1
|
Babinskas J, Matijošytė I. Laccase Functional Analysis: Substrates, Activity Assays, Challenges, and Prospects. Chembiochem 2025; 26:e202400939. [PMID: 39866020 DOI: 10.1002/cbic.202400939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Enzyme functional analysis is a multifaceted process that can be used for various purposes, such as screening for specific activities, as well as developing, optimising, and validating processes or final products. Functional analysis methods are crucial for assessing enzyme performance and catalytic properties. Laccase, a well-known blue multi-copper oxidase, holds immense potential in diverse industries such as pharmaceuticals, paper and pulp, food and beverages, textiles, and biorefineries due to its clean oxidation process and versatility in handling a wide range of substrates. Despite its prominence, the use of laccase encounters challenges in selecting appropriate functional analysis substrates and methods. This review delves into the substrates utilised in qualitative and quantitative techniques for laccase activity analysis. Although laccase catalyses mono-electron oxidation of aromatic hydroxyl, amine, and thiol compounds efficiently, using molecular oxygen as an electron acceptor, the review identifies limitations in the specificity of the commonly employed substrates, concerns regarding the stability of certain compounds and highlights potential strategies.
Collapse
Affiliation(s)
- Justinas Babinskas
- Sector of Applied Biocatalysis, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania, LT-10257
| | - Inga Matijošytė
- Sector of Applied Biocatalysis, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania, LT-10257
| |
Collapse
|
2
|
Cvjetan N, Kissner R, Bajuk-Bogdanović D, Ćirić-Marjanović G, Walde P. Hemin-catalyzed oxidative oligomerization of p-aminodiphenylamine (PADPA) in the presence of aqueous sodium dodecylbenzenesulfonate (SDBS) micelles. RSC Adv 2022; 12:13154-13167. [PMID: 35520130 PMCID: PMC9063397 DOI: 10.1039/d2ra02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
In a previous report on the enzymatic synthesis of the conductive emeraldine salt form of polyaniline (PANI-ES) in aqueous solution using PADPA (p-aminodiphenylamine) as monomer, horseradish peroxidase isoenzyme C (HRPC) was applied as a catalyst at pH = 4.3 with H2O2 as a terminal oxidant. In that work, anionic vesicles were added to the reaction mixture for (i) guiding the reaction to obtain poly(PADPA) products that resemble PANI-ES, and for (ii) preventing product precipitation (known as the “template effect”). In the work now presented, instead of native HRPC, only its prosthetic group ferric heme b (= hemin) was utilized as a catalyst, and micelles formed from SDBS (sodium dodecylbenzenesulfonate) served as templates. For the elaborated optimal reaction conditions, complementary UV/vis/NIR, EPR, and Raman spectroscopy measurements clearly showed that the reaction mixture obtained after completion of the reaction contained PANI-ES-like products as dominating species, very similar to the products formed with HRPC as catalyst. HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonate) was found to have a positive effect on the reaction rate as compared to dihydrogenphosphate. This work is the first on the template-assisted formation of PANI-ES type products under mild, environmentally friendly conditions using hemin as a cost-effective catalyst. Polyaniline emeraldine salt-type products were synthesized under mild, environmentally friendly conditions using hemin as a cost-effective catalyst, p-aminodiphenylamine (PADPA) as a monomer, and micelles formed from SDBS as templates.![]()
Collapse
Affiliation(s)
- Nemanja Cvjetan
- Department of Materials, Laboratory for Multifunctional Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Reinhard Kissner
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11158 Belgrade Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11158 Belgrade Serbia
| | - Peter Walde
- Department of Materials, Laboratory for Multifunctional Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
3
|
Feng T, Li L, Shi Q, Dong S, Li B, Li K, Li G. Evidence for the influence of polaron delocalization on the electrical transport in LiNi 0.4+xMn 0.4-xCo 0.2O 2. Phys Chem Chem Phys 2020; 22:2054-2060. [PMID: 31904064 DOI: 10.1039/c9cp05768d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polaron delocalization in layered transition-metal oxides can considerably impact their physical properties and technological applications. Herein, we present the evidence for the influence of polaron delocalization on the electrical transport of layered oxides LiNi0.4+xMn0.4-xCo0.2O2, an active cathode material, by controlling the chemical compositions. We find that the chemical composition at x = 0.3 exhibits a sharp increment in electronic conductivity of four orders of magnitude at room temperature with respect to that at x = 0. We attribute the increased electronic conductivity to a low hopping energy in addition to a weak electron-phonon interaction. The weakened electron-phonon interaction is the source of polaron delocalization in LiNi0.4+xMn0.4-xCo0.2O2, which became improved with increasing x due to the increased polaron sizes. Moreover, it is also suggested that the polaron delocalization may have a relationship with the strong Jahn-Teller distortion induced by Ni3+. The analysis of temperature dependent electrical transport within the framework of the small polaron hopping conduction model enables us to comprehend the influence of polaron delocalization on the electrical transport pertinent to the applications of layered oxide materials.
Collapse
Affiliation(s)
- Tao Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Quan Shi
- Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shengde Dong
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, P. R. China
| | - Baoyun Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Ke Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
4
|
Walde P, Kashima K, Ćirić-Marjanović G. Synthesizing Polyaniline With Laccase/O 2 as Catalyst. Front Bioeng Biotechnol 2019; 7:165. [PMID: 31355193 PMCID: PMC6635843 DOI: 10.3389/fbioe.2019.00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The polymerization of aniline to polyaniline (PANI) can be achieved chemically, electrochemically or enzymatically. In all cases, the products obtained are mixtures of molecules which are constituted by aniline units. Depending on the synthesis conditions there are variations (i) in the way the aniline molecules are connected, (ii) in the average number of aniline units per molecule, (iii) in the oxidation state, and (iv) in the degree of protonation. For many possible applications, the synthesis of electroconductive PANI with para-N-C-coupled aniline units in their half-oxidized and protonated state is of interest. This is the emeraldine salt form of PANI, abbreviated as PANI-ES. The enzymatic synthesis of PANI-ES is an environmentally friendly alternative to conventional chemical or electrochemical methods. Although many studies have been devoted to the in vitro synthesis of PANI-ES by using heme peroxidases with added hydrogen peroxide (H2O2) as the oxidant, the application of laccases is of particular interest since the oxidant for these multicopper enzymes is molecular oxygen (O2) from air, which is beneficial from environmental and economic points of view. In vivo, laccases participate in the synthesis and degradation of lignin. Various attempts of synthesizing PANI-ES with laccase/O2 in slightly acidic aqueous media from aniline or the linear aniline dimer PADPA (p-aminodiphenylamine) are summarized. Advances in the understanding of the positive effects of soft dynamic templates, as chemical structure guiding additives (anionic polyelectrolytes, micelles, or vesicles), for obtaining PANI-ES-rich products are highlighted. Conceptually, some of these template effects appear to be related to the effect "dirigent proteins" exert in the biosynthesis of lignin. In both cases intermediate radicals are formed enzymatically which then must react in a controlled way in follow-up reactions for obtaining the desired products. These follow-up reactions are controlled to some extent by the templates or specific proteins.
Collapse
Affiliation(s)
- Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH, Zurich, Switzerland
| | - Keita Kashima
- Laboratory for Multifunctional Materials, Department of Materials, ETH, Zurich, Switzerland
- Department of Chemistry and Bioengineering, National Institute of Technology, Oyama College, Oyama, Japan
| | | |
Collapse
|
5
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Kissner R, Janošević Ležaić A, Bajuk-Bogdanović D, Ćirić-Marjanović G, Busato S, Ishikawa T, Walde P. Effect of Template Type on the Trametes versicolor Laccase-Catalyzed Oligomerization of the Aniline Dimer p-Aminodiphenylamine (PADPA). ACS OMEGA 2019; 4:2931-2947. [PMID: 31459521 PMCID: PMC6648283 DOI: 10.1021/acsomega.8b03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 06/10/2023]
Abstract
Many previous studies have shown that (i) the oxidation of aniline or the aniline dimer p-aminodiphenylamine (PADPA) in a slightly acidic aqueous solution can be catalyzed with heme peroxidases or multicopper laccases and that (ii) subsequent reactions lead to oligomeric or polymeric products, which resemble chemically synthesized polyaniline in its conductive emeraldine salt form (PANI-ES), provided that (iii) an anionic "template" is present in the reaction medium. Good templates are anionic polyelectrolytes, micelles, or vesicles. Under optimal conditions, their presence directs the reactions in a positive way toward the desired formation of PANI-ES-type products. The effect of four different types of anionic templates on the formation of PANI-ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Although with all four templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h. With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular) PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA with TvL and O2), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form.
Collapse
Affiliation(s)
- Keita Kashima
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Tomoyuki Fujisaki
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | | | - Reinhard Kissner
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | | - Danica Bajuk-Bogdanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stephan Busato
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer
Institute (PSI), CH-5231 Villigen, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Fujisaki T, Kashima K, Serrano-Luginbühl S, Kissner R, Bajuk-Bogdanović D, Milojević-Rakić M, Ćirić-Marjanović G, Busato S, Lizundia E, Walde P. Effect of template type on the preparation of the emeraldine salt form of polyaniline (PANI-ES) with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide. RSC Adv 2019; 9:33080-33095. [PMID: 35529127 PMCID: PMC9073176 DOI: 10.1039/c9ra06168a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/05/2019] [Indexed: 01/06/2023] Open
Abstract
Horseradish peroxidase isoenzyme C (HRPC) is often used as catalyst for the preparation of the conductive emeraldine salt form of polyaniline (PANI-ES) from aniline and hydrogen peroxide (H2O2) in the presence of anionic templates in aqueous solution. Here, a direct comparison of three types of soft templates was made, (i) the sodium salt of sulfonated polystyrene (SPS), (ii) micelles from sodium dodecylbenzenesulfonate (SDBS), and (iii) vesicles from either a 1 : 1 molar mixture of SDBS and decanoic acid or from AOT (sodium bis(2-ethylhexyl)sulfosuccinate). Based on UV/vis/NIR, EPR and Raman spectroscopy measurements all three types of templates are similarly suitable, with advantages of the two vesicle systems in terms of aniline conversion degree and radical content in the final PANI-ES product. First experiments with sulfated cellulose nanocrystals (CNCs) indicate that they are promising rigid templates for the preparation of electroconductive PANI-ES-coated cellulose materials or devices. Different types of templates consisting of sulfonate or sulfate groups were compared for the horseradish peroxidase/H2O2-catalysed synthesis of the emeraldine salt form of polyaniline from aniline at pH = 4.3.![]()
Collapse
Affiliation(s)
- Tomoyuki Fujisaki
- Department of Materials
- Laboratory for Multifunctional Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Keita Kashima
- Department of Materials
- Laboratory for Multifunctional Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| | | | - Reinhard Kissner
- Department of Chemistry and Applied Biosciences
- Laboratory of Inorganic Chemistry
- 8093 Zürich
- Switzerland
| | | | | | | | - Stephan Busato
- Department of Materials
- Laboratory for Soft Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Erlantz Lizundia
- Department of Materials
- Laboratory for Multifunctional Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Peter Walde
- Department of Materials
- Laboratory for Multifunctional Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| |
Collapse
|
7
|
Zhang Y, Serrano-Luginbühl S, Kissner R, Milojević-Rakić M, Bajuk-Bogdanović D, Ćirić-Marjanović G, Wang Q, Walde P. Enzymatic Synthesis of Highly Electroactive Oligoanilines from a p-Aminodiphenylamine/Aniline Mixture with Anionic Vesicles as Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9153-9166. [PMID: 29989829 DOI: 10.1021/acs.langmuir.8b00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligoanilines with characteristic properties of the electrically conductive emeraldine salt form of polyaniline (PANI-ES) are promising molecules for various applications. A mixture of such oligoanilines can be obtained, for example, enzymatically under mild conditions from the linear aniline dimer p-aminodiphenylamine (PADPA) with hydrogen peroxide (H2O2) and low amounts of horseradish peroxidase (HRP) in an aqueous pH = 4.3 suspension of anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinate. However, the simultaneous formation of undesired side products containing phenazine-type units or oxygen atoms is unsatisfactory. We have found that this situation can be improved considerably by using a mixture of PADPA and aniline instead of PADPA only but otherwise nearly identical conditions. The PANI-ES-like oligoaniline products that are obtained from the PADPA and aniline mixture were not only found to have much lower contents of phenazine-type units and not contain oxygen atoms but also were shown to be more electroactive in cyclic voltammetry measurements than the PANI-ES-like products obtained from PADPA only. The AOT vesicle suspension remained stable without product precipitation during and after the entire reaction so that it could be analyzed by in situ UV/visible/near-infrared, in situ electron paramagnetic resonance, and in situ Raman spectroscopy measurements. These measurements were complemented with ex situ high-performance liquid chromatography analyses of the deprotonated and reduced products formed from mixtures of PADPA and either fully or partially deuterated aniline. On the basis of the results obtained, a reaction mechanism is proposed for explaining this improved HRP-triggered, vesicle-assisted synthesis of electroactive PANI-ES-like products. The oligomeric products obtained can be further used, without additional special workup, for example, to coat electrodes for their possible application in biosensor devices.
Collapse
Affiliation(s)
- Ya Zhang
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , CH-8093 Zurich , Switzerland
- Key Laboratory of Science and Technology of Eco-Textile , Jiangnan University , Lihu Avenue 1800 , 214122 Wuxi , China
| | - Sandra Serrano-Luginbühl
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , CH-8093 Zurich , Switzerland
| | - Reinhard Kissner
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 2 , CH-8093 Zurich , Switzerland
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry , University of Belgrade , Studentski trg 12-16 , 11158 Belgrade , Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry , University of Belgrade , Studentski trg 12-16 , 11158 Belgrade , Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry , University of Belgrade , Studentski trg 12-16 , 11158 Belgrade , Serbia
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile , Jiangnan University , Lihu Avenue 1800 , 214122 Wuxi , China
| | - Peter Walde
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
8
|
Stamenović U, Gavrilov N, Pašti IA, Otoničar M, Ćirić-Marjanović G, Škapin SD, Mitrić M, Vodnik V. One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Khaydarov A, Kissner R, Ležaić AJ, Bajuk-Bogdanović D, Ćirić-Marjanović G, Schuler LD, Walde P. How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. RSC Adv 2018; 8:33229-33242. [PMID: 35548148 PMCID: PMC9086443 DOI: 10.1039/c8ra05731a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023] Open
Abstract
The Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as “templates” for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T ≈ 25 to 5 °C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way. A laccase-catalysed oligomerisation of p-aminodiphenylamine was investigated in an aqueous medium containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid.![]()
Collapse
Affiliation(s)
- Keita Kashima
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | - Tomoyuki Fujisaki
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | | | | | - Reinhard Kissner
- Laboratory of Inorganic Chemistry
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | | | | | | | | | - Peter Walde
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| |
Collapse
|
10
|
Luginbühl S, Iwasaki F, Chirackal Varkey E, Umakoshi H, Walde P. A Novel Role of Vesicles as Templates for the Oxidation and Oligomerization of p-Aminodiphenylamine by Cytochrome c. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandra Luginbühl
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| | - Fumihiko Iwasaki
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
- Bio-Inspired Chemical Engineering Lab; Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyamacho Toyonaka Osaka 560-8531 Japan
| | - Elizabeth Chirackal Varkey
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Lab; Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyamacho Toyonaka Osaka 560-8531 Japan
| | - Peter Walde
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| |
Collapse
|
11
|
Ćirić-Marjanović G, Milojević-Rakić M, Janošević-Ležaić A, Luginbühl S, Walde P. Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives. CHEMICKE ZVESTI 2016; 71:199-242. [PMID: 28775395 PMCID: PMC5495875 DOI: 10.1007/s11696-016-0094-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Abstract
The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green" chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed.
Collapse
Affiliation(s)
- Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Aleksandra Janošević-Ležaić
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sandra Luginbühl
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Luginbühl S, Bertschi L, Willeke M, Schuler LD, Walde P. How Anionic Vesicles Steer the Oligomerization of Enzymatically Oxidized p-Aminodiphenylamine (PADPA) toward a Polyaniline Emeraldine Salt (PANI-ES)-Type Product. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9765-9779. [PMID: 27570882 DOI: 10.1021/acs.langmuir.6b02146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The oxidation of the aniline dimer, p-aminodiphenylamine (PADPA), with Trametes versicolor laccase and O2 in an aqueous solution of pH 3.5 is controlled by negatively charged AOT (sodium bis(2-ethylhexyl) sulfosuccinate) vesicles. With vesicles, a product resembling polyaniline in its emeraldine salt form (PANI-ES) is obtained, in contrast to the reaction without vesicles where no such product is formed. To understand this observation, the product distribution and structures from the reaction with and without vesicles were determined by using partially selectively deuterated PADPA as a starting material and analyzing the products with HPLC-MS. We found that in the presence of vesicles the main product is obtained in about 50% yield, which is the N-C-para-coupled PADPA dimer that has spectroscopic properties of PANI-ES, as determined by time-dependent density functional theory (TD-DFT) calculations. A secondary reaction route leads to longer PADPA oligomers that must contain a phenazine core. Without vesicles, PADPA and its products undergo partial hydrolysis, but in the presence of vesicles, hydrolysis does not occur. Because molecular dynamics (MD) simulations show that the main intermediate oxidation product is embedded within the vesicle membrane, where the water content is very low, we propose that the microenvironment of the vesicle membrane protects the oxidation products from unwanted hydrolysis.
Collapse
Affiliation(s)
- Sandra Luginbühl
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Louis Bertschi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Martin Willeke
- Materials Science Education, Department of Materials, ETH Zürich , Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | | | - Peter Walde
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|