1
|
Le Roi B, Grolman JM. Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading. ACS Macro Lett 2025; 14:176-181. [PMID: 39869112 PMCID: PMC11841051 DOI: 10.1021/acsmacrolett.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network. We find that this is a highly localized and time-dependent effect, with one of the major driving factors of hydrogel matrix remodeling the interaction and movement of water within the network in calcium-cross-linked alginate. Our results suggest a more general mechanistic understanding of hydrogel remodeling, with implications for tissue transformations in disease, biomaterials, and food science formulation.
Collapse
Affiliation(s)
- Baptiste Le Roi
- Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Joshua M. Grolman
- Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Charron PN, Tahir I, Foley C, White G, Floreani RA. Whey Protein Isolate Composites as Potential Scaffolds for Cultivated Meat. ACS APPLIED BIO MATERIALS 2024; 7:2153-2163. [PMID: 38502811 DOI: 10.1021/acsabm.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Modern food technology has given rise to numerous alternative protein sources in response to a growing human population and the negative environmental impacts of current food systems. To aid in achieving global food security, one such form of alternative protein being investigated is cultivated meat, which applies the principles of mechanical and tissue engineering to produce animal proteins and meat products from animal cells. Herein, nonmodified and methacrylated whey protein formed hydrogels with methacrylated alginate as potential tissue engineering scaffolds for cultivated meat. Whey protein is a byproduct of dairy processing and was selected because it is an approved food additive and cytocompatible and has shown efficacy in other biomaterial applications. Whey protein and alginate scaffolds were formed via visible light cross-linking in aqueous solutions under ambient conditions. The characteristics of the precursor solution and the physical-mechanical properties of the scaffolds were quantified; while gelation occurred within the homo- and copolymer hydrogels, the integrity of the network was significantly altered with varying components. Qualitatively, the scaffolds exhibited a three-dimensional (3D) interconnected porous network. Whey protein isolate (WPI)-based scaffolds were noncytotoxic and supported in vitro myoblast adhesion and proliferation. The data presented support the hypothesis that the composition of the hydrogel plays a significant role in the scaffold's performance.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Irfan Tahir
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Christopher Foley
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Gabriella White
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Rachael A Floreani
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
- Materials Science Program, University of Vermont, Burlington, Vermont 05405, United States
- Food Systems Program, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
3
|
Bouzos E, Asuri P. Sandwich Culture Platforms to Investigate the Roles of Stiffness Gradients and Cell–Matrix Adhesions in Cancer Cell Migration. Cancers (Basel) 2023; 15:cancers15061729. [PMID: 36980615 PMCID: PMC10046033 DOI: 10.3390/cancers15061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Given the key role of cell migration in cancer metastasis, there is a critical need for in vitro models that better capture the complexities of in vivo cancer cell microenvironments. Using both two-dimensional (2D) and three-dimensional (3D) culture models, recent research has demonstrated the role of both matrix and ligand densities in cell migration. Here, we leveraged our previously developed 2.5D sandwich culture platform to foster a greater understanding of the adhesion-dependent migration of glioblastoma cells with a stiffness gradient. Using this model, we demonstrated the differential role of stiffness gradients in migration in the presence and absence of adhesion moieties. Furthermore, we observed a positive correlation between the density of cell adhesion moieties and migration, and a diminished role of stiffness gradients at higher densities of adhesion moieties. These results, i.e., the reduced impact of stiffness gradients on adhesion-dependent migration relative to adhesion-independent migration, were confirmed using inhibitors of both mechanotransduction and cell adhesion. Taken together, our work demonstrates the utility of sandwich culture platforms that present stiffness gradients to study both adhesion-dependent and -independent cell migration and to help expand the existing portfolio of in vitro models of cancer metastasis.
Collapse
|
4
|
Chao X, Zhao F, Hu J, Yu Y, Xie R, Zhong J, Huang M, Zeng T, Yang H, Luo D, Peng W. Comparative Study of Two Common In Vitro Models for the Pancreatic Islet with MIN6. Tissue Eng Regen Med 2023; 20:127-141. [PMID: 36592326 PMCID: PMC9852380 DOI: 10.1007/s13770-022-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Islet transplantation is currently considered the most promising method for treating insulin-dependent diabetes. The two most-studied artificial islets are alginate-encapsulated β cells or β cell spheroids. As three-dimensional (3D) models, both artificial islets have better insulin secretory functions and transplantation efficiencies than cells in two-dimensional (2D) monolayer culture. However, the effects of these two methods have not been compared yet. Therefore, in this study, cells from the mouse islet β cell line Min6 were constructed as scaffold-free spheroids or alginate-encapsulated dispersed cells. METHODS MIN6 cell spheroids were prepared by using Agarose-base microwell arrays. The insulin secretion level was determined by mouse insulin ELISA kit, and the gene and protein expression status of the MIN6 were performed by Quantitative polymerase chain reaction and immunoblot, respectively. RESULTS Both 3D cultures effectively promoted the proliferation and glucose-stimulated insulin release (GSIS) of MIN6 cells compared to 2D adherent cells. Furthermore, 1% alginate-encapsulated MIN6 cells demonstrated more significant effects than the spheroids. In general, three pancreatic genes were expressed at higher levels in response to the 3D culture than to the 2D culture, and pancreatic/duodenal homeobox-1 (PDX1) expression was higher in the cells encapsulated in 1% alginate than that in the spheroids. A western blot analysis showed that 1% alginate-encapsulated MIN6 cells activated the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/forkhead transcription factor FKHR (FoxO1) pathway more than the spheroids, 0.5% alginate-, or 2% alginate-encapsulated cells did. The 3D MIN6 culture, therefore, showed improved effects compared to the 2D culture, and the 1% alginate-encapsulated MIN6 cells exhibited better effects than the spheroids. The upregulation of PDX1 expression through the activation of the PI3K/AKT/FoxO1 pathway may mediate the improved cell proliferation and GSIS in 1% alginate-encapsulated MIN6 cells. CONCLUSION This study may contribute to the construction of in vitro culture systems for pancreatic islets to meet clinical requirements.
Collapse
Affiliation(s)
- Xinxin Chao
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- The Affiliated Hospital of Jining Medical University, Shandong, China
| | - Furong Zhao
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, China
| | - Jiawei Hu
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yanrong Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Renjian Xie
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Miao Huang
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Tai Zeng
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hui Yang
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
| | - Dan Luo
- Department of Physiology, School of Basic Medicine, Nanchang University, Nanchang, China.
| | - Weijie Peng
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Pelizzoni G, Scaglione S. 3D Human Tumor Tissues Cultured in Dynamic Conditions as Alternative In Vitro Disease Models. Methods Mol Biol 2023; 2572:203-210. [PMID: 36161419 DOI: 10.1007/978-1-0716-2703-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The slow knowledge progression about cancer disease and the high drug clinical failure are mainly due to the inadequacy of the simplistic pre-clinical in vitro and in vivo animal tumor models. To overpass these limits, in recent years many 3D matrix-based cell cultures have been proposed as challenging alternatives, since they allow to better recapitulate the in vitro cells-cells and cells-matrix reciprocal interactions in a more physiological context. Among many natural polymers, alginate has been adopted as an extracellular matrix surrogate to mimic the 3D spatial organization. After their expansion, cancer cells are suspended in an alginate solution and dropped within a crosslinking solution enabling gelification. The result is the generation of a 3D hydrogel embedding a single cell suspension: Cells are equally distributed throughout the gel, and they are free to proliferate generating clonal spheroids. Moreover, according to the hydrogel matrix stiffness that can be easily tuned, tumor cells can spread within the 3D structure and migrate outside, where they may become circulating tumor cells and infiltrate secondary tumor sites when these 3D tumor tissues are cultured in a fluid dynamic environment (i.e., organ on chip).
Collapse
|
6
|
Curti F, Serafim A, Olaret E, Dinescu S, Samoila I, Vasile BS, Iovu H, Lungu A, Stancu IC, Marinescu R. Development of Biocomposite Alginate-Cuttlebone-Gelatin 3D Printing Inks Designed for Scaffolds with Bone Regeneration Potential. Mar Drugs 2022; 20:670. [PMID: 36354993 PMCID: PMC9694341 DOI: 10.3390/md20110670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 10/29/2023] Open
Abstract
Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold's surface after cell cultures. All the results were correlated with the scaffolds' compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.
Collapse
Affiliation(s)
- Filis Curti
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Zentiva S.A., 50 Theodor Pallady, 032266 Bucharest, Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Elena Olaret
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Iuliana Samoila
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Izabela Cristina Stancu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Rodica Marinescu
- Faculty of Medicine, Department of Orthopedics, University of Medicine and Pharmacy “Carol Davila” Bucharest, Eroii Sanitari Street No. 8, District 5, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Li Y, He L, Chen J, Wang J, Zhao S, Liu X, Guo X, Wu Y, Shen X, Li C. 3d oxidized alginate-porcine liver acellular collagen droplets for tumor microenvironment mimicking. Int J Biol Macromol 2022; 215:665-674. [PMID: 35777510 DOI: 10.1016/j.ijbiomac.2022.06.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
The traditional 2d culture has been proved inferior to reproduce the subtle interaction between cell-to-cell and cell-to-extracellular matrix (ECM) in tumor microenvironment (TME) and collagen in ECM contributes to various malignancies of tumors. Hence, the 3d model contained with collagen may overcome the shortcomings of 2d culture. In this study, the in vitro TME mimicking matrix was prepared by coupling porcine liver-derived collagen (COL) and the dialdehyde group of partially oxidized alginate (OA), namely OA-COL, and the 3d OA-COL droplets were polymerized by divalent calcium ions. In the 3d OA-COL droplets, cancer cells displayed vigorous proliferation, and the cells grew in clusters and formed a unique spindle like clone. Quantitative analysis proved that various gene transcription and protein expression were up-regulated for the cells in the 3d OA-COL droplets, including F-actin reassembling, focal adhesion, pseudopodia formation, and the proteins involved in epithelial-to-mesenchymal transition (EMT). The 3d OA-COL droplets induced the cells with strengthened polarity, invasiveness, higher IC50, and manifested stronger tumorigenicity in vivo. The fabricated 3d OA-COL droplets reproduced a variety of TME parameters, constructed an in vitro model similar to the TME in vivo, and it may facilitate many investigations in cell biology and tumor biology.
Collapse
Affiliation(s)
- Yanan Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Lingyun He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Jiamin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Jinfeng Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Shujing Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xingxing Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Ying Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xian Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China.
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China.
| |
Collapse
|
8
|
Ke W, Ma L, Wang B, Song Y, Luo R, Li G, Liao Z, Shi Y, Wang K, Feng X, Li S, Hua W, Yang C. N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism. Acta Biomater 2022; 150:83-95. [DOI: 10.1016/j.actbio.2022.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|
9
|
El Hariri El Nokab M, Lasorsa A, Sebakhy KO, Picchioni F, van der Wel PC. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Crosby CO, Stern B, Kalkunte N, Pedahzur S, Ramesh S, Zoldan J. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. REV CHEM ENG 2022; 38:347-361. [PMID: 35400772 PMCID: PMC8993131 DOI: 10.1515/revce-2020-0039] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tissue engineering, after decades of exciting progress and monumental breakthroughs, has yet to make a significant impact on patient health. It has become apparent that a dearth of biomaterial scaffolds that possess the material properties of human tissue while remaining bioactive and cytocompatible has been partly responsible for this lack of clinical translation. Herein, we propose the development of interpenetrating polymer network hydrogels as materials that can provide cells with an adhesive extracellular matrix-like 3D microenvironment while possessing the mechanical integrity to withstand physiological forces. These hydrogels can be synthesized from biologically-derived or synthetic polymers, the former polymer offering preservation of adhesion, degradability, and microstructure and the latter polymer offering tunability and superior mechanical properties. We review critical advances in the enhancement of mechanical strength, substrate-scale stiffness, electrical conductivity, and degradation in IPN hydrogels intended as bioactive scaffolds in the past five years. We also highlight the exciting incorporation of IPN hydrogels into state-of-the-art tissue engineering technologies, such as organ-on-a-chip and bioprinting platforms. These materials will be critical in the engineering of functional tissue for transplant, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Cody O. Crosby
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Brett Stern
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Nikhith Kalkunte
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Shahar Pedahzur
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Shreya Ramesh
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Janet Zoldan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| |
Collapse
|
11
|
Madeo LF, Sarogni P, Cirillo G, Vittorio O, Voliani V, Curcio M, Shai-Hee T, Büchner B, Mertig M, Hampel S. Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1648. [PMID: 35268879 PMCID: PMC8911244 DOI: 10.3390/ma15051648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Abstract
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Tyler Shai-Hee
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bernd Büchner
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Mertig
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| |
Collapse
|
12
|
Li H, Sun Y, Li Q, Luo Q, Song G. Matrix Stiffness Potentiates Stemness of Liver Cancer Stem Cells Possibly via the Yes-Associated Protein Signal. ACS Biomater Sci Eng 2022; 8:598-609. [PMID: 35084830 DOI: 10.1021/acsbiomaterials.1c00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hepatocellular carcinoma tissue has mechanical heterogeneity, where the stiffness gradually increases from the core to the invasion front. Furthermore, there is evidence that stem cells from liver cancer (LCSCs) preferentially enrich the invasion front, exhibiting the stiffest modulus in the tumor. LCSCs have the features of stem/progenitor cells and play a vital part in liver cancer development. However, whether matrix stiffness affects LCSC stemness remains unclear. Here, we established a three-dimensional hydrogel for culturing LCSCs to simulate the stiffness of the core and the invasion front of a liver cancer tissue. The results showed that a stiffer matrix (72.2 ± 0.90 kPa) significantly potentiated LCSC stemness as compared with a soft matrix (7.7 ± 0.41 kPa). Moreover, Yes-associated protein signaling might mediate this promotion. Together, our findings illustrate the relationship between matrix stiffness and LCSC stemness, which may aid the production of novel treatment approaches against liver cancer.
Collapse
Affiliation(s)
- Hong Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Yuchuan Sun
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Qing Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Qing Luo
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Guanbin Song
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| |
Collapse
|
13
|
Kort-Mascort J, Bao G, Elkashty O, Flores-Torres S, Munguia-Lopez JG, Jiang T, Ehrlicher AJ, Mongeau L, Tran SD, Kinsella JM. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. ACS Biomater Sci Eng 2021; 7:5288-5300. [PMID: 34661396 DOI: 10.1021/acsbiomaterials.1c00812] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reinforced extracellular matrix (ECM)-based hydrogels recapitulate several mechanical and biochemical features found in the tumor microenvironment (TME) in vivo. While these gels retain several critical structural and bioactive molecules that promote cell-matrix interactivity, their mechanical properties tend toward the viscous regime limiting their ability to retain ordered structural characteristics when considered as architectured scaffolds. To overcome this limitation characteristic of pure ECM hydrogels, we present a composite material containing alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, as rheological modifiers which impart mechanical integrity to the biologically active decellularized ECM (dECM). After an optimization process, the reinforced gel proposed is mechanically stable and bioprintable and has a stiffness within the expected physiological values. Our hydrogel's elastic modulus has no significant difference when compared to tumors induced in preclinical xenograft head and neck squamous cell carcinoma (HNSCC) mouse models. The bioprinted cell-laden model is highly reproducible and allows proliferation and reorganization of HNSCC cells while maintaining cell viability above 90% for periods of nearly 3 weeks. Cells encapsulated in our bioink produce spheroids of at least 3000 μm2 of cross-sectional area by day 15 of culture and are positive for cytokeratin in immunofluorescence quantification, a common marker of HNSCC model validation in 2D and 3D models. We use this in vitro model system to evaluate the standard-of-care small molecule therapeutics used to treat HNSCC clinically and report a 4-fold increase in the IC50 of cisplatin and an 80-fold increase for 5-fluorouracil compared to monolayer cultures. Our work suggests that fabricating in vitro models using reinforced dECM provides a physiologically relevant system to evaluate malignant neoplastic phenomena in vitro due to the physical and biological features replicated from the source tissue microenvironment.
Collapse
Affiliation(s)
- Jacqueline Kort-Mascort
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura 29R6+Q3F, Egypt
| | - Salvador Flores-Torres
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| | - Jose G Munguia-Lopez
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada.,Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, No. 109 Deya Road, Kaifu District, Changsha, Hunan 410073, China
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada.,Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
14
|
Kaviani M, Keshtkar S, Sarvestani FS, Azarpira N, Yaghobi R, Aghdaei MH, Geramizadeh B, Esfandiari E, Shamsaeefar A, Nikeghbalian S, Al-Abdullah IH, Karimi MH, Motazedian N. The potential of the incorporated collagen microspheres in alginate hydrogel as an engineered three-dimensional microenvironment to attenuate apoptosis in human pancreatic islets. Acta Histochem 2021; 123:151775. [PMID: 34450327 DOI: 10.1016/j.acthis.2021.151775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tissue engineering is considered as a promising tool for remodeling the native cells microenvironment. In the present study, the effect of alginate hydrogel and collagen microspheres integrated with extracellular matrix components were evaluated in the decrement of apoptosis in human pancreatic islets. MATERIALS/METHODS For three-dimensional culture, the islets were encapsulated in collagen microspheres, containing laminin and collagen IV and embedded in alginate scaffold for one week. After that the islets were examined in terms of viability, apoptosis, genes and proteins expression including BAX, BCL2, active caspase-3, and insulin. Moreover, the islets function was evaluated through glucose-induced insulin and C-peptide secretion assay. In order to evaluate the structure of the scaffolds and the morphology of the pancreatic islets in three-dimensional microenvironments, we performed scanning electron microscopy. RESULTS Our findings showed that the designed hydrogel scaffolds significantly improved the islets viability using the reduction of activated caspase-3 and TUNEL positive cells. CONCLUSIONS The reconstruction of the destructed matrix with alginate hydrogels and collagen microspheres might be an effective step to promote the culture of the islets.
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Esfandiari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | | | - Nasrin Motazedian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Liu C, Li M, Dong ZX, Jiang D, Li X, Lin S, Chen D, Zou X, Zhang XD, Luker GD. Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomater 2021; 131:326-340. [PMID: 34246802 PMCID: PMC8784164 DOI: 10.1016/j.actbio.2021.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Besides molecular and phenotypic variations observed in cancer cells, intratumoral heterogeneity also occurs in the tumor microenvironment. Correlative stiffness maps of different intratumor locations in breast tumor biopsies show that stiffness increases from core to periphery. However, how different local ECM stiffness regulates key functions of cancer cells in tumor progression remains unclear. Although increased tissue stiffness is an established driver of breast cancer progression, conclusions from 2D cultures do not correspond with newer data from cancer cells in 3D environments. Many past studies of breast cancer in 3D culture fail to recapitulate the stiffness of a real breast tumor or the various local stiffnesses present in a tumor microenvironment. In this study, we developed a series of collagen/alginate hybrid hydrogels with adjustable stiffness to match the core, middle, and peripheral zones of a breast tumor. We used this hydrogel system to investigate effects of different local stiffness on morphology, proliferation, and migration of breast cancer cells. RNA sequencing of cells in hydrogels with different stiffness revealed changes in multiple cellular processes underlying cancer progression, including angiogenesis and metabolism. We discovered that tumor cells in a soft environment enriched YAP1 and AP1 signaling related genes, whereas tumor cells in a stiff environment became more pro-angiogenic by upregulating fibronectin 1 (FN1) and matrix metalloproteinase 9 (MMP9) expression. This systematic study defines how the range of environmental stiffnesses present in a breast tumor regulates cancer cells, providing new insights into tumorigenesis and disease progression at the tumor-stroma interface. STATEMENT OF SIGNIFICANCE: Applied a well-defined hybrid hydrogel system to mimic the tumor microenvironment with heterogeneous local stiffness. Breast cancer cells tended to proliferate in soft core environment while migrate in stiff peripheral environment. Breast cancer cells shift from glycolysis to OXPHOS and fatty acid metabolism responding to stiff matrix microenvironment. The transcriptomic profile of breast cancer cells altered due to microenvironmental stiffness changes.
Collapse
Affiliation(s)
- Chun Liu
- Orthopedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China.
| | - Miao Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhao-Xia Dong
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dong Jiang
- Orthopedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xiaojing Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Orthopedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xing-Ding Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
16
|
Geuens T, Ruiter FAA, Schumacher A, Morgan FLC, Rademakers T, Wiersma LE, van den Berg CW, Rabelink TJ, Baker MB, LaPointe VLS. Thiol-ene cross-linked alginate hydrogel encapsulation modulates the extracellular matrix of kidney organoids by reducing abnormal type 1a1 collagen deposition. Biomaterials 2021; 275:120976. [PMID: 34198162 DOI: 10.1016/j.biomaterials.2021.120976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Differentiated kidney organoids from induced pluripotent stem cells hold promise as a treatment for patients with kidney diseases. Before these organoids can be translated to the clinic, shortcomings regarding their cellular and extracellular compositions, and their developmental plateau need to be overcome. We performed a proteomic analysis on kidney organoids cultured for a prolonged culture time and we found a specific change in the extracellular matrix composition with increased expression of types 1a1, 2 and 6a1 collagen. Such an excessive accumulation of specific collagen types is a hallmark of renal fibrosis that causes a life-threatening pathological condition by compromising key functions of the human kidney. Here we hypothesized the need for a three-dimensional environment to grow the kidney organoids, which could better mimic the in vivo surroundings of the developing kidney than standard culture on an air-liquid interface. Encapsulating organoids for four days in a soft, thiol-ene cross-linked alginate hydrogel resulted in decreased type 1a1 collagen expression. Furthermore, the encapsulation did not result in any changes of organoid structural morphology. Using a biomaterial to modulate collagen expression allows for a prolonged kidney organoid culture in vitro and a reduction of abnormal type 1a1 collagen expression bringing kidney organoids closer to clinical application.
Collapse
Affiliation(s)
- Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands
| | - Floor A A Ruiter
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands; MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Anika Schumacher
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands
| | - Francis L C Morgan
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Timo Rademakers
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands
| | - Loes E Wiersma
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Cathelijne W van den Berg
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthew B Baker
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
17
|
Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel) 2021; 13:1852. [PMID: 34199641 PMCID: PMC8199729 DOI: 10.3390/polym13111852] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate (ALG), a polysaccharide derived from brown seaweed, has been extensively investigated as a biomaterial not only in tissue engineering but also for numerous biomedical sciences owing to its wide availability, good compatibility, weak cytotoxicity, low cost, and ease of gelation. Nevertheless, alginate lacks cell-binding sites, limiting long-term cell survival and viability in 3D culture. Collagen (Col), a major component protein found in the extracellular matrix (ECM), exhibits excellent biocompatibility and weak immunogenicity. Furthermore, collagen contains cell-binding motifs, which facilitate cell attachment, interaction, and spreading, consequently maintaining cell viability and promoting cell proliferation. Recently, there has been a growing body of investigations into collagen-based hydrogel trying to overcome the poor mechanical properties of collagen. In particular, collagen-alginate composite (CAC) hydrogel has attracted much attention due to its excellent biocompatibility, gelling under mild conditions, low cytotoxicity, controllable mechanic properties, wider availability as well as ease of incorporation of other biomaterials and bioactive agents. This review aims to provide an overview of the properties of alginate and collagen. Moreover, the application of CAC hydrogel in tissue engineering and biomedical sciences is also discussed.
Collapse
Affiliation(s)
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
18
|
Ort C, Chen Y, Ghagre A, Ehrlicher A, Moraes C. Bioprintable, Stiffness-Tunable Collagen-Alginate Microgels for Increased Throughput 3D Cell Culture Studies. ACS Biomater Sci Eng 2021; 7:2814-2822. [PMID: 34019377 DOI: 10.1021/acsbiomaterials.1c00129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3D culture platforms with tunable stiffness have the potential to improve many applications, such as drug discovery, organoid studies, and stem cell differentiation. Both dimensionality and stiffness regulate crucial and relevant cellular processes. However, 3D culture models are often limited in throughput and difficult to adopt for widespread use. Here, we demonstrate an accessible 3D, stiffness-tunable tissue culture platform, based on an interpenetrating network of collagen-1 and alginate. When blended with polymers that induce phase separation, these networks can be bioprinted at microliter volumes, using standard liquid handling infrastructure. We demonstrate robust reproducibility in printing these microgels, consistent tunability of mechanical properties, and maintained viability of multiple printed cell types. To highlight the utility and importance of this system, we demonstrate distinct morphological changes to cells in culture, use the system to probe the role of matrix mechanics and soluble factors in a collagen contraction assay, and perform a prototype viability screen against a candidate chemotherapeutic, demonstrating stiffness-dependent responses.
Collapse
Affiliation(s)
- Carley Ort
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal H3A 0G4, Quebec, Canada
| | - Yimai Chen
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal H3A 0G4, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal H3A 2K6, Quebec, Canada
| | - Allen Ehrlicher
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal H3A 2B4, Quebec, Canada.,Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal H3A 2K6, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Quebec, Canada.,Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Quebec, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal H3A 0G4, Quebec, Canada.,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal H3A 2B4, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Quebec, Canada
| |
Collapse
|
19
|
Baruffaldi D, Palmara G, Pirri C, Frascella F. 3D Cell Culture: Recent Development in Materials with Tunable Stiffness. ACS APPLIED BIO MATERIALS 2021; 4:2233-2250. [PMID: 35014348 DOI: 10.1021/acsabm.0c01472] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.
Collapse
Affiliation(s)
- Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Gianluca Palmara
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Candido Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,Center for Sustainable Futures@Polito, Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
20
|
Katti KS, Jasuja H, Kar S, Katti DR. Nanostructured Biomaterials for In Vitro Models of Bone Metastasis Cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100254. [PMID: 33718691 PMCID: PMC7948119 DOI: 10.1016/j.cobme.2020.100254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, tissue engineering approaches have attracted substantial attention owing to their ability to create physiologically relevant in vitro disease models that closely mimic in vivo conditions. Here, we review nanocomposite materials and scaffolds used for the design of in vitro models of cancer, including metastatic sites. We discuss the role of material properties in modulating cellular phenotype in 3D disease models. Also, we highlight the application of tissue-engineered bone as a tool for faithful recapitulation of the microenvironment of metastatic prostate and breast cancer, since these two types of cancer have the propensity to metastasize to bone. Overall, we summarize recent efforts on developing 3D in vitro models of bone metastatic cancers that provide a platform to study tumor progression and facilitate high-throughput drug screening.
Collapse
Affiliation(s)
- Kalpana S. Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Sumanta Kar
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Dinesh R. Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| |
Collapse
|
21
|
Kook YM, Hwang S, Kim H, Rhee KJ, Lee K, Koh WG. Cardiovascular tissue regeneration system based on multiscale scaffolds comprising double-layered hydrogels and fibers. Sci Rep 2020; 10:20321. [PMID: 33230134 PMCID: PMC7683622 DOI: 10.1038/s41598-020-77187-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
We report a technique to reconstruct cardiovascular tissue using multiscale scaffolds incorporating polycaprolactone fibers with double-layered hydrogels comprising fibrin hydrogel surrounded by secondary alginate hydrogel. The scaffolds compartmentalized cells into the core region of cardiac tissue and the peripheral region of blood vessels to construct cardiovascular tissue, which was accomplished by a triple culture system of adipose-derived mesenchymal stem cells (ADSCs) with C2C12 myoblasts on polycaprolactone (PCL) fibers along with human umbilical vein endothelial cells (HUVECs) in fibrin hydrogel. The secondary alginate hydrogel prevented encapsulated cells from migrating outside scaffold and maintained the scaffold structure without distortion after subcutaneous implantation. According to in vitro studies, resultant scaffolds promoted new blood vessel formation as well as cardiomyogenic phenotype expression of ADSCs. Cardiac muscle-specific genes were expressed from stem cells and peripheral blood vessels from HUVECs were also successfully developed in subcutaneously implanted cell-laden multiscale scaffolds. Furthermore, the encapsulated stem cells modulated the immune response of scaffolds by secreting anti-inflammatory cytokines for successful tissue construction. Our study reveals that multiscale scaffolds can be promising for the remodeling and transplantation of cardiovascular tissue.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, 220-710, Republic of Korea.,Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, 220-710, Republic of Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea. .,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do, Republic of Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
22
|
Jiang T, Munguia-Lopez JG, Gu K, Bavoux MM, Flores-Torres S, Kort-Mascort J, Grant J, Vijayakumar S, De Leon-Rodriguez A, Ehrlicher AJ, Kinsella JM. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 2019; 12:015024. [DOI: 10.1088/1758-5090/ab3a5c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Adibnia V, Mirbagheri M, Latreille PL, Faivre J, Cécyre B, Robert J, Bouchard JF, Martinez VA, Delair T, David L, Hwang DK, Banquy X. Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly. Acta Biomater 2019; 99:211-219. [PMID: 31473363 DOI: 10.1016/j.actbio.2019.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
We present chitosan hydrogel microfluidic devices with self-assembled complex microcapillary patterns, conveniently formed by a diffusion-reaction process. These patterns in chitosan hydrogels are formed by a single-step procedure involving diffusion of a gelation agent into the polymer solution inside a microfluidic channel. By changing the channel geometry, it is demonstrated how to control capillary length, trajectory and branching. Diffusion of nanoparticles (NPs) in the capillary network is used as a model to effectively mimic the transport of nano-objects in vascularized tissues. Gold NPs diffusion is measured locally in the hydrogel chips, and during their two-step transport through the capillaries to the gel matrix and eventually to embedded cell clusters in the gel. In addition, the quantitative analyses reported in this study provide novel opportunities for theoretical investigation of capillary formation and propagation during diffusive gelation of biopolymers. STATEMENT OF SIGNIFICANCE: Hydrogel micropatterning is a challenging task, which is of interest in several biomedical applications. Creating the patterns through self assembly is highly beneficial, because of the accessible and practical preparation procedure. In this study, we introduced complex self-assembled capillary patterns in chitosan hydrogels using a microfluidic approach. To demonstrate the potential application of these capillary patterns, a vascularized hydrogel with microwells occupied by cells was produced, and the diffusion of gold nanoparticles travelling in the capillaries and diffusing in the gel were evaluated. This model mimics a simplified biological tissue, where nanomedicine has to travel through the vasculature, extravasate into and diffuse through the extracellular matrix and eventually reach targeted cells.
Collapse
|
24
|
Khanal S, Bhattarai SR, Sankar J, Bhandari RK, Macdonald JM, Bhattarai N. Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Sci Rep 2019; 9:13951. [PMID: 31562351 PMCID: PMC6765003 DOI: 10.1038/s41598-019-50380-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023] Open
Abstract
Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.
Collapse
Affiliation(s)
- Shalil Khanal
- 0000 0001 0287 4439grid.261037.1Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| | - Shanta R. Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemistry, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Biology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jagannathan Sankar
- 0000 0001 0287 4439grid.261037.1Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC USA
| | - Ramji K. Bhandari
- 0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jeffrey M. Macdonald
- 0000 0001 1034 1720grid.410711.2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA
| | - Narayan Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| |
Collapse
|
25
|
Nuclei deformation reveals pressure distributions in 3D cell clusters. PLoS One 2019; 14:e0221753. [PMID: 31513673 PMCID: PMC6771309 DOI: 10.1371/journal.pone.0221753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Measuring pressures within complex multi-cellular environments is critical for
studying mechanobiology as these forces trigger diverse biological responses,
however, these studies are difficult as a deeply embedded yet well-calibrated
probe is required. In this manuscript, we use endogenous cell nuclei as pressure
sensors by introducing a fluorescent protein localized to the nucleus and
confocal microscopy to measure the individual nuclear volumes in 3D
multi-cellular aggregates. We calibrate this measurement of nuclear volume to
pressure by quantifying the nuclear volume change as a function of osmotic
pressure in isolated 2D culture. Using this technique, we find that in
multicellular structures, the nuclear compressive mechanical stresses are on the
order of MPa, increase with cell number in the cluster, and that the
distribution of stresses is homogenous in spherical cell clusters, but highly
asymmetric in oblong clusters. This approach may facilitate quantitative
mechanical measurements in complex and extended biological structures both
in vitro and in vivo.
Collapse
|
26
|
Marrella A, Dondero A, Aiello M, Casu B, Olive D, Regis S, Bottino C, Pende D, Meazza R, Caluori G, Castriconi R, Scaglione S. Cell-Laden Hydrogel as a Clinical-Relevant 3D Model for Analyzing Neuroblastoma Growth, Immunophenotype, and Susceptibility to Therapies. Front Immunol 2019; 10:1876. [PMID: 31447858 PMCID: PMC6697063 DOI: 10.3389/fimmu.2019.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody-mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-γ-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-γ induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions. Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way.
Collapse
Affiliation(s)
| | | | | | - Beatrice Casu
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniel Olive
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Giannina Gaslini, Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, IRCCS Giannina Gaslini, Genoa, Italy
| | - Daniela Pende
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Raffaella Meazza
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Guido Caluori
- FNUSA-ICRC, Interventional Cardiac Electrophysiology, Brno, Czechia.,Nanobiotechnology, CEITEC Masaryk University, Brno, Czechia
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, CEBR, University of Genoa, Genoa, Italy
| | - Silvia Scaglione
- CNR-IEIIT Institute, National Research Council of Italy, Genoa, Italy.,React4life S.r.l., Genoa, Italy
| |
Collapse
|
27
|
Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2019.e00045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Trucillo E, Bisceglia B, Valdrè G, Giordano E, Reverchon E, Maffulli N, Della Porta G. Growth factor sustained delivery from poly-lactic-co-glycolic acid microcarriers and its mass transfer modeling by finite element in a dynamic and static three-dimensional environment bioengineered with stem cells. Biotechnol Bioeng 2019; 116:1777-1794. [PMID: 30905072 DOI: 10.1002/bit.26975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
Poly-lactic-co-glycolic acid (PLGA) microcarriers (0.8 ± 0.2 μm) have been fabricated with a load of 20 μg/gPLGA by an emulsion-based-proprietary technology to sustained deliver human bone morphogenetic protein 2 (hBMP2), a growth factor largely used for osteogenic induction. hBMP2 release profile, measured in vitro, showed a moderate "burst" release of 20% of the load in first 3 days, followed by a sustained release of 3% of the load along the following 21 days. PLGA microbeads loaded with fluorescent marker (8 mg/gPLGA ) and hydroxyapatite (30 mg/gPLGA ) were also fabricated and successfully dispersed within three-dimensional (3D) alginate scaffold (Ca-alginate 2% wt/wt) in a range between 50 and 200 mg/cm3 ; the presence of microcarriers within the scaffold induced a variation of its stiffness between 0.03 and 0.06 MPa; whereas the scaffold surface area was monitored always in the range of 190-200 m2 /g. Uniform microcarriers dispersion was obtained up to 200 mg/cm3 ; higher loading values in the 3D scaffold produced large aggregates. The release data and the surface area were, then, used to simulate by finite element modeling the hBMP2 mass transfer within the 3D hydrogel bioengineered with stem cells, in dynamic and static cultivations. The simulation was developed with COMSOL Multiphysics® giving a good representation of hBMP2 mass balances along microbeads (bulk eroded) and on cell surface (cell binding). hBMP2 degradation rate was also taken into account in the simulations. hBMP2 concentration of 20 ng/cm3 was set as a target because it has been described as the minimum effective value for stem cells stimulation versus the osteogenic phenotype. The sensitivity analysis suggested the best microbeads/cells ratio in the 3D microenvironment, along 21 days of cultivations in both static and dynamic cultivation (perfusion) conditions. The simulated formulation was so assembled experimentally using human mesenchymal stem cells and an improved scaffold stiffness up to 0.09 MPa (n = 3; p ≤ 0.01) was monitored after 21 days of cultivation; moreover a uniform extracellular matrix deposition within the 3D system was detected by Von Kossa staining, especially in dynamic conditions. The results indicated that the described tool can be useful for the design of 3D bioengineered microarchitecture by quantitative understanding.
Collapse
Affiliation(s)
- Emanuele Trucillo
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Bruno Bisceglia
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Giovanni Valdrè
- Department of Biology, Geology and Environmental Science, University of Bologna, Bologna, BO, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena, FC, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Nicola Maffulli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Giovanna Della Porta
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy.,Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
29
|
Marrella A, Giannoni P, Pulsoni I, Quarto R, Raiteri R, Scaglione S. Topographical Features of Graphene-Oxide-Functionalized Substrates Modulate Cancer and Healthy Cell Adhesion Based on the Cell Tissue of Origin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41978-41985. [PMID: 30479135 DOI: 10.1021/acsami.8b15036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene-derived materials, such as graphene oxide (GO), have been widely explored for biomedical and biological applications, including cancer research. Despite some recent works proving that GO inhibits the migration and invasion of different cancer cells, so far most of these in vitro studies have been conducted using GO sheets dispersed in solution or as a planar film. On the contrary, little is known about cellular activities, such as cell viability, adhesion, and spreading, when cancer cells interface with GO functionalized hydrogel-based surfaces, biomechanically and structurally more similar to the tumor environment. Here, we evaluate the interactions of human breast cancer cells (MDA-MB-231) with alginate (Alg)/GO hydrogel-based substrates, and compare them with a cancer cell line from human osteosarcoma (HOS) and healthy murine fibroblasts (3T3). We observed that GO addition selectively inhibits malignant breast cancer cell adhesion efficiency and spreading area, while promotes HOS and 3T3 adhesive processes. Furthermore, we did not observe the same results over Alg substrates with GO nanosheets dispersed in the medium, without embedment into the Alg. This suggests that cancer (MDA-MB-231 and HOS) and healthy (3T3) cell adhesion efficacy does not depend on the cellular tumoral nature and it is driven by the topographical cues provided by the GO-based substrates, whose physical-mechanical characteristics better mimic those of the cell native tissue. We envision that this study can provide a rational for future design and use of graphene-based nanomaterials for cancer research by deepening the knowledge of graphene-cancer cell specific interactions.
Collapse
Affiliation(s)
- A Marrella
- Biology Section, Department of Experimental Medicine , University of Genova , Via Pastore 3 , Genoa 16132 , Italy
| | - P Giannoni
- Biology Section, Department of Experimental Medicine , University of Genova , Via Pastore 3 , Genoa 16132 , Italy
| | - I Pulsoni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering , University of Genova , Via all' Opera Pia 13 , Genoa 16145 , Italy
| | - R Quarto
- Biology Section, Department of Experimental Medicine , University of Genova , Via Pastore 3 , Genoa 16132 , Italy
- IRCCS Ospedale Policlinico San Martino , Largo R. Benzi 10 , Genoa 16132 , Italy
| | - R Raiteri
- Department of Informatics, Bioengineering, Robotics and Systems Engineering , University of Genova , Via all' Opera Pia 13 , Genoa 16145 , Italy
| | | |
Collapse
|
30
|
Microcapsule Technology for Controlled Growth Factor Release in Musculoskeletal Tissue Engineering. Sports Med Arthrosc Rev 2018; 26:e2-e9. [PMID: 29722766 DOI: 10.1097/jsa.0000000000000188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue engineering strategies have relied on engineered 3-dimensional (3D) scaffolds to provide architectural templates that can mimic the native cell environment. Among the several technologies proposed for the fabrication of 3D scaffold, that can be attractive for stem cell cultivation and differentiation, moulding or bioplotting of hydrogels allow the stratification of layers loaded with cells and with specific additives to obtain a predefined microstructural organization. Particularly with bioplotting technology, living cells, named bio-ink, and additives, such as biopolymer microdevices/nanodevices for the controlled delivery of growth factors or biosignals, can be organized spatially into a predesigned 3D pattern by automated fabrication with computer-aided digital files. The technologies for biopolymer microcarrier/nanocarrier fabrication can be strategic to provide a controlled spatiotemporal delivery of specific biosignals within a microenvironment that can better or faster address the stem cells loaded within it. In this review, some examples of growth factor-controlled delivery by biopolymer microdevices/nanodevices embedded within 3D hydrogel scaffolds will be described, to achieve a bioengineered 3D interactive microenvironment for stem cell differentiation. Conventional and recently proposed technologies for biopolymer microcapsule fabrication for controlled delivery over several days will also be illustrated and critically discussed.
Collapse
|
31
|
Wu S, Yue H, Wu J, Zhang W, Jiang M, Ma G. The interacting role of physical stiffness and tumor cells on the macrophages polarization. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
33
|
Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus. Int J Biol Macromol 2017; 107:1261-1269. [PMID: 28962846 DOI: 10.1016/j.ijbiomac.2017.09.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Islet transplantation has the potential of reestablishing naturally-regulated insulin production in Type 1 diabetic patients. Nevertheless, this procedure is limited due to the low islet survival after transplantation and the lifelong immunosuppression to avoid rejection. Islet embedding within a biocompatible matrix provides mechanical protection and a physical barrier against the immune system thus, increasing islet survival. Alginate is the preferred biomaterial used for embedding insulin-producing cells because of its biocompatibility, low toxicity and ease of gelation. However, alginate gelation is poorly controlled, affecting its physicochemical properties as an injectable biomaterial. Including different concentrations of the phosphate salt Na2HPO4 in alginate hydrogels, we can modulate their gelation time, tuning their physicochemical properties like stiffness and porosity while maintaining an appropriate injectability. Moreover, these hydrogels showed good biocompatibility when embedding a rat insulinoma cell line, especially at low Na2HPO4 concentrations, indicating that these hydrogels have potential as injectable biomaterials for Type 1 Diabetes Mellitus treatment.
Collapse
|
34
|
Lucio AA, Mongera A, Shelton E, Chen R, Doyle AM, Campàs O. Spatiotemporal variation of endogenous cell-generated stresses within 3D multicellular spheroids. Sci Rep 2017; 7:12022. [PMID: 28931891 PMCID: PMC5607343 DOI: 10.1038/s41598-017-12363-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 02/01/2023] Open
Abstract
Multicellular spheroids serve as an excellent platform to study tissue behavior and tumor growth in a controlled, three-dimensional (3D) environment. While molecular and cellular studies have long used this platform to study cell behavior in 3D, only recently have studies using multicellular spheroids shown an important role for the mechanics of the microenvironment in a wide range of cellular processes, including during tumor progression. Despite the well-established relevance of mechanical cues to cell behavior and the numerous studies on mechanics using 2D cell culture systems, the spatial and temporal variations in endogenous cellular forces within growing multicellular aggregates remain unknown. Using cell-sized oil droplets with controlled physicochemical properties as force transducers in mesenchymal cell aggregates, we show that the magnitude of cell-generated stresses varies only weakly with spatial location within the spherical aggregate, but it increases considerably over time during aggregate compaction and growth. Moreover, our results indicate that the temporal increase in cellular stresses is due to increasing cell pulling forces transmitted via integrin-mediated cell adhesion, consistent with the need for larger intercellular pulling forces to compact cell aggregates.
Collapse
Affiliation(s)
- Adam A Lucio
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
- California NanoSystems Institute, University of California, Santa Barbara, California, USA
| | - Alessandro Mongera
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
- California NanoSystems Institute, University of California, Santa Barbara, California, USA
| | - Elijah Shelton
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
- California NanoSystems Institute, University of California, Santa Barbara, California, USA
| | - Renwei Chen
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
- California NanoSystems Institute, University of California, Santa Barbara, California, USA
- Center for Bioengineering, University of California, Santa Barbara, California, USA
| | - Adele M Doyle
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
- California NanoSystems Institute, University of California, Santa Barbara, California, USA
- Center for Bioengineering, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA.
- California NanoSystems Institute, University of California, Santa Barbara, California, USA.
- Center for Bioengineering, University of California, Santa Barbara, California, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
35
|
Li P, Dou X, Müller M, Feng C, Chang MW, Frettlöh M, Schönherr H. Autoinducer Sensing Microarrays by Reporter Bacteria Encapsulated in Hybrid Supramolecular-Polysaccharide Hydrogels. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/27/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Ping Li
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Xiaoqiu Dou
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites; School of Materials Science and Engineering; Shanghai Jiaotong University; 800 Dongchuan Road 200240 Shanghai P. R. China
| | - Matthew Wook Chang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; 14 Medical Drive Singapore 117599 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
| | | | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|
36
|
Hou L, Ren Y, Jia Y, Deng X, Liu W, Feng X, Jiang H. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12282-12289. [PMID: 28345345 DOI: 10.1021/acsami.7b00670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microfluidically generated double emulsions are promising templates for microreactions, which protect the reaction from external disturbance and enable in vitro analyses with large-scale samples. Controlled combination of their inner droplets in a continuous manner is an essential requirement toward truly applications. Here, we first generate dual-cored double-emulsion drops with different inner encapsulants using a capillary microfluidic device; next, we transfer the emulsion drops into another electrode-integrated polydimethylsiloxane microfluidic device and utilize external AC electric field to continuously trigger the coalescence of inner cores inside these emulsion drops in continuous flow. Hundreds of thousands of monodisperse microreactions with nanoliter-scale reagents can be conducted using this approach. The performance of core coalescence is investigated as a function of flow rate, applied electrical signal, and core conductivity. The coalescence efficiency can reach up to 95%. We demonstrate the utility of this technology for accommodating microreactions by analyzing an enzyme catalyzed reaction and by fabricating cell-laden hydrogel particles. The presented method can be readily used for the controlled triggering of microreactions with high flexibility for a wide range of applications, especially for continuous chemical or cell assays.
Collapse
Affiliation(s)
- Likai Hou
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Yankai Jia
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Xiaokang Deng
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Weiyu Liu
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Xiangsong Feng
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| |
Collapse
|
37
|
Murrow LM, Weber RJ, Gartner ZJ. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development 2017; 144:998-1007. [PMID: 28292846 PMCID: PMC5358107 DOI: 10.1242/dev.140905] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
For many tissues, single resident stem cells grown in vitro under appropriate three-dimensional conditions can produce outgrowths known as organoids. These tissues recapitulate much of the cell composition and architecture of the in vivo organ from which they derive, including the formation of a stem cell niche. This has facilitated the systematic experimental manipulation and single-cell, high-throughput imaging of stem cells within their respective niches. Furthermore, emerging technologies now make it possible to engineer organoids from purified cellular and extracellular components to directly model and test stem cell-niche interactions. In this Review, we discuss how organoids have been used to identify and characterize stem cell-niche interactions and uncover new niche components, focusing on three adult-derived organoid systems. We also describe new approaches to reconstitute organoids from purified cellular components, and discuss how this technology can help to address fundamental questions about the adult stem cell niche.
Collapse
Affiliation(s)
- Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Box 2280, San Francisco, CA 94158, USA
| | - Robert J Weber
- Graduate Program in Chemistry and Chemical Biology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Box 2280, San Francisco, CA 94158, USA
- Graduate Program in Chemistry and Chemical Biology, University of California at San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|