1
|
Liu C, Liu X, Duan J. Artemisinin and Its Derivatives: Promising Therapeutic Agents for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:535. [PMID: 40283970 PMCID: PMC12030120 DOI: 10.3390/ph18040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older adults. Its pathogenesis involves multiple factors, including aging, environmental influences, genetic predisposition, oxidative stress, metabolic dysfunction, and immune dysregulation. Currently, AMD treatment focuses primarily on wet AMD, managed through repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapies. While anti-VEGF agents represent a major breakthrough in wet AMD care, repeated injections may lead to incomplete responses or resistance in some patients, and carry a risk of progressive fibrosis. Artemisinin (ART) and its derivatives, originally developed as antimalarial drugs, exhibit a broad spectrum of pleiotropic activities beyond their established use, including anti-inflammatory, anti-angiogenic, antioxidant, anti-fibrotic, mitochondrial regulatory, lipid metabolic, and immunosuppressive effects. These properties position ART as a promising therapeutic candidate for AMD. A growing interest in ART-based therapies for AMD has emerged in recent years, with numerous studies demonstrating their potential benefits. However, no comprehensive review has systematically summarized the specific roles of ART and its derivatives in AMD pathogenesis and treatment. This paper aims to fill the knowledge gap by synthesizing the therapeutic efficacy and molecular mechanisms of ART and its derivatives in AMD, thereby providing a foundation for future investigations.
Collapse
Affiliation(s)
- Chun Liu
- Eye School, Chengdu University of TCM, Chengdu 610075, China
| | - Xiaoqin Liu
- Clinical Medical School, Chengdu University of TCM, Chengdu 610075, China
| | - Junguo Duan
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu 610075, China
| |
Collapse
|
2
|
Sun H, Zhao P, Zhao L, Zhao Z, Chen H, Ren C, Guo B. Therapeutic applications of artemisinin in ophthalmic diseases. Heliyon 2025; 11:e42066. [PMID: 39911424 PMCID: PMC11795063 DOI: 10.1016/j.heliyon.2025.e42066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Artemisinin is a sesquiterpene lactone extracted from the chrysanthemum plant, Artemisia annua. It is known for its curative effects in the treatment of pulmonary hypertension, leukemia, diabetes, malaria, and other diseases, owing to its abundant biological activity. In recent years, with the development of plant secondary metabolite research, other potential pharmacological effects of artemisinin-based drugs have received increasing attention; in particular, reports of their application for the potential treatment of ophthalmology-related diseases have gradually increased. Recently, studies confirmed that artemisinin plays therapeutic roles in eye diseases through regulation of signaling pathways, such asNrf2/HO-1/Keap1, TLR/MyD88/NF-κb, PI3K/AKT/mTOR, and FASN/Kmal-mTOR/SREBP1, and biological factors, such as protein kinase B, AMP-activated protein kinase, tumor necrosis factor alpha, nod-like receptor protein 3, vascular endothelial growth factor, malonyl-coenzyme A and cytochrome C. However, since ocular diseases are often caused by various factors, how artemisinin can play a good disease prevention role by modulating these factors needs to be further verified, and most of the current studies focus on in vitro and animal experiments, lacking sufficient information on clinical trial studies. To better explore and perfect the mechanism of action of artemisinin in ophthalmic diseases, and to better promote the clinical application of artemisinin, this study reviews the latest progress of artemisinin treatment for uveitis, uveal melanoma, age-related macular degeneration, diabetic retinopathy, ocular neovascularization, and dry eye, and it will provide theoretical support for the large-scale application of artemisinin in ophthalmic diseases in the future.
Collapse
Affiliation(s)
- Hao Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Lanling People's Hospital of Linyi, Linyi, Shandong, 276000, China
| | - Ping Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
- Postdoctoral Station of Shandong University of Traditional Chinese Medicine, Yingxiongshan Road 48, Jinan, 250000, China
| | - Lianghui Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
| | - Zhizhong Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Haoyu Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Cong Ren
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
- Postdoctoral Station of Shandong University of Traditional Chinese Medicine, Yingxiongshan Road 48, Jinan, 250000, China
| |
Collapse
|
3
|
Sheibani N, Song YS, Farnoodian M, Inampudi S, Wang S, Darjatmoko SR, Sorenson CM. Artesunate mitigates choroidal neovascularization and scar formation. Exp Eye Res 2023; 236:109666. [PMID: 37783334 DOI: 10.1016/j.exer.2023.109666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Angiogenesis, although required during eye development, has a causative effect in many ocular diseases. Aberrant neovascularization contributes to the progression of neovascular age-related macular degeneration (nAMD), a vision-threaten disease in aging Americans. Since increased amounts of vascular endothelial growth factor (VEGF) drives neovascularization during the pathogenesis of nAMD the standard of care are anti-VEGF therapies attempt to disrupt this vicious cycle. These current anti-VEGF therapies try to maintain vascular homeostasis while abating aberrant neovascularization but regrettably don't prevent fibrosis or scar formation. In addition, some patients demonstrate an incomplete response to anti-VEGF therapy as demonstrated by progressive vision loss. Here, we show choroidal endothelial cells (ChEC) incubated with artesunate demonstrated decreased migration and inflammatory and fibrotic factor expression, which corresponded with decreased sprouting in a choroid/retinal pigment epithelium (RPE) explant sprouting angiogenesis assay. To assess the efficacy of artesunate to curtail neovascularization in vivo, we utilized laser photocoagulation-induced rupture of the Bruch's membrane to induce choroidal neovascularization (CNV). Artesunate significantly inhibited CNV and the accompanying fibrotic scar, perhaps due in part to its ability to inhibit mononuclear phagocyte (MP) recruitment. Thus, artesunate shows promise in inhibiting both CNV and fibrosis.
Collapse
Affiliation(s)
- Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, USA
| | - Yong-Seok Song
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Samay Inampudi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
4
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Lu BW, Liang YX, Liu JF, Sun ZQ, So KF, Chiu K. Retinal safety and toxicity study of artesunate in vitro and in vivo. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:47-54. [PMID: 37846375 PMCID: PMC10577838 DOI: 10.1016/j.aopr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 10/18/2023]
Abstract
Background Artesunate (ART), a member of the artemisinin family, possesses multi-properties, including anti-inflammation, anti-oxidation, and anti-tumor. ART was recently reported to show anti-neovascularization effect on the cornea, iris, and retina. Compared to the expensive anti-VEGF treatment, this versatile, economical treatment option is attractive in the ophthalmic field. The safety and toxicity profile of ART intravitreal application are in utmost need. Methods In this study, immortalized microglial (IMG) cells were treated with ART to determine the safe concentrations without inducing overt inflammatory reactions. Reverse transcription-polymerase chain reaction analysis was used to detect the cytokine expressions in IMG cells in response to ART stimulation. Various doses of ART were intravitreally injected into the right eyes of C57BL/6 mice. Retinal function was tested by electroretinogram, and retinal ganglion cell (RGC) survival was evaluated by counting Brn3a stained cells in flat-mounted retinas at 7 days after ART injection. Results ART below 5μM was safe for IMG cells in vitro. Both 2.5 and 5 μM ART treatment increased IL-10 gene expression in IMG cells while not changing IL-1β, IL-6, TNF-α, and Arg-1. In the in vivo study, intravitreal injection of ART below 100 μM did not cause deterioration in the retinal function and RGC survival of the mouse eyes, while 1 mM ART treatment significantly attenuated both the scotopic and photopic b-wave amplitudes and impaired RGC survival. In addition, treatment with ART of 25, 50, and 100 μM significantly decreased TNF-α gene expression while ART of 100 μM significantly increased IL-10 in the mouse retina. Conclusions Intravitreal injection of 100 μM ART could downregulate TNF-α while upregulate IL-10 in the mouse retina without causing retinal functional deterioration and RGC loss. ART might be used as anti-inflammatory agent for retinal disorders.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Xiang Liang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Jin-Feng Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhong-Qing Sun
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
- Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Ministry of Education, CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kin Chiu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Kumar S, Quach J, Cook N, Gum G, Naageshwaran V. Characterization and validation of a chronic retinal neovascularization rabbit model by evaluating the efficacy of anti-angiogenic and anti-inflammatory drugs. Int J Ophthalmol 2022; 15:15-22. [PMID: 35047351 DOI: 10.18240/ijo.2022.01.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To establish a rabbit model with chronic condition of retinal neovascularization (RNV) induced by intravitreal (IVT) injection of DL-2-aminoadipic acid (DL-AAA), a retinal glial (Müller) cell toxin, extensive characterization of DL-AAA induced angiographic features and the suitability of the model to evaluate anti-angiogenic and anti-inflammatory therapies for ocular vascular diseases. METHODS DL-AAA (80 mmol/L) was administered IVT into both eyes of Dutch Belted rabbit. Post DL-AAA delivery, clinical ophthalmic examinations were performed weekly following modified McDonald-Shadduck Scoring System. Color fundus photography, fluorescein angiography (FA), and optical coherence tomography (OCT) procedures were performed every 2 or 4wk until stable retinal vascular leakage was observed. Once stable retinal leakage (12wk post DL-AAA administration) was established, anti-vascular endothelial growth factor (VEGF) (bevacizumab, ranibizumab and aflibercept) and anti-inflammatory (triamcinolone, TAA) drugs were tested for their efficacy after IVT administration. Fluorescein angiograms were scored before and after treatment following a novel grading system, developed for the DL-AAA rabbit model. RESULTS Post DL-AAA administration, eyes were presented with moderate to severe retinal/choroidal inflammation which was accompanied by intense vitreous flare and presence of inflammatory cells in the vitreous humor. Retinal hemorrhage was restricted to the tips of neo-retinal vessels. FA revealed maximum retinal vascular leakage at 2wk after DL-AAA injection and then persisted as evidenced by stable mean FA scores in weeks 8 and 12. Retinal vascular angiographic and tomographic features were stable and consistent up to 36mo among two different staggers induced for RNV at two different occasions. Day 7, mean FA scores showed that 1 µg/eye of bevacizumab, ranibizumab, aflibercept and 2 µg/eye of TAA suppress 65%, 90%, 100% and 50% retinal vascular leakage, respectively. Day 30, bevacizumab and TAA continued to show 66% and 44% suppression while ranibizumab effect was becoming less effective (68%). In contrast, aflibercept was still able to fully (100%) suppress vascular leakage on day 30. On day 60, bevacizumab, ranibizumab and TAA showed suppression of 7%, 12%, and 9% retinal vascular leakage, respectively, however, aflibercept continued to be more effective showing 50% suppression of vascular leakage. CONCLUSION The DL-AAA rabbit model mimics RNV angiographic features like RNV and chronic retinal leakage. Based on these features the DL-AAA rabbit model provides an invaluable tool that could be used to test the therapeutic efficacy and duration of action of novel anti-angiogenic formulations, alone or in combination with anti-inflammatory compounds.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - John Quach
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - Nicholas Cook
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - Glenwood Gum
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - Vatsala Naageshwaran
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| |
Collapse
|
7
|
Geng B, Zhu Y, Yuan Y, Bai J, Dou Z, Sui A, Luo W. Artesunate Suppresses Choroidal Melanoma Vasculogenic Mimicry Formation and Angiogenesis via the Wnt/CaMKII Signaling Axis. Front Oncol 2021; 11:714646. [PMID: 34476217 PMCID: PMC8406848 DOI: 10.3389/fonc.2021.714646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis and vasculogenic mimicry (VM) are considered to be the main processes to ensure tumor blood supply during the proliferation and metastasis of choroidal melanoma (CM). The traditional antimalarial drug artesunate (ART) has some potential anti-CM effects; however, the underlying mechanisms remain unclarified. Recent studies have shown that the Wnt5a/calmodulin-dependent kinase II (CaMKII) signaling pathway has a close correlation with angiogenesis and VM formation. This study demonstrated that ART eliminated VM formation by inhibiting the aforementioned signaling pathway in CM cells. The microvessel sprouting of the mouse aortic rings and the microvessel density of chicken chorioallantoic membrane (CAM) decreased significantly after ART treatment. VM formation assay and periodic acid schiff (PAS) staining revealed that ART inhibited VM formation in CM. Moreover, ART downregulated the expression levels of the angiogenesis-related proteins vascular endothelial growth factor receptor (VEGFR) 2, platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor (VEGF) A, and VM-related proteins ephrin type-A receptor (EphA) 2 and vascular endothelial (VE)-cadherin. The expression of hypoxia-inducible factor (HIF)-1α, Wnt5a, and phosphorylated CaMKII was also downregulated after ART treatment. In addition, we further demonstrated that ART inhibited the proliferation, migration, and invasion of OCM-1 and C918 cells. Collectively, our results suggested that ART inhibited angiogenesis and VM formation of choroidal melanoma likely by regulating the Wnt5a/CaMKII signaling pathway. These findings further supported the feasibility of ART for cancer therapy.
Collapse
Affiliation(s)
- Bochao Geng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanzhang Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Yuan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingyi Bai
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhizhi Dou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aihua Sui
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Jin Z, Lu Y, Wu Y, Che J, Dong X. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem 2020; 207:112818. [PMID: 32937281 DOI: 10.1016/j.ejmech.2020.112818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is one of the most common pediatric malignancies. Easy metastasis, poor prognosis, and a high degree of heterogeneity of NB hinder its successful treatment. Several different therapeutic strategies have been developed to overcome these problems, including differentiation and targeted therapy. In this review, we summarize the recent development of differentiation modulators and targeted agents for treating NB. Several promising targets of NB were also discussed.
Collapse
Affiliation(s)
- Zegao Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yizhe Wu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Center of Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Lu BW, Xie LK. Potential applications of artemisinins in ocular diseases. Int J Ophthalmol 2019; 12:1793-1800. [PMID: 31741871 DOI: 10.18240/ijo.2019.11.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Artemisinin, also named qinghaosu, is a family of sesquiterpene trioxane lactone originally derived from the sweet wormwood plant (Artemisia annua), which is a traditional Chinese herb that has been universally used as anti-malarial agents for many years. Evidence has accumulated during the past few years which demonstrated the protective effects of artemisinin and its derivatives (artemisinins) in several other diseases beyond malaria, including cancers, autoimmune disorders, inflammatory diseases, viral and other parasite-related infections. Recently, this long-considered anti-malarial agent has been proved to possess anti-oxidant, anti-inflammatory, anti-apoptotic and anti-excitotoxic properties, which make it a potential treatment option for the ocular environment. In this review, we first described the overview of artemisinins, highlighting the activity of artemisinins to other diseases beyond malaria and the mechanisms of these actions. We then emphasized the main points of published results of using artemisinins in targeting ocular disorders, including uveitis, retinoblastoma, retinal neurodegenerative diseases and ocular neovascularization. To conclude, we believe that artemisinins could also be used as a promising therapeutic drug for ocular diseases, especially retinal vascular diseases in the near future.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100400, China
| | - Li-Ke Xie
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100400, China
| |
Collapse
|
11
|
Li C, Feng X, Wen X, Li Y, Liu B, Hu J, Lu L, Zhuo Y, Fu Y, Qian X, Shao W, Zheng Q, Lin L, Yang Y, Zheng H, Lin X, Gao Q. A Pilot Clinical Study of Intravitreal Injection of Artesunate for Ocular Neovascularization. J Ocul Pharmacol Ther 2019; 35:283-290. [PMID: 31090473 DOI: 10.1089/jop.2018.0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose: To evaluate the efficacy and primary safety of treatment with artesunate in reducing ocular neovascularization in humans. Methods: Five patients with corneal, iris, and retinal neovascularization and no light perception were treated with intravitreal injections of artesunate 80 μg. Visual acuity, anterior segment photography, fundus fluorescein angiography, and optical coherence tomography were used to evaluate efficacy, while intraocular pressure (IOP) and lens opacity degree were employed to evaluate safety. The primary endpoint was attenuation of neovascularization as determined at 24 weeks, with the last posttreatment follow-up at 52 weeks. Results: Corneal and iris neovascularization, which were secondary to fundus ischemic diseases and retinal neovascularization in all 5 patients, were attenuated after 1 or 2 injections by the 52-week follow-up. Retinal neovascularization was also attenuated, and papilledema was alleviated. The average IOP fell from 25.5 mmHg to 17.66 mmHg. Conclusions: This pilot study determined that intravitreal artesunate injection is efficacious for reducing corneal, iris, and retinal neovascularization. These results indicate that this drug may be a novel alternative to the currently popular antivascular endothelial growth factor drugs used to suppress ocular neovascularization and improve visual function.
Collapse
Affiliation(s)
- Cheng Li
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Feng
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Wen
- 2 Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Li
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingqian Liu
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jie Hu
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Fu
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Qian
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wanwen Shao
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qishan Zheng
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Leilei Lin
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao Yang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haihua Zheng
- 3 The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofeng Lin
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qianying Gao
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
13
|
Liu X, Wang S, Wang X, Liang J, Zhang Y. Recent drug therapies for corneal neovascularization. Chem Biol Drug Des 2017; 90:653-664. [PMID: 28489275 DOI: 10.1111/cbdd.13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyao Liu
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Shurong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Xuanzhong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Jiaming Liang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Yan Zhang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|