1
|
Cheng L, Zhou C, Yuan Q, Zhang L, Shao X, Xu X, Li Z, Cheng J. 3D-QSAR model-oriented optimization of Pyrazole β-Ketonitrile derivatives with diphenyl ether moiety as novel potent succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:5299-5306. [PMID: 38940289 DOI: 10.1002/ps.8269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides play important roles in the control of plant fungal diseases. However, they are facing serious challenges from issues with resistance and cross-resistance, primarily attributed to their frequent application and structural similarities. There is an urgent need to design and develop SDHI fungicides with novel structures. RESULTS Aiming to discover novel potent SDHI fungicides, 31 innovative pyrazole β-ketonitrile derivatives with diphenyl ether moiety were rationally designed and synthesized, which were guided by a 3D-QSAR model from our previous study. The optimal target compound A23 exhibited not only outstanding in vitro inhibitory activities against Rhizoctonia solani with a half-maximal effective concentration (EC50) value of 0.0398 μg mL-1 comparable to that for fluxapyroxad (EC50 = 0.0375 μg mL-1), but also a moderate protective efficacy in vivo against rice sheath blight. Porcine succinate dehydrogenase (SDH) enzymatic inhibitory assay revealed that A23 is a potent inhibitor of SDH, with a half-maximal inhibitory concentration of 0.0425 μm. Docking study within R. solani SDH indicated that A23 effectively binds into the ubiquinone site mainly through hydrogen-bonds, and cation-π and π-π interactions. CONCLUSION The identified β-ketonitrile compound A23 containing diphenyl ether moiety is a potent SDH inhibitor, which might be a good lead for novel fungicide research and optimization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangliang Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Sepehri S, Khedmati M, Yousef-Nejad F, Mahdavi M. Medicinal chemistry perspective on the structure-activity relationship of stilbene derivatives. RSC Adv 2024; 14:19823-19879. [PMID: 38903666 PMCID: PMC11188052 DOI: 10.1039/d4ra02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites produced in a variety of closely related plant species. These compounds function as phytoalexins, aiding plant defense against phytopathogens and plants' adaptation to abiotic environmental factors. Structurally, some important phenolic compounds have a 14-carbon skeleton and usually have two isomeric forms, Z and E. Stilbenes contain two benzene rings linked by a molecule of ethanol or ethylene. Some derivatives of natural (poly)phenolic stilbenes such as resveratrol, pterostilbene, and combretastatin A-4 have shown various biological activities, such as anti-microbial, anti-cancer, and anti-inflammatory properties as well as protection against heart disease, Alzheimer's disease, and diabetes. Among stilbenes, resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds have been investigated for their bioactivity. This review focuses on the assessment of synthetic stilbene derivatives in terms of their biological activities and structure-activity relationship. The goal of this study is to consider the structural changes and different substitutions on phenyl rings that can improve the desired medicinal effects of stilbene-based compounds beyond the usual standards and subsequently discover biological activities by identifying effective alternatives of the evaluated compounds.
Collapse
Affiliation(s)
- Saghi Sepehri
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences Ardabil Iran +98-45-33522197 +98-45-33522437-39, ext. 164
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Mina Khedmati
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Faeze Yousef-Nejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Ma YD, Zhou H, Lin GT, Wu KH, Xu G, Liu X, Xu D. Design, Synthesis, and Fungicidal Activities of Novel N-(Pyrazol-5-yl)benzamide Derivatives Containing a Diphenylamine Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6691-6701. [PMID: 38498985 DOI: 10.1021/acs.jafc.3c07567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
To accelerate the development of novel fungicides, a variety of N-(pyrazol-5-yl)benzamide derivatives with a diphenylamine moiety were designed and synthesized using a pharmacophore recombination strategy based on the structure of pyrazol-5-yl-aminophenyl-benzamides. The bioassay results demonstrated that most of the target compounds had excellent in vitro antifungal activities against Sclerotinia sclerotiorum, Valsa mali, and Botrytis cinerea. In particular, compound 5IIIh exhibited remarkable activity against S. sclerotiorum (EC50 = 0.37 mg/L), which was similar to that of fluxapyroxad (EC50 = 0.27 mg/L). In addition, compound 5IIIc (EC50 = 1.32 mg/L) was observed to be more effective against V. mali than fluxapyroxad (EC50 = 12.8 mg/L) and comparable to trifloxystrobin (EC50 = 1.62 mg/L). Furthermore, compound 5IIIh demonstrated remarkable in vivo protective antifungal properties against S. sclerotiorum, with an inhibition rate of 96.8% at 100 mg/L, which was close to that of fluxapyroxad (99.6%). Compounds 5IIIc (66.7%) and 5IIIh (62.9%) exhibited good in vivo antifungal effects against V. mali at 100 mg/L, which were superior to that of fluxapyroxad (11.1%) but lower than that of trifloxystrobin (88.9%). The succinate dehydrogenase (SDH) enzymatic inhibition assay was conducted to confirm the mechanism of action. Molecular docking analysis further revealed that compound 5IIIh has significant hydrogen-bonding, π-π, and p-π conjugation interactions with ARG 43, SER 39, TRP 173, and TYR 58 in the binding site of SDH, and the binding mode was similar to that of the commercial fungicide fluxapyroxad. All of the results suggest that compound 5IIIh could be a potential SDH inhibitor, offering a valuable reference for future studies.
Collapse
Affiliation(s)
- Yi-Dan Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Huan Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Guo-Tai Lin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ke-Huan Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Gong Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Xiang Y, Xu Y, Li J, Jiang J, Wang Y, Li X, Ai W, Mi P, Yang Z, Zheng Z. A Review on the Mechanism and Structure-activity Relationship of Resveratrol Heteroaryl Analogues. Comb Chem High Throughput Screen 2024; 27:947-958. [PMID: 37448369 DOI: 10.2174/1386207326666230713125512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/19/2023] [Accepted: 03/15/2023] [Indexed: 07/15/2023]
Abstract
Resveratrol is one of the most interesting naturally-occurring nonflavonoid phenolic compounds with various biological activities, such as anticancer, neuroprotection, antibacterial, and anti-inflammatory. However, there is no clinical usage of resveratrol due to either its poor activity or poor pharmacokinetic properties. Heteroarenes-modified resveratrol is one pathway to improve its biological activities and bioavailability, and form more modification sites. In this review, we present the progress of heteroaryl analogues of resveratrol with promising biological activities in the latest five years, ranging from the synthesis to the structure-activity relationship and mechanism of actions. Finally, introducing heteroarenes into resveratrol is an effective strategy, which focuses on the selectivity of structure-activity relationship in vivo.
Collapse
Affiliation(s)
- Yijun Xiang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Xu
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jiaxin Li
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingyi Jiang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yanjie Wang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoshun Li
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenbin Ai
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Pengbing Mi
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zehua Yang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zitong Zheng
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
5
|
Kluska M, Jabłońska J, Prukała W. Analytics, Properties and Applications of Biologically Active Stilbene Derivatives. Molecules 2023; 28:molecules28114482. [PMID: 37298957 DOI: 10.3390/molecules28114482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.
Collapse
Affiliation(s)
- Mariusz Kluska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Joanna Jabłońska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Wiesław Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Zhang C, Yang J, Zhao C, Li L, Wu Z. Potential Fungicide Candidates: A Dual Action Mode Study of Novel Pyrazole-4-carboxamides against Gibberella zeae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1862-1872. [PMID: 36669159 DOI: 10.1021/acs.jafc.2c06962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pyrazole carboxamides are a class of traditional succinate dehydrogenase inhibitors (SDHIs) that have developed into a variety of commercialized fungicides. In the present work, a series of novel 1,5-disubstituted-1H-pyrazole-4-carboxamide derivatives were designed and synthesized based on the active backbone of 5-trifluoromethyl-1H-4-pyrazole carboxamide. Bioassay results indicated that some target compounds exhibited excellent in vitro antifungal activities against six phytopathogenic fungi. Notably, the EC50 values of Y47 against Gibberella zeae, Nigrospora oryzae, Thanatephorus cucumeris, and Verticillium dahliae were 5.2, 9.2, 12.8, and 17.6 mg/L, respectively. The in vivo protective and curative activities of Y47 at 100 mg/L against G. zeae on maize were 50.7 and 44.2%, respectively. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis revealed that the large steric hindrance and electronegative groups on the 5-position of the pyrazole ring were important for the activity. The IC50 value of Y47 against succinate dehydrogenase (SDH) was 7.7 mg/L, superior to fluopyram (24.7 mg/L), which was consistent with the docking results. Morphological studies with fluorescence microscopy (FM) and scanning electron microscopy (SEM) found that Y47 could affect the membrane integrity of mycelium by inducing endogenous reactive oxygen species (ROS) production and causing peroxidation of cellular lipids, which was further verified by the malondialdehyde (MDA) content. Antifungal mechanism analysis demonstrated that the target compound Y47 not only had significant SDH inhibition activity but could also affect the membrane integrity of mycelium, exhibiting obvious dual action modes. This research provides a novel approach to the development of traditional SDHIs and their derivatives.
Collapse
Affiliation(s)
- Chengzhi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Cailong Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Longju Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Yang J, Xie D, Zhang C, Zhao C, Wu Z, Xue W. Synthesis, antifungal activity and in vitro mechanism of novel 1-substituted-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Fessner ND, Nelson DR, Glieder A. Evolution and enrichment of CYP5035 in Polyporales: functionality of an understudied P450 family. Appl Microbiol Biotechnol 2021; 105:6779-6792. [PMID: 34459954 PMCID: PMC8426240 DOI: 10.1007/s00253-021-11444-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/29/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Abstract Bioprospecting for innovative basidiomycete cytochrome P450 enzymes (P450s) is highly desirable due to the fungi’s enormous enzymatic repertoire and outstanding ability to degrade lignin and detoxify various xenobiotics. While fungal metagenomics is progressing rapidly, the biocatalytic potential of the majority of these annotated P450 sequences usually remains concealed, although functional profiling identified several P450 families with versatile substrate scopes towards various natural products. Functional knowledge about the CYP5035 family, for example, is largely insufficient. In this study, the families of the putative P450 sequences of the four white-rot fungi Polyporus arcularius, Polyporus brumalis, Polyporus squamosus and Lentinus tigrinus were assigned, and the CYPomes revealed an unusual enrichment of CYP5035, CYP5136 and CYP5150. By computational analysis of the phylogeny of the former two P450 families, the evolution of their enrichment could be traced back to the Ganoderma macrofungus, indicating their evolutionary benefit. In order to address the knowledge gap on CYP5035 functionality, a representative subgroup of this P450 family of P. arcularius was expressed and screened against a test set of substrates. Thereby, the multifunctional enzyme CYP5035S7 converting several plant natural product classes was discovered. Aligning CYP5035S7 to 102,000 putative P450 sequences of 36 fungal species from Joint Genome Institute-provided genomes located hundreds of further CYP5035 family members, which subfamilies were classified if possible. Exemplified by these specific enzyme analyses, this study gives valuable hints for future bioprospecting of such xenobiotic-detoxifying P450s and for the identification of their biocatalytic potential. Graphical abstract ![]()
Key points • The P450 families CYP5035 and CYP5136 are unusually enriched in P. arcularius. • Functional screening shows CYP5035 assisting in the fungal detoxification mechanism. • Some Polyporales encompass an unusually large repertoire of detoxification P450s. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11444-2.
Collapse
Affiliation(s)
- Nico D Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
9
|
Synthesis of Stilbene and Chalcone Inhibitors of Influenza A Virus by SBA-15 Supported Hoveyda-Grubbs Metathesis. Catalysts 2019. [DOI: 10.3390/catal9120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stilbene and chalcone derivatives with biological activity against influenza A virus have been synthesized by self-, cross-, and ring-closing metathesis procedures. The reactions were performed under environmentally friendly conditions using the second generation Hoveyda-Grubbs catalyst Aquamet SiPr after immobilization on Santa Barbara Amorphous mesoporous silicate SBA-15. Irrespective from the experimental conditions, the heterogeneous catalyst showed activity and selectivity comparable than the homogeneous counterpart for at least six successive runs without appreciable leaching of the active species. An appreciable antiviral activity against influenza A virus for some of the novel derivatives were observed, mainly involving the early stage of the virus-replication life-cycle.
Collapse
|
10
|
Wen L, Jian W, Shang J, He D. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. PEST MANAGEMENT SCIENCE 2019; 75:1123-1130. [PMID: 30284404 DOI: 10.1002/ps.5229] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Natural stilbenes (especially resveratrol and its derivatives) are well-known phytoalexins that are active against many plant diseases. However, oxidative degradation and low bioavailability limit their exogenous application as fungicides on crops. In this study, a new class of resveratrol-inspired thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit was synthesized and the derivatives' antifungal activities against phytopathogenic fungi were investigated. RESULTS The results revealed that compounds 5h and 5j exhibited improved antifungal activity against Botrytis cinerea with median effective concentrations (EC50 ) of 168.5 and 155.4 µg mL-1 , respectively, which were superior to the EC50 of resveratrol (263.1 µg mL-1 ). Compound 5j was shown to effectively control disease development in B. cinerea-infected tomatoes in vivo. Notably, considerably abnormal mycelial morphology and increased cell membrane conductivity were observed in the presence of compound 5j. CONCLUSION A new class of thiophene-containing stilbene derivatives was designed and synthesized. Bioassay results showed that compound 5j exhibited promising antifungal activity, suggesting practical potential for fungal disease control. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lan Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Weilin Jian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Junbing Shang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Daohang He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
De Filippis B, Ammazzalorso A, Amoroso R, Giampietro L. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev Res 2019; 80:285-293. [PMID: 30790326 DOI: 10.1002/ddr.21525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The high incidence and mortality of invasive fungal infections and serious drug resistance have become a global public health issue. There is an urgent need for alternative antimicrobials to control fungal infections and targeting it by antifungal substances from the natural sources represents a promising new strategy for the development of novel antifungal agents. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin produced by plant species in response to environmental stress or pathogenic attacks. It has many known and potential therapeutic applications in human general homeostasis; it mediates a great number of biological responses relevant for human health such as anticancer, cardio and neuroprotective, antioxidant, and antimicrobial activities. Resveratrol is a natural antifungal agent, therefore it can be considered as a scaffold for designing structural relatives potentially capable of mediating more intense responses in a more specific way. Also, stilbenes produced by several plants may be useful lead structure for the chemical synthesis of antifungal. Their antifungal potential represents a useful solution to the drug resistance and side effect complications that occur after pharmacological treatment of infectious diseases. The purpose of this review is to present an overview on resveratrol derivatives, both natural and synthetic, with antifungal activity and summarize the chemical structure and the therapeutic versatility of stilbene-containing compounds.
Collapse
Affiliation(s)
| | | | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | | |
Collapse
|