1
|
Sun R, Fan Z, Li K, Yang M, Song Y. Effects of ice and supercooled water on the metastability of methane hydrate: DSC analysis and MD simulations. Phys Chem Chem Phys 2022; 24:18805-18815. [PMID: 35904061 DOI: 10.1039/d2cp02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane hydrate (MH) has been viewed as a potential abundant clean energy resource worldwide. Its related technologies play important roles in applications of gas and energy storage, flow assurance of natural gas pipelines etc. Unlike the well-researched stability and decomposition of MH at temperatures above 273 K, the metastability of MH below the ice freezing point, i.e. the anomalous slow decomposition out of thermodynamically stable regions, remains to be unravelled. Studies regarding the influences of ice and supercooled water (SW) on the metastable properties of MH led to varied conclusions, i.e. the as-proposed self-preservation effect and metastable MH-SW-gas equilibrium. In this study, a series of DSC experiments were performed to investigate the thermal stability boundaries and the associated metastable behaviours of MH-ice-gas and MH-SW-gas samples in porous medium. The DSC analysis probed accurate thermal stabilities and characterized decomposition behaviors of the samples, contributing to the hypothesis of potential influences from SW and ice on the metastability of MH. MD simulations were also validated and performed. Active guest-host interactions by the SW layers between MH and gas phases were identified, suggesting probable microscopic configurations related to the metastability of the MH-SW-gas system. Indications of the DSC and MD simulation results call for future high-resolution in situ experimental validations.
Collapse
Affiliation(s)
- Ronghui Sun
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Zhen Fan
- WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
2
|
Uthaman A, Lal HM, Thomas S. Porous Ceramic Properties and Its Different Fabrication Process. ENGINEERING MATERIALS 2022:475-497. [DOI: 10.1007/978-3-030-85397-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Mileo PGM, Rogge SMJ, Houlleberghs M, Breynaert E, Martens JA, Van Speybroeck V. Interfacial study of clathrates confined in reversed silica pores. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:21835-21844. [PMID: 34707871 PMCID: PMC8491980 DOI: 10.1039/d1ta03105h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/22/2021] [Indexed: 05/08/2023]
Abstract
Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH4 volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.
Collapse
Affiliation(s)
- Paulo G M Mileo
- Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium
| | - Maarten Houlleberghs
- Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Johan A Martens
- Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium
| |
Collapse
|
4
|
Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing. ENERGIES 2021. [DOI: 10.3390/en14164855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interest in natural gas hydrates is due both to huge natural reserves and to the strengthened role of environmentally friendly energy sources conditioned by the deterioration of the global environmental situation. The combustion efficiency increase is associated with the development of understanding of both the processes of dissociation and combustion of gas hydrates. To date, the problems of dissociation and combustion have, as a rule, been considered separately, despite their close interrelation. Usually, during combustion, there is a predetermined methane flow from the powder surface. In the present paper, the combustion of methane hydrate is simulated taking into account the non-stationary dissociation process in the powder layer. Experimental studies on the methane hydrate dissociation at negative temperatures have been carried out. It is shown that due to the increase in the layer temperature and changes in the porosity of the layer over time, i.e., coalescence of particles, the thermal conductivity of the layer can change significantly, which affects the heat flux and the dissociation rate. The flame front velocity was measured at different external air velocities. The air velocity and the vapor concentration in the combustion zone are shown to strongly affect the combustion temperature, flame stability and the flame front velocity. The obtained results may be applied to increase the efficiency of burning of a layer of methane hydrate powder, as well as for technologies of degassing the combustible gases and their application in the energy sector.
Collapse
|
5
|
Zhang Q, Li C, Guangxin X, Zhang B, Liu C. Kinetics of Hydrate Formation and Dissociation in Coal at Different Temperatures Based on Impedance Method. ACS OMEGA 2021; 6:786-798. [PMID: 33458530 PMCID: PMC7808143 DOI: 10.1021/acsomega.0c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In the process of coal mining, gas outburst is a challenge that must be prevented to guarantee mining safety. Forming gas hydrate in coal can reduce the original gas pressure and delay the concentrative outbursts of gas flow, which is one of the potential technologies to prevent gas outbursts in coal. In this work, we perform the formation and dissociation kinetics experiment of hydrate in the presence of coal and tetrahydrofuran (THF) at the temperature based on different geological conditions in China by means of the experimental device with the impedance measurement function. The results showed that the impedance change can qualitatively describe the kinetic characteristics of hydrate formation and dissociation in coal. The sudden change in pressure and system impedance during gas hydrate formation indicated the nucleation point at which hydrate formation started, by which the induction time can be acquired. Pressure and impedance suddenly changed at the same time, which implied that methane molecules and tetrahydrofuran (THF) molecules entered the hydrate phase at the same time. When the dissociation temperature increased to 303.15 K, the hydrate dissociation rate can be less affected by dissociation temperature if it continued to increase. This work highlights that gas hydrate formation in coal can effectively prevent gas outbursts.
Collapse
Affiliation(s)
- Qiang Zhang
- Department
of Safety Engineering, Heilongjiang University
of Science and Technology, No. 2468 Puyuan Road, Songbei
District, Harbin 150022, Heilongjiang, China
- National
Central Laboratory of Hydrocarbon Gas Transportation Pipeline Safety, Harbin 150022, Heilongjiang, China
| | - Chenwei Li
- Department
of Safety Engineering, Heilongjiang University
of Science and Technology, No. 2468 Puyuan Road, Songbei
District, Harbin 150022, Heilongjiang, China
- National
Central Laboratory of Hydrocarbon Gas Transportation Pipeline Safety, Harbin 150022, Heilongjiang, China
| | - Xue Guangxin
- Department
of Safety Engineering, Heilongjiang University
of Science and Technology, No. 2468 Puyuan Road, Songbei
District, Harbin 150022, Heilongjiang, China
- National
Central Laboratory of Hydrocarbon Gas Transportation Pipeline Safety, Harbin 150022, Heilongjiang, China
| | - Baoyong Zhang
- Department
of Safety Engineering, Heilongjiang University
of Science and Technology, No. 2468 Puyuan Road, Songbei
District, Harbin 150022, Heilongjiang, China
- National
Central Laboratory of Hydrocarbon Gas Transportation Pipeline Safety, Harbin 150022, Heilongjiang, China
| | - Chuanhai Liu
- Department
of Safety Engineering, Heilongjiang University
of Science and Technology, No. 2468 Puyuan Road, Songbei
District, Harbin 150022, Heilongjiang, China
- National
Central Laboratory of Hydrocarbon Gas Transportation Pipeline Safety, Harbin 150022, Heilongjiang, China
| |
Collapse
|
6
|
Prasad PSR, Kiran BS, Sowjanya K. Enhanced methane gas storage in the form of hydrates: role of the confined water molecules in silica powders. RSC Adv 2020; 10:17795-17804. [PMID: 35515598 PMCID: PMC9053743 DOI: 10.1039/d0ra01754j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Methane hydrates are promising materials for storage and transportation of natural gas; however, the slow kinetics and inefficient water to hydrate conversions impede its broad scale utilisation. The purpose of the present study is to demonstrate rapid (2-3 h) and efficient methane hydrate conversions by utilising the water molecules confined in the intra- and inter-granular space of silica powders. All the experiments were conducted with amorphous silica (10 g) powders of 2-30 μm; 10-20 nm grain size, to mimic the hydrate formations in fine sand and clay dominated environments under moderate methane pressure (7-8 MPa). Encasing of methane molecules in hydrate cages was confirmed by Raman spectroscopic (ex situ) and thermodynamic phase boundary measurements. The present studies reveal that the water to hydrate conversion is relatively slower in 10-20 nm grain size silica, although the nucleation event is rapid in both silicas. The process of hydrate conversion is vastly diffusion-controlled, and this was distinctly observed during the hydrate growth in nanosize silica.
Collapse
Affiliation(s)
- Pinnelli S R Prasad
- Gas Hydrate Division, CSIR-National Geophysical Research Institute (CSIR-NGRI) Hyderabad - 500 007 India +91 40 2717 1564 +91 40 2701 2710
| | - Burla Sai Kiran
- Gas Hydrate Division, CSIR-National Geophysical Research Institute (CSIR-NGRI) Hyderabad - 500 007 India +91 40 2717 1564 +91 40 2701 2710.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NGRI Campus Hyderabad - 500 007 India
| | - Kandadai Sowjanya
- Gas Hydrate Division, CSIR-National Geophysical Research Institute (CSIR-NGRI) Hyderabad - 500 007 India +91 40 2717 1564 +91 40 2701 2710
| |
Collapse
|
7
|
Diffusion model of gas hydrate dissociation into ice and gas that takes into account the ice microstructure. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Singh H, Myshakin EM, Seol Y. A Novel Relative Permeability Model for Gas and Water Flow in Hydrate-Bearing Sediments With Laboratory and Field-Scale Application. Sci Rep 2020; 10:5697. [PMID: 32231238 PMCID: PMC7105472 DOI: 10.1038/s41598-020-62284-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/24/2020] [Indexed: 11/08/2022] Open
Abstract
In a producing gas hydrate reservoir the effective porosity available for fluid flow constantly changes with dissociation of gas hydrate. Therefore, accurate prediction of relative permeability using legacy models (e.g. Brooks-Corey (B-C), van Genuchten, etc.) that were developed for conventional oil and gas reservoirs would require empirical parameters to be calibrated at various Sh over its range of variation, but such calibrations are precluded because of lack of experimental relative permeability data. This study proposes a new relative permeability model for gas hydrate-bearing media that is a function of maximum capillary pressure, capillary entry pressure, pore size distribution index, residual saturations, hydrate saturation, and four other constants. The three novel features of the proposed model are: (i) requires fitting its six empirical parameters only once using experimental data from any single Sh, and the same set of empirical parameters predict relative permeability at all Sh, (ii) includes the effect of capillarity, and (iii) includes the effect of pore-size distribution. From practical standpoint, the model can be used to simulate multiphase flow in gas hydrate-bearing sediments where the proposed relative permeability can account for the evolving hydrate saturation. The proposed model is implemented in a numerical simulator and the wall time required to perform simulations using the proposed model is shown to be similar to the time it takes to run same simulations with the B-C model. The proposed model is a step forward towards achieving the goal of physically accurate modeling of multiphase flow for gas hydrate-bearing sediments that accounts for the effect of gas hydrate saturation change on relative permeability.
Collapse
Affiliation(s)
- Harpreet Singh
- National Energy Technology Laboratory, Morgantown, WV, USA.
| | - Evgeniy M Myshakin
- National Energy Technology Laboratory, Morgantown, WV, USA
- LRST, 626 Cochrans Mill Road, Pittsburgh, PA, USA
| | - Yongkoo Seol
- National Energy Technology Laboratory, Morgantown, WV, USA.
| |
Collapse
|
9
|
Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, Takeya S, Ruppel C, Yang J, English NJ, Schicks JM, Edlmann K, Mehrabian H, Aman ZM, Tohidi B. Gas hydrates in sustainable chemistry. Chem Soc Rev 2020; 49:5225-5309. [DOI: 10.1039/c8cs00989a] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review includes the current state of the art understanding and advances in technical developments about various fields of gas hydrates, which are combined with expert perspectives and analyses.
Collapse
Affiliation(s)
- Aliakbar Hassanpouryouzband
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Edris Joonaki
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Mehrdad Vasheghani Farahani
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8565
- Japan
| | | | - Jinhai Yang
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Niall J. English
- School of Chemical and Bioprocess Engineering
- University College Dublin
- Dublin 4
- Ireland
| | | | - Katriona Edlmann
- School of Geosciences
- University of Edinburgh
- Grant Institute
- Edinburgh
- UK
| | - Hadi Mehrabian
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Zachary M. Aman
- Fluid Science & Resources
- School of Engineering
- University of Western Australia
- Perth
- Australia
| | - Bahman Tohidi
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| |
Collapse
|
10
|
Ways to improve the efficiency of carbon dioxide utilization and gas hydrate storage at low temperatures. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Borchardt L, Casco ME, Silvestre-Albero J. Methane Hydrate in Confined Spaces: An Alternative Storage System. Chemphyschem 2018. [DOI: 10.1002/cphc.201701250] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lars Borchardt
- Department Inorganic Chemistry; TU Dresden; Bergstrasse 66 D-01062 Dresden Germany
| | | | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-IUMA; Universidad de Alicante; Ctra. San Vicente del Raspeig-Alicante s/n E-03690 San Vicente del Raspeig Spain
| |
Collapse
|
12
|
Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study. ENERGIES 2017. [DOI: 10.3390/en11010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw. Sci Rep 2017. [PMID: 28623329 PMCID: PMC5473936 DOI: 10.1038/s41598-017-04019-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Freeze-thaw induced fracturing coal by liquid nitrogen (LN2) injection exerts a significant positive effect on the fracture permeability enhancement of the coal reservoir. To evaluate the different freeze-thaw variables which modify the mechanical properties of treated coals, the effects of freezing time, number of freeze-thaw cycles, and the moisture content of coal were studied using combined uniaxial compression and acoustic emission testing systems. Freezing the samples with LN2 for increasing amounts of time degraded the strength of coal within a certain limit. Comparison to freezing time, freeze-thaw cycling caused much more damage to the coal strength. The third variable studied, freeze-thaw damage resulting from high moisture content, was restricted by the coal's moisture saturation limit. Based on the experimental results, equations describing the amount of damage caused by each of the different freeze-thaw variables were empirically regressed. Additionally, by using the ultrasonic wave detection method and fractal dimension analyses, how freeze-thaw induced fractures in the coal was quantitatively analyzed. The results also showed that the velocity of ultrasonic waves had a negative correlation with coal permeability, and the freeze-thaw cycles significantly augment the permeability of frozen-thawed coal masses.
Collapse
|
14
|
New hydrate formation methods in a liquid-gas medium. Sci Rep 2017; 7:40809. [PMID: 28098194 PMCID: PMC5241679 DOI: 10.1038/srep40809] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022] Open
Abstract
Conceptually new methods of hydrate formation are proposed. The first one is based on the shock wave impact on a water-bubble medium. It is shown that the hydrate formation rate in this process is typically very high. A gas hydrate of carbon dioxide was produced. The process was experimentally studied using various initial conditions, as well as different external action magnitudes. The obtained experimental data are in good agreement with the proposed model. Other methods are based on the process of boiling liquefied gas in an enclosed volume of water (explosive boiling of a hydrating agent and the organization of cyclic boiling-condensation process). The key features of the methods are the high hydrate formation rate combined with a comparatively low power consumption leading to a great expected efficiency of the technologies based on them. The set of experiments was carried out. Gas hydrates of refrigerant R134a, carbon dioxide and propane were produced. The investigation of decomposition of a generated gas hydrate sample was made. The criteria of intensification of the hydrate formation process are formulated.
Collapse
|