome engineering and screening strategies for microbes. More specifically, we will emphasize the use of multiplex automated genome evolution (MAGE) and CRISPR/Cas systems for high-throughput genome engineering and the application of (lab-on-chip) nanoreactors for high-throughput single-cell or population screening.
Collapse
Affiliation(s)
- Yannick Vervoort
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Imec Life Science Technologies, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Alicia Gutiérrez Linares
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Miguel Roncoroni
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Chengxun Liu
- Imec Life Science Technologies, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium.
| |
Collapse
|
48
|
Oesterle S, Wuethrich I, Panke S. Toward Genome-Based Metabolic Engineering in Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:49-82. [PMID: 29050667 DOI: 10.1016/bs.aambs.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prokaryotes modified stably on the genome are of great importance for production of fine and commodity chemicals. Traditional methods for genome engineering have long suffered from imprecision and low efficiencies, making construction of suitable high-producer strains laborious. Here, we review the recent advances in discovery and refinement of molecular precision engineering tools for genome-based metabolic engineering in bacteria for chemical production, with focus on the λ-Red recombineering and the clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems. In conjunction, they enable the integration of in vitro-synthesized DNA segments into specified locations on the chromosome and allow for enrichment of rare mutants by elimination of unmodified wild-type cells. Combination with concurrently developing improvements in important accessory technologies such as DNA synthesis, high-throughput screening methods, regulatory element design, and metabolic pathway optimization tools has resulted in novel efficient microbial producer strains and given access to new metabolic products. These new tools have made and will likely continue to make a big impact on the bioengineering strategies that transform the chemical industry.
Collapse
|
49
|
Rahman SF, Gobikhrisnan S, Gozan M, Jong GT, Park DH. L-DOPA Synthesis Using Tyrosinase-immobilized on Electrode Surfaces. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.6.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|