1
|
Ouyang R, Feng M, Zhao Y, Liu J, Ma Y, Liu X, Liu B, Miao Y. Cubic Na 0.5Bi 0.5TiO 3 nanoperovskite significantly expands the application of sensitive immunosensor for the detection of carcinoembryonic antigen. Mikrochim Acta 2024; 191:381. [PMID: 38858277 DOI: 10.1007/s00604-024-06451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
Nanosized sodium bismuth perovskite titanate (NBT) was synthesized and first used as the electrochemical immune sensing platform for the sensitive detection of carcinoembryonic antigen (CEA). Gold nanoparticles (Au NPs) grew on the surface of NBT through forming Au-N bond to obtain Au@NBT, and a label-free electrochemical immunosensor was proposed using Au@NBT as an immunosensing recognizer towards CEA. The well-ordered crystal structure of NBT was not changed at all after the modification of Au NPs outside, but significantly improved the conductivity, catalytic activity, and biocompatibility of the Au@NBT-modified electrode. The unique cubic crystal nanostructure of NBT offered a large active area for both Au NP modification and the subsequent immobilization of biomolecules over the electrode surface, triggering the effective generation of promising properties of the proposed Au@NBT-based electrochemical immunosensor. As expected, favorable detection performances were achieved using this immunosensor towards CEA detection, where a good linear relationship between the current response and CEA concentration was obtained in the concentration range 10 fg mL-1 to 100 ng mL-1 with a low detection limit (LOD) of 13.17 fg mL-1. Also, the significantly enhanced selectivity, and stability guaranteed the promising electrochemical properties of this immunosensor. Furthermore, the analysis of real serum samples verified the high feasibility of this new method in clinical CEA detection. This work opens a new window for the application of nanoperovskite in the early detection of CEA.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meina Feng
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanhui Ma
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xi Liu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
3
|
Zahed MA, Kim DK, Jeong SH, Selim Reza M, Sharifuzzaman M, Pradhan GB, Song H, Asaduzzaman M, Park JY. Microfluidic-Integrated Multimodal Wearable Hybrid Patch for Wireless and Continuous Physiological Monitoring. ACS Sens 2023; 8:2960-2974. [PMID: 37498214 DOI: 10.1021/acssensors.3c00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Despite extensive advances in wearable monitoring systems, most designs focus on the detection of physical parameters or metabolites and do not consider the integration of microfluidic channels, miniaturization, and multimodality. In this study, a combination of multimodal (biochemical and electrophysiological) biosensing and microfluidic channel-integrated patch-based wireless systems is designed and fabricated using flexible materials for improved wearability, ease of operation, and real-time and continuous monitoring. The reduced graphene oxide-based microfluidic channel-integrated glucose biosensor exhibits a good sensitivity of 19.97 (44.56 without fluidic channels) μA mM-1 cm-2 within physiological levels (10 μM-0.4 mM) with good long-term and bending stability. All the sensors in the patch are initially validated using sauna gown sweat-based on-body and real-time tests with five separate individuals who perspired three times each. Multimodal glucose and electrocardiogram (ECG) sensing, along with their real-time adjustment based on sweat pH and temperature fluctuations, optimize sensing accuracy. Laser-burned hierarchical MXene-polyvinylidene fluoride-based conductive carbon nanofiber-based dry ECG electrodes exhibit low skin contact impedance (40.5 kΩ cm2) and high-quality electrophysiological signals (signal-to-noise ratios = 23.4-32.8 dB). The developed system is utilized to accurately and wirelessly monitor the sweat glucose and ECG of a human subject engaged in physical exercise in real time.
Collapse
Affiliation(s)
- Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Dong Kyun Kim
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Seong Hoon Jeong
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Md Selim Reza
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Gagan Bahadur Pradhan
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Md Asaduzzaman
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- SnE Solution Co. Ltd, 447-1, Seoul 139-701, Republic of Korea
| |
Collapse
|
4
|
Hu Y, Lu X, Shen L, Dong J, Liang Z, Xie J, Peng T, Yu X, Dai X. Difunctional Magnetic Nanoparticles Employed in Immunochromatographic Assay for Rapid and Quantitative Detection of Carcinoembryonic Antigen. Int J Mol Sci 2023; 24:12562. [PMID: 37628743 PMCID: PMC10454329 DOI: 10.3390/ijms241612562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yalin Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xin Lu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Liyue Shen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jiahui Dong
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Zhanwei Liang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| |
Collapse
|
5
|
Kalkal A, Pradhan R, Packirisamy G. Gold nanoparticles modified reduced graphene oxide nanosheets based dual-quencher for highly sensitive detection of carcinoembryonic antigen. Int J Biol Macromol 2023:125157. [PMID: 37257543 DOI: 10.1016/j.ijbiomac.2023.125157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/21/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
In the current scenario, the dominance of cancer is becoming a disastrous threat to mankind. Therefore, an advanced analytical approach is desired as the need of the hour for early diagnosis to curb the menace of cancer. In this context, the present work reports the development of nano surface energy transfer (NSET) based fluorescent immunosensor for carcinoembryonic antigen (CEA) detection utilizing protein functionalized graphene quantum dots (anti-CEA/amine-GQDs) and a nanocomposite of nanostructured gold and reduced graphene oxide (AuNPs@rGO) as energy donor-acceptor pair, respectively. The obtained AuNPs@rGO nanocomposite has been characterized by different advanced analytical techniques. The functionality of the biosensor depends on quenching the fluorescence of anti-CEA/amine-GQDs donor species by AuNPs@rGO acceptor species, followed by the gradual recovery of GQDs' fluorescence after CEA addition. The efficient energy transfer kinetics have been envisaged by utilizing the AuNPs@rGO nanocomposite as a dual-quencher nanoprobe that revealed improved energy transfer and quenching efficiency (~62 %, 88 %) compared to AuNPs (~43 %, 81 %) as a single quencher. Further, the developed biosensing platform successfully detected CEA biomarker with notable biosensing parameters, including a wider linear detection range (0.001-500 ng mL-1), fast response time (24 min), and a significantly low detection limit (0.35 pg mL-1).
Collapse
Affiliation(s)
- Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Rangadhar Pradhan
- iHub Divyasmapark, Technology Innovation hub, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
7
|
Domínguez-Aragón A, Zaragoza-Contreras EA, Figueroa-Miranda G, Offenhäusser A, Mayer D. Electrochemical Immunosensor Using Electroactive Carbon Nanohorns for Signal Amplification for the Rapid Detection of Carcinoembryonic Antigen. BIOSENSORS 2022; 13:bios13010063. [PMID: 36671898 PMCID: PMC9855668 DOI: 10.3390/bios13010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 05/31/2023]
Abstract
In this work, a novel sandwich-type electrochemical immunosensor was developed for the quantitative detection of the carcinoembryonic antigen, an important tumor marker in clinical tests. The capture antibodies were immobilized on the surface of a gold disk electrode, while detection antibodies were attached to redox-tagged single-walled carbon nanohorns/thionine/AuNPs. Both types of antibody immobilization were carried out through Au-S bonds using the novel photochemical immobilization technique that ensures control over the orientation of the antibodies. The electroactive SWCNH/Thi/AuNPs nanocomposite worked as a signal tag to carry out both the detection of carcinoembryonic antigen and the amplification of the detection signal. The current response was monitored by differential pulse voltammetry. A clear dependence of the thionine redox peak was observed as a function of the carcinoembryonic antigen concentration. A linear detection range from 0.001-200 ng/mL and a low detection limit of 0.1385 pg/mL were obtained for this immunoassay. The results showed that carbon nanohorns represent a promising matrix for signal amplification in sandwich-type electrochemical immune assays working as a conductive and binding matrix with easy and versatile modification routes to antibody and redox tag immobilization, which possesses great potential for clinical diagnostics of CEA and other biomarkers.
Collapse
Affiliation(s)
- Angélica Domínguez-Aragón
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
8
|
Jiang M, Zhang M, Qiao X, Hong C. Electrochemical immunosensor based on Cu(II)-tetrahydroxy-1,4-benzoquinone amplifier for carcinoembryonic antigen determination. Mikrochim Acta 2022; 189:441. [DOI: 10.1007/s00604-022-05506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
|
9
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
New Ultrasensitive Sandwich-Type Immunoassay of Dendritic Tri-Fan Blade-like PdAuCu Nanoparticles/Amine-Functionalized Graphene Oxide for Label-Free Detection of Carcinoembryonic Antigen. MICROMACHINES 2021; 12:mi12101256. [PMID: 34683307 PMCID: PMC8537010 DOI: 10.3390/mi12101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
The early detection of tumor markers has an effective role in the treatment of cancer. Here, a new sandwich-type electrochemical immunosensor for early label-free detection of the cancer biomarker carcinoembryonic antigen (CEA) was developed. Dendritic tri-fan blade-like PdAuCu nanoparticles (PdAuCu NPs)/amine functionalized graphene oxide (NH2-GO) were the label of secondary antibodies (Ab2), and Au nanoparticle-decorated polydopamines (Au/PDA) were immobilized on a screen-printed carbon electrode (SPCE) as the substrate materials. Dendritic tri-fan blade-like PdAuCu NPs/NH2-GO was synthesized according to a simple hydrothermal procedure and used to immobilize antibodies (Ab2) with large surfaces areas, increased catalytic properties and good adsorption to amplify the current signals. Subsequently, Ab2/PdAuCu NPs/NH2-GO catalyzed the reduction of H2O2 in the sandwich-type immunoreactions. Under optimal conditions, the immunosensor exhibited a satisfactory response to CEA with a limit detection of 0.07 pg mL−1 and a linear detection range from 0.1 pg mL−1 to 200 ng mL−1. The proposed immunosensor could be suitable enough for a real sample analysis of CEA, and has clinical value in the early diagnosis of cancer.
Collapse
|
11
|
A novel electrochemical aptamer biosensor based on tetrahedral DNA nanostructures and catalytic hairpin assembly for CEA detection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Liao X, Zhang C, Machuki JO, Wen X, Chen D, Tang Q, Gao F. Proximity hybridization triggered hybridization chain reaction for label-free electrochemical homogeneous aptasensors. Talanta 2021; 226:122058. [PMID: 33676642 DOI: 10.1016/j.talanta.2020.122058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
A label-free homogeneous electrochemical aptasensor was developed for detection of thrombin based on proximity hybridization triggered hybridization chain reaction induced G-quadruplex formation. Thrombin promoted the formation of a complex via the proximity hybridization of the aptamer DNA strands, which unfolded the molecular beacon, the stem part of molecular beacon as a primer to initiate the hybridization chain reaction process. Thus, with the electrochemical indicator hemin selectively intercalated into the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target thrombin. Thus, using this"signal-off" mode, label-free homogeneous electrochemical strategy for sensitive thrombin assay with a detection limit of 44 fM is realized. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Its high sensitivity, acceptable accuracy, and satisfactory versatility of analytes led to various applications in bioanalysis.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Duankai Chen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
13
|
Trimetallic Nanoparticles: Greener Synthesis and Their Applications. NANOMATERIALS 2020; 10:nano10091784. [PMID: 32916829 PMCID: PMC7559138 DOI: 10.3390/nano10091784] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) and multifunctional nano-sized materials have significant applications in diverse fields, namely catalysis, sensors, optics, solar energy conversion, cancer therapy/diagnosis, and bioimaging. Trimetallic NPs have found unique catalytic, active food packaging, biomedical, antimicrobial, and sensing applications; they preserve an ever-superior level of catalytic activities and selectivity compared to monometallic and bimetallic nanomaterials. Due to these important applications, a variety of preparation routes, including hydrothermal, microemulsion, selective catalytic reduction, co-precipitation, and microwave-assisted methodologies have been reported for the syntheses of these nanomaterials. As the fabrication of nanomaterials using physicochemical methods often have hazardous and toxic impacts on the environment, there is a vital need to design innovative and well-organized eco-friendly, sustainable, and greener synthetic protocols for their assembly, by applying safer, renewable, and inexpensive materials. In this review, noteworthy recent advancements relating to the applications of trimetallic NPs and nanocomposites comprising these NPs are underscored as well as their eco-friendly and sustainable synthetic preparative options.
Collapse
|
14
|
Jing A, Xu Q, Feng W, Liang G. An Electrochemical Immunosensor for Sensitive Detection of the Tumor Marker Carcinoembryonic Antigen (CEA) Based on Three-Dimensional Porous Nanoplatinum/Graphene. MICROMACHINES 2020; 11:mi11070660. [PMID: 32635249 PMCID: PMC7407820 DOI: 10.3390/mi11070660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinoembryonic antigen (CEA) is an important broad-spectrum tumor marker. The quantitative detection of a low concentration of CEA has important medical significance. In this study, three-dimensional porous graphene-oxide-supported platinum metal nanoparticles (3DPt/HGO) composites were prepared by a wet chemical method and modified on an electrode with enhanced conductivity, a large surface area, and good adsorption of immobilizing antibodies (Ab1). Horseradish peroxidase (HRP)-functionalized Au nanoparticles were fabricated to label the secondary antibodies (Ab2). The proposed immunosensor showed a good linear relationship in the range of 0.001–150 ng/mL for CEA and a detection limit of 0.0006 ng/mL. The immunosensor had high sensitivity, good stability and reproducibility, and has great application prospects for the clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (A.J.); (Q.X.); (W.F.)
| | - Qiong Xu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (A.J.); (Q.X.); (W.F.)
| | - Wenpo Feng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (A.J.); (Q.X.); (W.F.)
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China
- Correspondence: ; Tel.: (+86)-0379-64162573
| |
Collapse
|
15
|
Iglesias-Mayor A, Amor-Gutiérrez O, Novelli A, Fernández-Sánchez MT, Costa-García A, de la Escosura-Muñiz A. Bifunctional Au@Pt/Au core@shell Nanoparticles As Novel Electrocatalytic Tags in Immunosensing: Application for Alzheimer’s Disease Biomarker Detection. Anal Chem 2020; 92:7209-7217. [DOI: 10.1021/acs.analchem.0c00760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alba Iglesias-Mayor
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Olaya Amor-Gutiérrez
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Antonello Novelli
- Department of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain
- University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Doctor Fernando Bongera s/n, 33006, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario s/n, 33011, Oviedo, Spain
| | - María-Teresa Fernández-Sánchez
- University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Doctor Fernando Bongera s/n, 33006, Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, Doctor Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Agustín Costa-García
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
16
|
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020; 214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen (CEA), as one of the common tumor markers, is a human glycoprotein involved in cell adhesion and is expressed during human fetal development. Since the birth of human, CEA expression is largely inhibited, with only low levels in the plasma of healthy adults. Generally, CEA will overexpressed in many cancers, including gastric, breast, ovarian, lung, and pancreatic cancers, especially colorectal cancer. As one of the important tumor markers, the detection of CEA has great significance in differential diagnosis, condition monitoring and therapeutic evaluation of diseases. Conventional CEA testing typically uses immunoassay methods. However, immunoassay methods require complex and expensive instruments and professional personnel to operate. Moreover, radioactive element may cause certain damage to the human body, which limits their wide application. In the past few years, biosensors, especially aptamer-based biosensors, have attracted extensive attention due to their high sensitivity, good selectivity, high accuracy, fast response and low cost. This review briefly classifies and describes the advance in optical and electrochemical aptamer biosensors for CEA detection, also explains and compares their advantages and disadvantages.
Collapse
Affiliation(s)
- Wenwen Xiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiuxiang Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, 212013, PR China
| | - Bing Xie
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212000, PR China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
17
|
Chen Y, Mei LP, Feng JJ, Yuan PX, Luo X, Wang AJ. Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I. Biosens Bioelectron 2019; 145:111638. [DOI: 10.1016/j.bios.2019.111638] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
18
|
Chen Y, Wang AJ, Yuan PX, Luo X, Xue Y, Feng JJ. Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens Bioelectron 2019; 132:294-301. [PMID: 30884316 DOI: 10.1016/j.bios.2019.02.057] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
Abstract
A novel sandwich-like immunosensor was efficiently fabricated for detection of carcinoembryonic antigen (CEA) with three dimensional sea-urchin-like PdAuCu nanocrystals (PdAuCu NCs)/ferrocene-grafted-polylysine (Fc-g-PLL) as the label of secondary antibodies (Ab2) and Au nanoparticles (Au NPs) as the substrate material. Herein, PdAuCu NCs were directly synthesized with polyethylene oxide (PEO) as a growth-directing agent by a facile one-step aqueous method without any organic solvent. Meanwhile, Fc-g-PLL was obtained by covalent linkage of Fc with PLL via Schiff-base reaction. The well-dispersed PdAuCu NCs by Fc-g-PLL have the enlarged surface area, enhanced catalytic properties and superior biocompatibility to amplify the current signals. The resultant immunosensor shows linear relationship of the electrochemical responses with the CEA concentrations within a broader linear range (0.001-100.0 ng mL-1) and a lower detection limit (0.23 pg mL-1, S/N = 3). Furthermore, the immunosensor was explored for practical assay of CEA in human serum samples with accredited results. The novel immunoassay provides a feasible platform for early medical diagnosis.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadong Xue
- Jinhua Central Hospital, Jinhua 321001, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
19
|
Yang Y, Zeng Y. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays. LAB ON A CHIP 2018; 18:3830-3839. [PMID: 30394473 PMCID: PMC6279511 DOI: 10.1039/c8lc00927a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rapid, sensitive analysis of protein biomarkers is of tremendous biological and clinical significance. Immunoassays are workhorse tools for protein analysis and have been under continuous investigation to develop new methods and to improve the analytical performance. Herein we report a pneumatically gated microfluidic communicating vessel (μCOVE) chip for rapid and sensitive immunomagnetic ELISA. A distinct feature of our device is that it employs the communicating vessel principle as a simple means to generate a fast transient hydrodynamic flow to enable effective flow washing without the need for excessive incubation, which greatly simplifies and expedites the assay workflow, compared to conventional microfluidic flow-based immunoassays. Stationary multi-phase microfluidic techniques have been developed for fast bead washing. However, they have some limitations, such as the need for careful control of interfacial properties, large bead quantity required for reliable interphase bead transport, and relatively high bead loss during surface tension-gated traverse. Our single-phase μCOVE chip can overcome such limitations and facilitate the manipulation of magnetic beads to streamline the assay workflow. We showed that the μCOVE device affords highly sensitive quantification of the CEA and EGFR proteins with a LOD down to the sub-picogram per mL level. Direct detection of the EGFR in the crude A431 cell lysate was also demonstrated to further validate the ability of our device for rapid and quantitative analysis of complex biological samples. Overall, our work presents a unique platform that combines the merits of the stationary multi-phase systems and the flow-based microfluidics. This novel immunoassay microsystem has promising potential for a broad range of biological and clinical applications, owing to its simplicity and high performance.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
20
|
Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 2018; 121:243-249. [DOI: 10.1016/j.bios.2018.08.076] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
|
21
|
Dutta G, Lillehoj PB. Wash-free, label-free immunoassay for rapid electrochemical detection of PfHRP2 in whole blood samples. Sci Rep 2018; 8:17129. [PMID: 30459336 PMCID: PMC6244414 DOI: 10.1038/s41598-018-35471-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Currently, the diagnosis of many diseases relies on laboratory-based immunoassays (ELISA, Western Blot), which are laborious, time-consuming and expensive. To address these limitations, we report a wash-free and label-free electrochemical immunoassay for rapid measurements of protein biomarkers in blood samples. This immunosensor employs a unique detection scheme based on electrochemical-chemical (EC) redox cycling for signal amplification combined with an affinity-based protein quantification strategy. All of the reagents required for this assay are dried and stored on a stacked membrane assembly, consisting of a Vivid Plasma Separation membrane and two cellulose membranes situated above the sensor, enabling excellent stability at room temperature for up to 2 months. Proof of concept was carried out by performing measurements of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in whole blood samples, which could be detected from 100 ng/mL to 100 µg/mL with excellent specificity and reproducibility. Each measurement requires only two liquid dispensing steps and can completed in 5 min, making this diagnostic platform promising for point-of-care testing in resource-limited settings.
Collapse
Affiliation(s)
- Gorachand Dutta
- Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Centre for Biosensors, Bioelectronics and Biodevices, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Zhu F, Zhao G, Dou W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene. Anal Biochem 2018; 559:34-43. [PMID: 30144412 DOI: 10.1016/j.ab.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) were modified with mouse anti-E. coli O157:H7 monoclonal antibody (Ab1) to act as capture probes to reduce detection time and increase the sensitivity of the immunoassay. The Au@Pt nanoparticles were loaded on neutral red (NR) functionalized graphene to form composite complex rGO-NR-Au@Pt. rGO-NR-Au@Pt has high specific surface area and good biocompatibility. rGO-NR-Au@Pt was used as the carriers of detection antibodies (Ab2). Au@Pt catalyzed the reduction of hydrogen peroxide (H2O2) to detection of E. coli O157:H7 with the thionine (TH) as electron mediator to effectually amply the current signal. Under the optimized conditions, a linear relationship between the reduction peak current change (ΔIpc) and the logarithm of the E. coli O157:H7 concentration is obtained in the range from 4.0 × 103 to 4.0 × 108 CFU mL-1 and the limit of detection (LOD) is 4.5 × 102 CFU mL-1 at a signal-to-noise ratio of 3. The immunoassay exhibits acceptable specificity, reproducibility and stability on the detection of E. coli O157:H7. Furthermore, the immunoassay showed good performance in pork and milk samples. The results suggest that this immunoassay will be promising in the food safety area.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
23
|
Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018; 54:8547-8562. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of cyclodextrin species to graphene-family materials (GFMs) constitutes an important area of research, especially in terms of the development of applied nanoscience. The chemistry of cyclodextrins is the so-called host-guest chemistry, which has impacted on many fields of research, including catalysis, electrochemistry and nanomedicine. Cyclodextrins are water-soluble and biocompatible supramolecules, and therefore they may introduce new interesting properties to GFMs and may enhance the physicochemical/biological features of native GFMs. The reported methods for the conjugation of cyclodextrins to GFMs utilize either covalent or non-covalent approaches. The recent progress in the applications of GFMs functionalized with cyclodextrins, with the respect to the chemistry and features of these conjugates, is discussed. Special consideration is also given to the recent developments in (i) nanomedicine, (ii) electrochemistry, (iii) adsorption and (iv) catalysis. Examples of these materials are discussed in this work, together with the future outlook on the impact of GFM-cyclodextrin conjugates in the development of applied nanoscience.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
24
|
Rizwan M, Elma S, Lim SA, Ahmed MU. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens Bioelectron 2018; 107:211-217. [DOI: 10.1016/j.bios.2018.02.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/13/2023]
|
25
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
26
|
Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y. A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 2017; 103:151-157. [PMID: 29291595 DOI: 10.1016/j.bios.2017.12.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
A sensitive label-free electrochemical immunosensor was designed using a novel signal amplification system for quantitative detecting hepatitis B surface antigen (HBsAg). Nitrogen-doped graphene quantum dots (N-GQDs) supported surfactant-free AuPdCu ternary nanoparticles (AuPdCu/N-GQDs), which featured with good conductivity and excellent catalytic properties for the reduction of hydrogen peroxide (H2O2), was synthesized by a simple and benign hydrothermal procedure. At the same time, the electroactive polymer nanospheres (PS) was synthesized by infinite coordination polymers of ferrocenedicarboxylic acid, which could play as carrier and electronic mediator to load AuPdCu/N-GQDs. The PS not only improved the ability to load antibodies because of the good biocompatibility, but also accelerated electron transport of the electrode interface attribute to plentiful ferrocene unit. Thus, the prepared AuPdCu/N-GQDs@PS has abilities of good biocompatibility, catalytic activity and electrical conductivity to be applied as transducing materials to amplify electrochemical signal in detection of HBsAg. Under optimal conditions, the fabricated immunosensor exhibited high sensitivity and stability in the detection of HBsAg. A linear relationship between current signals and the concentrations of HBsAg was obtained in the range from 10fg/mL to 50ng/mL and the detection limit of HBsAg was 3.3fg/mL (signal-to-noise ratio of 3). Moreover, the designed immunosensor with excellent selectivity, reproducibility and stability shows excellent performance in detection of human serum samples. Furthermore, this label-free electrochemical immunosensor has promising application in clinical diagnosis of HBsAg.
Collapse
Affiliation(s)
- Qin Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuying Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhaoling Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
27
|
Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens Bioelectron 2017; 97:218-225. [DOI: 10.1016/j.bios.2017.05.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 01/17/2023]
|
28
|
Pavithra M, Muruganand S, Parthiban C. Development of a Simple Isatin-Based Electrochemical Immunosensor on a Screen-Printed Gold Electrode for Highly Sensitive Detection of Carcinoembryonic Antigen. ChemistrySelect 2017. [DOI: 10.1002/slct.201700870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masilamani Pavithra
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | - Shanmugam Muruganand
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | | |
Collapse
|
29
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
30
|
Wang G, Li Y, Liu J, Yuan Y, Shen Z, Mei X. Ultrasensitive multiplexed immunoassay of autophagic biomarkers based on Au/rGO and Au nanocages amplifying electrochemcial signal. Sci Rep 2017; 7:2442. [PMID: 28550286 PMCID: PMC5446417 DOI: 10.1038/s41598-017-02766-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
A novel sandwich-assay electrochemical immunosensor for simultaneous determination of autophagic biomarkers was introduced for the first time, the gold-reduced grapheme oxide nanocomposite (Au/r-GO) set as a good conductive platform with super high specific area, and provided more binding sites for the both antibodies of Beclin-1 and LC3B-II. While Au nanocages (AuNCs) served as good conductive platform to encapsulate a large amount of redox probe and secondary antibodies for signal amplification, due to the abundant reactive oxygen functional groups on its surface. Through differential pulse voltammetry (DPV) measurements, two separate signals can be detected directly in a single run, which represent the existence of Belin-1 and LC3B-II. Under optimized conditions, the electrochemical immunosensor exhibited good sensitivity and selectivity for the simultaneous determination of Beclin-1 and LC3B-II with linear ranges of 0.1-100 ng/mL. The detection limit for Beclin-1 and LC3B-II is 0.02 and 0.03 ng/mL respectively. This method was also applied for the analysis of Beclin-1 and LC3B-II levels in experimental cellular protein lysates, and the results were in good agreement with those of enzyme linked immunosorbent assay. This approach gives a promising simple, sensitive and quantitative strategy for the detection of autophagy.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Yankun Li
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Jinlei Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | | | - Zhaoliang Shen
- The Second Hospital of Jinzhou, Jinzhou, 121001, People's Republic of China
| | - Xifan Mei
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| |
Collapse
|
31
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|