1
|
Saiz-Ladera C. Generation of a Mouse Model for the Study of Thyroid Hormones Regulatory Effect on the Immune System. Methods Mol Biol 2025; 2876:61-75. [PMID: 39579308 DOI: 10.1007/978-1-0716-4252-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The generation of hypothyroid and hyperthyroid mouse models is one of the approaches used to investigate the complex interplay between thyroid hormones and the immune system. We present a detailed protocol describing how to induce endotoxic shock by lipopolysaccharide (LPS) administration, and how to investigate the role of immune populations, specifically macrophages, responding to endotoxemia.This book chapter provides the use of different molecular techniques, such as Western Blotting, Immunohistochemistry, q-PCR, Luciferase assays, or ChIP assays, with which researchers can gain valuable insights into the immune system's interaction with hormonal signaling pathways, for instance, examining the effect of thyroid hormones on signaling of STAT3, NF-κB, and ERK in response to LPS, and inflammatory mediators, such as interleukin-6 (IL-6) or tumor necrosis factor-alpha (TNFα) within these cells. The signaling pathways involved and the exploration of the relationship between thyroid hormones and the immune system can be analyzed using several molecular biology technologies in order to clarify their interplay in various disease states.
Collapse
Affiliation(s)
- Cristina Saiz-Ladera
- Unidad de Oncogenómica, Servicio de Oncohematología, Fundación para la Investigación Biomédica del Hospital Universitario Niño Jesús, Madrid, Spain.
| |
Collapse
|
2
|
Aranda A. Thyroid Hormone Action by Genomic and Nongenomic Molecular Mechanisms. Methods Mol Biol 2025; 2876:17-34. [PMID: 39579306 DOI: 10.1007/978-1-0716-4252-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are pivotal in regulating various physiological processes including growth, development, and metabolism. The biological actions of thyroid hormones are primarily initiated by binding to nuclear thyroid hormone receptors (TRs). These receptors, belonging to the superfamily of nuclear receptors, act as ligand-dependent transcription factors. Transcriptional regulation by TRs is mediated by the recruitment of coregulators, governing activation and repression of target genes, thereby modulating cellular responses to thyroid hormones. Beyond this canonical genomic pathway, TH can regulate the expression of genes not directly bound by TRs through cross-talk mechanisms with other transcription factors and signaling pathways. Thyroid hormones can also elicit rapid non-genomic effects, potentially mediated by extranuclear TR proteins or by interactions with membrane receptors such as integrin αvβ3. This non-genomic mode of action adds another layer of complexity to the diverse array of physiological responses orchestrated by thyroid hormones, expanding our understanding of their multifaceted actions.
Collapse
Affiliation(s)
- Ana Aranda
- Instituto de Investigaciones Biomédicas "Sols-Morreale", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Yang L, Fu MF, Wang HY, Sun H. Research Advancements in the Interplay between T3 and Macrophages. Curr Med Sci 2024; 44:883-889. [PMID: 39446284 DOI: 10.1007/s11596-024-2935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
3,3',5-Triiodo-L-thyronine (T3) is a key endocrine hormone in the human body that plays crucial roles in growth, development, metabolism, and immune function. Macrophages, the key regulatory cells within the immune system, exhibit marked "heterogeneity" and "plasticity", with their phenotype and function subject to modulation by local environmental signals. The interplay between the endocrine and immune systems is well documented. Numerous studies have shown that T3 significantly target macrophages, highlighting them as key cellular components in this interaction. Through the regulation of macrophage function and phenotype, T3 influences immune function and tissue repair in the body. This review comprehensively summarizes the regulatory actions and mechanisms of T3 on macrophages, offering valuable insights into further research of the immunoregulatory effects of T3.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Meng-Fei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Han-Yu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China.
| |
Collapse
|
4
|
Lisco G, Solimando AG, Stragapede A, De Tullio A, Laraspata C, Laudadio C, Giagulli VA, Prete M, Jirillo E, Saracino A, Racanelli V, Triggiani V. Predicting Factors of Worse Prognosis in COVID-19: Results from a Cross-sectional Study on 52 Inpatients Admitted to the Internal Medicine Department. Endocr Metab Immune Disord Drug Targets 2024; 24:1224-1236. [PMID: 38243977 PMCID: PMC11348458 DOI: 10.2174/0118715303288042240111070057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The initial phases of the COVID-19 pandemic posed a real need for clinicians to identify patients at risk of poor prognosis as soon as possible after hospital admission. AIMS The study aimed to assess the role of baseline anamnestic information, clinical parameters, instrumental examination, and serum biomarkers in predicting adverse outcomes of COVID-19 in a hospital setting of Internal Medicine. METHODS Fifty-two inpatients consecutively admitted to the Unit of Internal Medicine "Baccelli," Azienda Ospedaliero - Universitaria Policlinico of Bari (February 1 - May 31, 2021) due to confirmed COVID-19 were grouped into two categories based on the specific outcome: good prognosis (n=44), patients discharged at home after the acute phase of the infection; poor prognosis, a composite outcome of deaths and intensive care requirements (n=8). Data were extracted from medical records of patients who provided written informed consent to participate. RESULTS The two study groups had similar demographic, anthropometric, clinical, and radiological characteristics. Higher interleukin 6 (IL-6) levels and leucocyte count, and lower free triiodothyronine (fT3) levels were found in patients with poor than those with good prognosis. Higher IL-6 levels and leucocyte count, lower fT3 concentration, and pre-existing hypercholesterolemia were independent risk factors of poor outcomes in our study population. A predicting risk score, built by assigning one point if fT3 < 2 pg/mL, IL-6 >25 pg/mL, and leucocyte count >7,000 n/mm3, revealed that patients totalizing at least 2 points by applying the predicting score had a considerably higher risk of poor prognosis than those scoring <2 points (OR 24.35 (1.32; 448), p = 0.03). The weight of pre-existing hypercholesterolemia did not change the risk estimation. CONCLUSION Four specific baseline variables, one anamnestic (pre-existing hypercholesterolemia) and three laboratory parameters (leucocyte count, IL-6, and fT3), were significantly associated with poor prognosis as independent risk factors. To prevent adverse outcomes, the updated 4-point score could be useful in identifying at-risk patients, highlighting the need for specific trials to estimate the safety and efficacy of targeted treatments.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Assunta Stragapede
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Cristiana Laraspata
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carola Laudadio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Marcella Prete
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Saracino
- Operative Unit of Infectious Diseases, Hospital-University Polyclinic of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
5
|
Contreras-Jurado C, Montero-Pedrazuela A, Pérez RF, Alemany S, Fraga MF, Aranda A. The thyroid hormone enhances mouse embryonic fibroblasts reprogramming to pluripotent stem cells: role of the nuclear receptor corepressor 1. Front Endocrinol (Lausanne) 2023; 14:1235614. [PMID: 38107517 PMCID: PMC10722291 DOI: 10.3389/fendo.2023.1235614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raúl F. Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-UNIOVI-Principado de Asturias, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (BOS), University of Oviedo, Oviedo, Spain
- CIBER of Rare Diseases (CIBERER), Oviedo, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-UNIOVI-Principado de Asturias, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (BOS), University of Oviedo, Oviedo, Spain
- CIBER of Rare Diseases (CIBERER), Oviedo, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Hu XY, Liang YC, Zhang HH, Li HL, Liu DL. Association between the Systemic Immune-Inflammation Index and Thyroid Function in U.S. Adults. Mediators Inflamm 2023; 2023:5831858. [PMID: 38022688 PMCID: PMC10667040 DOI: 10.1155/2023/5831858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background The systemic immune-inflammation index (SII) is used as an indicator of prognosis for a wide range of diseases. Thyroid function has been found to be strongly associated with inflammation. The purpose of this investigation was to analyze the correlation between SII and various thyroid functions. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) 2007-2012. The association between SII and thyroid function was analyzed using weighted univariate and multivariate linear regression analyses. Subgroup analyses, interaction tests, and weighted restricted cubic spline (RCS) regression analyses were also employed to test this correlation. Results Of the 6,875 participants (age ≥ 20 years), the mean age was 46.87 ± 0.40 years. The adjusted model showed that lnSII was negatively correlated with FT3 (β = -0.0559, 95% CI -0.1060 to -0.0059,) and FT3/FT4 (β = -0.0920, 95% CI -0.1667 to -0.0173,). There was a positive correlation between lnSII and TT4 (β = 0.1499, 95% CI 0.0722-0.2276,). In subgroup analyses, lnSII still independently affected a wide range of thyroid functions. Weighted RCS analysis showed a nonlinear relationship between FT3 and lnSII. Conclusion Close relationships exist between SII and a variety of thyroid functions. SII can be used as an indicator to predict thyroid dysfunction. Control of inflammatory activity may be a protective measure against thyroid dysfunction. More large-scale prospective studies are necessary to further explore the correlation between SII and thyroid function and the role of obesity in this.
Collapse
Affiliation(s)
- Xin-Yu Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Ying-Chao Liang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Huan-Huan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Huang Y, Chen C, Zhou W, Zhang Q, Zhao Y, He D, Ye Z, Xia P. Genetically predicted alterations in thyroid function are associated with the risk of benign prostatic disease. Front Endocrinol (Lausanne) 2023; 14:1163586. [PMID: 37143736 PMCID: PMC10153094 DOI: 10.3389/fendo.2023.1163586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
Background Benign prostatic diseases (BPDs), such as benign prostate hyperplasia (BPH) and prostatitis, harm the quality of life of affected patients. However, observational studies exploring the association between thyroid function and BPDs have hitherto yielded inconsistent results. In this study, we explored whether there is a causal genetic association between them using Mendelian randomization (MR) analysis. Methods We used publicly available summary statistics from the Thyroidomics Consortium and 23andMe on thyrotropin (TSH; 54,288 participants), thyroxine [free tetraiodothyronine (FT4); 49,269 participants], subclinical hypothyroidism (3,440 cases and 49,983 controls), overt hypothyroidism (8,000 cases and 117,000 controls), and subclinical hyperthyroidism (1,840 cases and 49,983 controls) to screen for instrumental variables of thyroid function. Results for BPD such as prostatic hyperplasia (13,118 cases and 72,799 controls) and prostatitis (1,859 cases and 72,799 controls) were obtained from the FinnGen study. The causal relationship between thyroid function and BPD was primarily assessed using MR with an inverse variance weighted approach. In addition, sensitivity analyses were performed to test the robustness of the results. Results We found that TSH [OR (95% CI) = 0.912(0.845-0.984), p =1.8 x 10-2], subclinical hypothyroidism [OR (95% CI) = 0.864(0.810-0.922), p =1.04 x 10-5], and overt hypothyroidism [OR (95% CI) = 0.885 (0.831-0. 944), p =2 x 10-4] had a significant effect on genetic susceptibility to BPH, unlike hyperthyroidism [OR (95% CI) = 1.049(0.990-1.111), p =1.05 x 10-1] and FT4 [OR (95% CI) = 0.979(0.857-1.119), p = 7.59 x 10-1] had no effect. We also found that TSH [OR (95% CI) =0.823(0.700-0.967), p = 1.8 x 10-2] and overt hypothyroidism [OR (95% CI) = 0.853(0.730-0.997), p = 4.6 x 10-2] significantly influenced the prostatitis, whereas FT4 levels [OR (95% CI) = 1.141(0.901-1.444), p = 2.75 x 10-1], subclinical hypothyroidism [OR (95% CI) =0. 897(0.784- 1.026), p = 1.12 x 10-1], and hyperthyroidism [OR (95% CI) = 1.069(0.947-1.206), p = 2.79 x 10-1] did not have a significant effect. Conclusion Overall, our study results suggest that hypothyroidism and TSH levels influence the risk of genetically predicted BPH and prostatitis, providing new insights into the causal relationship between thyroid function and BPD.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanfei Zhao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dehao He
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- *Correspondence: Pingping Xia,
| |
Collapse
|
8
|
Lasa M, Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne) 2022; 13:937099. [PMID: 36004343 PMCID: PMC9393327 DOI: 10.3389/fendo.2022.937099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Reciprocal crosstalk between endocrine and immune systems has been well-documented both in physiological and pathological conditions, although the connection between the immune system and thyroid hormones (THs) remains largely unclear. Inflammation and infection are two important processes modulated by the immune system, which have profound effects on both central and peripheral THs metabolism. Conversely, optimal levels of THs are necessary for the maintenance of immune function and response. Although some effects of THs are mediated by their binding to cell membrane integrin receptors, triggering a non-genomic response, most of the actions of these hormones involve their binding to specific nuclear thyroid receptors (TRs), which generate a genomic response by modulating the activity of a great variety of transcription factors. In this special review on THs role in health and disease, we highlight the relevance of these hormones in the molecular mechanisms linked to inflammation upon their binding to specific nuclear receptors. In particular, we focus on THs effects on different signaling pathways involved in the inflammation associated with various infectious and/or pathological processes, emphasizing those mediated by NF-kB, p38MAPK and JAK/STAT. The findings showed in this review suggest new opportunities to improve current therapeutic strategies for the treatment of inflammation associated with several infections and/or diseases, such as cancer, sepsis or Covid-19 infection.
Collapse
Affiliation(s)
- Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Constanza Contreras-Jurado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
López-Mateo I, Rodríguez-Muñoz D, de La Rosa JV, Castrillo A, Alemany S, Aranda A. Regulation of metabolic and transcriptional responses by the thyroid hormone in cellular models of murine macrophages. Front Immunol 2022; 13:923727. [PMID: 35935955 PMCID: PMC9353060 DOI: 10.3389/fimmu.2022.923727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oncogene-immortalized bone marrow-derived macrophages are considered to be a good model for the study of immune cell functions, but the factors required for their survival and proliferation are still unknown. Although the effect of the thyroid hormones on global metabolic and transcriptional responses in macrophages has not yet been examined, there is increasing evidence that they could modulate macrophage functions. We show here that the thyroid hormone T3 is an absolute requirement for the growth of immortal macrophages. The hormone regulates the activity of the main signaling pathways required for proliferation and anabolic processes, including the phosphorylation of ERK and p38 MAPKs, AKT, ribosomal S6 protein, AMPK and Sirtuin-1. T3 also alters the levels of metabolites controlling transcriptional and post-transcriptional actions in macrophages, and causes widespread transcriptomic changes, up-regulating genes needed for protein synthesis and cell proliferation, while down-regulating genes involved in immune responses and endocytosis, among others. This is not observed in primary bone marrow-derived macrophages, where only p38 and AMPK activation is regulated by T3 and in which the metabolic and transcriptomic effects of the hormone are much weaker. However, the response to IFN-γ is reduced by T3 similarly in immortalized macrophages and in the primary cells, confirming previous results showing that the thyroid hormones can antagonize JAK/STAT-mediated signaling. These results provide new perspectives on the relevant pathways involved in proliferation and survival of macrophage cell culture models and on the crosstalk between the thyroid hormones and the immune system.
Collapse
Affiliation(s)
- Irene López-Mateo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Vladimir de La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Ana Aranda,
| |
Collapse
|
10
|
Paśko P, Okoń K, Prochownik E, Krośniak M, Francik R, Kryczyk-Kozioł J, Grudzińska M, Tyszka-Czochara M, Malinowski M, Sikora J, Galanty A, Zagrodzki P. The Impact of Kohlrabi Sprouts on Various Thyroid Parameters in Iodine Deficiency- and Sulfadimethoxine-Induced Hypothyroid Rats. Nutrients 2022; 14:nu14142802. [PMID: 35889759 PMCID: PMC9316894 DOI: 10.3390/nu14142802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/20/2023] Open
Abstract
Brassica sprouts, as the rich source of dietary glucosinolates, may have a negative effect on thyroid function. In this study, kohlrabi sprouts diet, combined with two models of rat hypothyroidism, was tested. TSH, thyroid hormones and histopathology analysis were completed with the evaluation of immunological, biochemical, haematological parameters, cytosolic glutathione peroxidase, thioredoxin reductase in the thyroid, and plasma glutathione peroxidase. A thermographic analysis was also adapted to confirm thyroid dysfunction. The levels of TSH, fT3 and fT4, antioxidant enzyme (GPX) as well as histopathology parameters remained unchanged following kohlrabi sprouts ingestion, only TR activity significantly increased in response to the sprouts. In hypothyroid animals, sprouts diet did not prevent thyroid damage. In comparison with the rats with iodine deficiency, kohlrabi sprouts diet decreased TNF-α level. Neither addition of the sprouts to the diet, nor sulfadimethoxine and iodine deficiency, caused negative changes in red blood cell parameters, glucose and uric acid concentrations, or kidney function. However, such a dietary intervention resulted in reduced WBC levels, and adversely interfered with liver function in rats, most likely due to a higher dietary intake of glucosinolates. Moreover, the possible impact of the breed of the rats on the evaluated parameters was indicated.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
- Correspondence:
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków, Poland;
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland;
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mateusz Malinowski
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Jakub Sikora
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| |
Collapse
|
11
|
Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene 2021; 40:6248-6257. [PMID: 34556811 DOI: 10.1038/s41388-021-02020-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
The enzyme iodothyronine deiodinase type 3 (DIO3) contributes to cancer proliferation by inactivating the tumor-suppressive actions of thyroid hormone (T3). We recently established DIO3 involvement in the progression of high-grade serous ovarian cancer (HGSOC). Here we provide a link between high DIO3 expression and lower survival in patients, similar to common disease markers such as Ki67, PAX8, CA-125, and CCNE1. These observations suggest that DIO3 is a logical target for inhibition. Using a DIO3 mimic, we developed original DIO3 inhibitors that contain a core of dibromomaleic anhydride (DBRMD) as scaffold. Two compounds, PBENZ-DBRMD and ITYR-DBRMD, demonstrated attenuated cell counts, induction in apoptosis, and a reduction in cell proliferation in DIO3-positive HGSOC cells (OVCAR3 and KURAMOCHI), but not in DIO3-negative normal ovary cells (CHOK1) and OVCAR3 depleted for DIO3 or its substrate, T3. Potent tumor inhibition with a high safety profile was further established in HGSOC xenograft model, with no effect in DIO3-depleted tumors. The antitumor effects are mediated by downregulation in an array of pro-cancerous proteins, the majority of which known to be repressed by T3. To conclude, using small molecules that specifically target the DIO3 enzyme we present a new treatment paradigm for ovarian cancer and potentially other DIO3-dependent malignancies.
Collapse
|
12
|
Deng Y, Xia B, Chen Z, Wang F, Lv Y, Chen G. Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells. Stem Cell Rev Rep 2021; 18:77-93. [PMID: 34668120 DOI: 10.1007/s12015-021-10286-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
The whole liver transplantation is the most effective treatment for end-stage fibrosis. However, the lack of available donors, immune rejection and total cost of surgery remain as the key challenges in advancing liver fibrosis therapeutics. Due to the multi-differentiation and low immunogenicity of stem cells, treatment of liver fibrosis with stem cells has been considered as a valuable new therapeutic modality. The pathological progression of liver fibrosis is closely related to the changes in the activities of intrahepatic cells. Damaged hepatocytes, activated Kupffer cells and other inflammatory cells lead to hepatic stellate cells (HSCs) activation, further promoting apoptosis of damaged hepatocytes, while stem cells can work on fibrosis-related intrahepatic cells through relevant transduction pathways. Herein, this article elucidates the phenomena and the mechanisms of the crosstalk between various types of stem cells and intrahepatic cells including HSCs and hepatocytes in the treatment of liver fibrosis. Then, the important influences of chemical compositions, mechanical properties and blood flow on liver fibrosis models with stem cell treatment are emphasized. Clinical trials on stem cell-based therapy for liver fibrosis are also briefly summarized. Finally, continuing challenges and future directions of stem cell-based therapy for hepatic fibrosis are discussed. In short, stem cells play an important advantage and have a great potential in treating liver fibrosis by interacting with intrahepatic cells. Clarifying how stem cells interact with intrahepatic cells to change the progression of liver fibrosis is of great significance for a deeper understanding of liver fibrosis mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Yaxin Deng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China. .,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| |
Collapse
|
13
|
Malik J, Zaidi SMJ, Waqar AU, Khawaja H, Malik A, Ishaq U, Rana AS, Awan AH. Association of hypothyroidism with acute COVID-19: a systematic review. Expert Rev Endocrinol Metab 2021; 16:251-257. [PMID: 34424110 DOI: 10.1080/17446651.2021.1968830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE There is an increasing body of literature on the impact of COVID-19 on the pituitary-thyroid axis. Therefore, we conducted a systematic review to assess the prevalence of hypothyroidism in patients with COVID-19. METHODS A literature review was conducted using LitCOVID for study selection in PubMed and MEDLINE till May 2021. All relevant original articles evaluating thyroid dysfunction were included and information regarding the prevalence of hypothyroid disease in COVID-19 was retrieved from the eligible articles. RESULTS Out of 32 articles, six articles qualified for the final analysis which included 1160 patients. There was significant heterogeneity among the included articles. Most of the patients had lower mean triiodothyronine (T3) and normal or low thyroid-stimulating hormone (TSH). Increased TSH ranged from 5.1% to 8% while low T3 was present in up to 28% of the patients. In these studies, the prevalence of altered thyroid hormones was significantly more in COVID-19 patients as compared to control groups. A positive correlation between low mean T3 and clinical severity of COVID-19 was reported. CONCLUSION This systematic review reveals a significant proportion of hypothyroidism associated with COVID-19. Therefore, routine assessment of thyroid function is warranted in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Jahanzeb Malik
- Department of Cardiology, Rawalpindi Institute of Cardiology, Rawalpindi, Pakistan
| | | | - Ali Umer Waqar
- Department of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Hashir Khawaja
- Department of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Asmara Malik
- Department of Community Medicine, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Uzma Ishaq
- Department of Hematology, Foundation University Medical College, Islamabad, Pakistan
| | - Abdul Sattar Rana
- Department of Cardiology, Rawalpindi Institute of Cardiology, Rawalpindi, Pakistan
| | - Ali Haider Awan
- Department of Cardiology, Rawalpindi Institute of Cardiology, Rawalpindi, Pakistan
| |
Collapse
|
14
|
Lisco G, De Tullio A, Jirillo E, Giagulli VA, De Pergola G, Guastamacchia E, Triggiani V. Thyroid and COVID-19: a review on pathophysiological, clinical and organizational aspects. J Endocrinol Invest 2021; 44:1801-1814. [PMID: 33765288 PMCID: PMC7992516 DOI: 10.1007/s40618-021-01554-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid dysfunction has been observed in patients with COVID-19, and endocrinologists are requested to understand this clinical issue. Pandemic-related restrictions and reorganization of healthcare services may affect thyroid disease management. OBJECTIVE AND METHODS To analyze and discuss the relationship between COVID-19 and thyroid diseases from several perspectives. PubMed/MEDLINE, Google Scholar, Scopus, ClinicalTrial.gov were searched for this purpose by using free text words and medical subject headings as follows: "sars cov 2", "covid 19", "subacute thyroiditis", "atypical thyroiditis", "chronic thyroiditis", "hashimoto's thyroiditis", "graves' disease", "thyroid nodule", "differentiated thyroid cancer", "medullary thyroid cancer", "methimazole", "levothyroxine", "multikinase inhibitor", "remdesivir", "tocilizumab". Data were collected, analyzed, and discussed to answer the following clinical questions: "What evidence suggests that COVID-19 may induce detrimental consequences on thyroid function?"; "Could previous or concomitant thyroid diseases deteriorate the prognosis of COVID-19 once the infection has occurred?"; "Could medical management of thyroid diseases influence the clinical course of COVID-19?"; "Does medical management of COVID-19 interfere with thyroid function?"; "Are there defined strategies to better manage endocrine diseases despite restrictive measures and in-hospital and ambulatory activities reorganizations?". RESULTS SARS-CoV-2 may induce thyroid dysfunction that is usually reversible, including subclinical and atypical thyroiditis. Patients with baseline thyroid diseases are not at higher risk of contracting or transmitting SARS-CoV-2, and baseline thyroid dysfunction does not foster a worse progression of COVID-19. However, it is unclear whether low levels of free triiodothyronine, observed in seriously ill patients with COVID-19, may worsen the disease's clinical progression and, consequently, if triiodothyronine supplementation could be a tool for reducing this burden. Glucocorticoids and heparin may affect thyroid hormone secretion and measurement, respectively, leading to possible misdiagnosis of thyroid dysfunction in severe cases of COVID-19. High-risk thyroid nodules require a fine-needle aspiration without relevant delay, whereas other non-urgent diagnostic procedures and therapeutic interventions should be postponed. DISCUSSION Currently, we know that SARS-CoV-2 could lead to short-term and reversible thyroid dysfunction, but thyroid diseases seem not to affect the progression of COVID-19. Adequate management of patients with thyroid diseases remains essential during the pandemic, but it could be compromised because of healthcare service restrictions. Endocrine care centers should continuously recognize and classify priority cases for in-person visits and therapeutic procedures. Telemedicine may be a useful tool for managing patients not requiring in-person visits.
Collapse
Affiliation(s)
- G Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy.
| | - A De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy
| | - E Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - V A Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy
| | - G De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - E Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy
| | - V Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy.
| |
Collapse
|
15
|
Lisco G, De Tullio A, Stragapede A, Solimando AG, Albanese F, Capobianco M, Giagulli VA, Guastamacchia E, De Pergola G, Vacca A, Racanelli V, Triggiani V. COVID-19 and the Endocrine System: A Comprehensive Review on the Theme. J Clin Med 2021; 10:jcm10132920. [PMID: 34209964 PMCID: PMC8269331 DOI: 10.3390/jcm10132920] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background and aim. The review aimed to summarize advances in the topic of endocrine diseases and coronavirus disease 2019 (COVID-19). Methods. Scientific and institutional websites and databases were searched and data were collected and organized, when plausible, to angle the discussion toward the following clinical issues. (1) Are patients with COVID-19 at higher risk of developing acute or late-onset endocrine diseases or dysfunction? (2) May the underlying endocrine diseases or dysfunctions be considered risk factors for poor prognosis once the infection has occurred? (3) Are there defined strategies to manage endocrine diseases despite pandemic-related constraints? Herein, the authors considered only relevant and more frequently observed endocrine diseases and disorders related to the hypothalamic-pituitary region, thyroid and parathyroid glands, calcium-phosphorus homeostasis and osteoporosis, adrenal glands, and gonads. Main. Data highlight the basis of some pathophysiological mechanisms and anatomical alterations of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-induced endocrine dysfunctions. Some conditions, such as adrenal insufficiency and cortisol excess, may be risk factors of worse clinical progression once the infection has occurred. These at-risk populations may require adequate education to avoid the SARS-CoV-2 infection and adequately manage medical therapy during the pandemic, even in emergencies. Endocrine disease management underwent a palpable restraint, especially procedures requiring obligate access to healthcare facilities for diagnostic and therapeutic purposes. Strategies of clinical triage to prioritize medical consultations, laboratory, instrumental evaluations, and digital telehealth solutions should be implemented to better deal with this probably long-term situation.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Assunta Stragapede
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Federica Albanese
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Martina Capobianco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
- Correspondence: ; Tel.: +39-(0)-80-547-82-54
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| |
Collapse
|
16
|
Fröhlich E, Wahl R. Physiological Role and Use of Thyroid Hormone Metabolites - Potential Utility in COVID-19 Patients. Front Endocrinol (Lausanne) 2021; 12:587518. [PMID: 33981284 PMCID: PMC8109250 DOI: 10.3389/fendo.2021.587518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroxine and triiodothyronine (T3) are classical thyroid hormones and with relatively well-understood actions. In contrast, the physiological role of thyroid hormone metabolites, also circulating in the blood, is less well characterized. These molecules, namely, reverse triiodothyronine, 3,5-diiodothyronine, 3-iodothyronamine, tetraiodoacetic acid and triiodoacetic acid, mediate both agonistic (thyromimetic) and antagonistic actions additional to the effects of the classical thyroid hormones. Here, we provide an overview of the main factors influencing thyroid hormone action, and then go on to describe the main effects of the metabolites and their potential use in medicine. One section addresses thyroid hormone levels in corona virus disease 19 (COVID-19). It appears that i) the more potently-acting molecules T3 and triiodoacetic acid have shorter half-lives than the less potent antagonists 3-iodothyronamine and tetraiodoacetic acid; ii) reverse T3 and 3,5-diiodothyronine may serve as indicators for metabolic dysregulation and disease, and iii) Nanotetrac may be a promising candidate for treating cancer, and resmetirom and VK2809 for steatohepatitis. Further, the use of L-T3 in the treatment of severely ill COVID-19 patients is critically discussed.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Tuebingen, Germany
- Center for Medical Research, Medical University Graz, Graz, Austria
| | - Richard Wahl
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
18
|
Hormonal regulation of visfatin gene in avian Leghorn male hepatoma (LMH) cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110592. [PMID: 31669171 DOI: 10.1016/j.cbpa.2019.110592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Visfain has been extensively studied in mammals and has been shown to play an important role in obesity and insulin resistance. However, there is a paucity of information on visfatin regulation in non-mammalian species. After characterization of chicken visfatin gene, we undertook this study to determine its hormonal regulation in avian (non-mammalian) liver cells. Addition of 5 ng/mL TNFα, 100 ng/mL leptin, 1, 3, 10 or 100 ng/mL T3 for 24 h upregulated visfatin gene expression by 1.2, 1.8, 1.95, 1.75, 1.80, and 2.45 folds (P < .05), respectively, compared to untreated LMH cells. Administration of 10 ng/mL of orexin A significantly down regulated visfatin gene expression by 1.35 folds compared to control cells. In contrast, treatment with IL-6 or orexin B for 24 h did not influence visfatin mRNA abundance. These pro-inflammatory cytokines and obesity-related hormones modulate the expression of CRP, INSIG2, and nuclear orphan receptors. Hepatic CRP gene expression was significantly upregulated by IL-6, TNFα, orexin B, and T3 and down regulated by leptin and orexin A. LXR mRNA abundances were increased by orexin A, decreased by orexin B, and T3, and did not affected by IL6, TNFα, or leptin. The expression of FXR gene was induced by IL-6, leptin, and T3, but it was not influenced by TNFα, orexin A or B. CXR gene expression was up regulated by TNFα, leptin, orexin B, and T3, down regulated by 5 ng/mL orexin A, and did not affected by IL-6. INSIG2 mRNA levels were increased by TNFα (5 ng/mL), leptin (100 ng/mL), and T3 (1, 3, 10, and 100 ng/mL), decreased by orexin A, and remained unchanged with IL-6 or orexin B treatment. Together, this is the first report showing hormonal regulation of visfatin in avian hepatocyte cells and suggesting a potential role of CRP, INSIG2, and nuclear orphan receptor LXR, FXR, and CXR in mediating these hormonal effects.
Collapse
|
19
|
Montesinos MDM, Pellizas CG. Thyroid Hormone Action on Innate Immunity. Front Endocrinol (Lausanne) 2019; 10:350. [PMID: 31214123 PMCID: PMC6558108 DOI: 10.3389/fendo.2019.00350] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
The interplay between thyroid hormone action and the immune system has been established in physiological and pathological settings. However, their connection is complex and still not completely understood. The thyroid hormones (THs), 3,3',5,5' tetraiodo-L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3) play essential roles in both the innate and adaptive immune responses. Despite much research having been carried out on this topic, the available data are sometimes difficult to interpret or even contradictory. Innate immune cells act as the first line of defense, mainly involving granulocytes and natural killer cells. In turn, antigen presenting cells, macrophages and dendritic cells capture, process and present antigens (self and foreign) to naïve T lymphocytes in secondary lymphoid tissues for the development of adaptive immunity. Here, we review the cellular and molecular mechanisms involved in T4 and T3 effects on innate immune cells. An overview of the state-of-the-art of TH transport across the target cell membrane, TH metabolism inside these cells, and the genomic and non-genomic mechanisms involved in the action of THs in the different innate immune cell subsets is included. The present knowledge of TH effects as well as the thyroid status on innate immunity helps to understand the complex adaptive responses achieved with profound implications in immunopathology, which include inflammation, cancer and autoimmunity, at the crossroads of the immune and endocrine systems.
Collapse
|
20
|
Pawlik-Pachucka E, Budzinska M, Wicik Z, Domaszewska-Szostek A, Owczarz M, Roszkowska-Gancarz M, Gewartowska M, Puzianowska-Kuznicka M. Age-associated increase of thyroid hormone receptor β gene promoter methylation coexists with decreased gene expression. Endocr Res 2018; 43:246-257. [PMID: 29733698 DOI: 10.1080/07435800.2018.1469648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE It is not established if healthy aging of the thyroid axis is associated with alterations other than changes in hormone secretion. METHODS The expression of thyroid hormone receptor β gene (THRB) was analyzed in peripheral blood mononuclear cells (PBMC) obtained from young, elderly, and long-lived individuals. The interaction between the 3'UTR of TRβ1 mRNA and selected miRNAs was measured using pmirGLO reporter vector. Methylation of the THRB CpG island was analyzed using methylation-sensitive restriction/RT-PCR and bisulfite sequencing methods. RESULTS Old age was associated with a significantly lower amount of total TRβ mRNA (p = 0.033) and of TRβ1 mRNA (p = 0.02). Older age was also associated with significantly higher methylation of the THRB promoter (restriction/RT-PCR: p = 0.0023, bisulfite sequencing: p = 0.0004). Higher methylation corresponded to a lower expression of the THRB mRNA, but this correlation did not reach the level of significance. miR-26a interacted with two sites in the 3'UTR of the TRβ1 mRNA leading to the decrease of the reporter protein activity (p < 0.0001 and p = 0.0005), and miR-496 interacted with one of the two putative binding sites which also decreased the reporter protein activity (p < 0.0001). Analysis of the expression of miR-21, miR-26a, miR-146a, miR-181a, miR-221, and miR-496 showed that the expression of miR-26a was significantly decreased in old subjects (p = 0.017), while the levels of other miRNAs were unaffected. CONCLUSIONS Age-related decrease of THRB expression in PBMC of elderly and long-lived humans might be, in part, a result of the increased methylation of its promoter, but is unrelated to the activity of the miRNAs analyzed here.
Collapse
Affiliation(s)
- Eliza Pawlik-Pachucka
- a Department of Human Epigenetics , Mossakowski Medical Research Centre, PAS , Warsaw , Poland
- b Department of Geriatrics and Gerontology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Monika Budzinska
- b Department of Geriatrics and Gerontology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Zofia Wicik
- a Department of Human Epigenetics , Mossakowski Medical Research Centre, PAS , Warsaw , Poland
| | | | - Magdalena Owczarz
- b Department of Geriatrics and Gerontology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | | | - Magdalena Gewartowska
- a Department of Human Epigenetics , Mossakowski Medical Research Centre, PAS , Warsaw , Poland
| | - Monika Puzianowska-Kuznicka
- a Department of Human Epigenetics , Mossakowski Medical Research Centre, PAS , Warsaw , Poland
- b Department of Geriatrics and Gerontology , Centre of Postgraduate Medical Education , Warsaw , Poland
| |
Collapse
|
21
|
Ruiz-Llorente L, Contreras-Jurado C, Martínez-Fernández M, Paramio JM, Aranda A. Thyroid Hormone Receptors Regulate the Expression of microRNAs with Key Roles in Skin Homeostasis. Thyroid 2018; 28:921-932. [PMID: 29742977 DOI: 10.1089/thy.2017.0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a unique role in posttranscriptional regulation of gene expression and control different aspects of skin development, homeostasis, and disease. Although it is generally accepted that thyroid hormone signaling is important in skin pathophysiology, the role of their nuclear receptors (TRs) in cutaneous miRNA expression has yet to be explored. METHODS RNAseq was used to compare the skin miRnome of wild-type mice and genetically modified mice lacking both TRα1 and TRβ, the main thyroid hormone binding isoforms. Changes in miRNAs with a crucial role in skin physiopathology were confirmed by stem-loop quantitative polymerase chain reaction in both total skin and isolated keratinocytes, and the levels of their target mRNAs were evaluated by real-time polymerase chain reaction. RESULTS The skin of TRα1/TRβ knockout mice displays altered levels of >50 miRNAs. Among the downregulated species are several miRNAs, including miR-21, miR-31, miR-34, and miR-203, with crucial roles in skin homeostasis. TRα1 appears to be the main isoform responsible for their regulation. Increased levels of gene transcripts previously shown to be bona fide targets of these miRNAs are also found in the skin and keratinocytes of TR-deficient mice. This suggests that multiple miRNAs that are downregulated in the absence of TRs cooperate to regulate gene expression in the skin. CONCLUSIONS The miRNAs reduced in TRα1/TRβ knockout mice are known to play crucial roles in epidermal proliferation, hair cycling, wound healing, stem-cell function, and tumor development, all processes altered in the absence of TRs. These results suggest that their regulation could contribute to the skin defects found in these mice and to the skin disorders associated with altered thyroid status in humans.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain
| | - Constanza Contreras-Jurado
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
| | - Mónica Martínez-Fernández
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
- 4 Molecular Oncology Unit , Division of Biomedicine, CIEMAT, Madrid, Spain
| | - Jesús M Paramio
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
- 4 Molecular Oncology Unit , Division of Biomedicine, CIEMAT, Madrid, Spain
| | - Ana Aranda
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
| |
Collapse
|
22
|
Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L162-L172. [PMID: 29696986 DOI: 10.1152/ajplung.00037.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.
Collapse
Affiliation(s)
- David W Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands
| | - Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Cecilia M Prele
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| |
Collapse
|
23
|
van der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells. J Endocrinol 2017; 232:R67-R81. [PMID: 27852725 DOI: 10.1530/joe-16-0462] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/23/2022]
Abstract
Thyroid hormone (TH) metabolism and thyroid status have been linked to various aspects of the immune response. There is extensive literature available on the effects of thyroid hormone on innate immune cells. However, only recently have authors begun to study the mechanisms behind these effects and the role of intracellular TH metabolism in innate immune cell function during inflammation. This review provides an overview of the molecular machinery of intracellular TH metabolism present in neutrophils, macrophages and dendritic cells and the role and effects of intracellular TH metabolism in these cells. Circulating TH levels have a profound effect on neutrophil, macrophage and dendritic cell function. In general, increased TH levels result in an amplification of the pro-inflammatory response of these cells. The mechanisms behind these effects include both genomic and non-genomic effects of TH. Besides a pro-inflammatory effect induced by extracellular TH, the cellular response to pro-inflammatory stimuli appears to be dependent on functional intracellular TH metabolism. This is illustrated by the fact that the deiodinase enzymes and in some cell types also thyroid hormone receptors appear to be crucial for adequate innate immune cell function. This overview of the literature suggests that TH metabolism plays an important role in the host defence against infection through the modulation of innate immune cell function.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|